“Scikit-learn”的版本间差异

来自Shiyin's note
跳到导航 跳到搜索
第22行: 第22行:
*n_jobs: 可以决定要使用多少处理器内核来运行模型。设置「n_jobs = -1」将使模型运行最快,因为它使用了所有计算机核心。
*n_jobs: 可以决定要使用多少处理器内核来运行模型。设置「n_jobs = -1」将使模型运行最快,因为它使用了所有计算机核心。
====回归====
====回归====
*sklearn.ensemble.RandomForestRegressor
*sklearn.ensemble.RandomForestRegressor [https://zhuanlan.zhihu.com/p/391338788]
*所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标, 参数Criterion不一致。
*所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标, 参数Criterion不一致。
RandomForestRegressor(n_estimators='warn',
criterion='mse',
max_depth=None,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features='auto',
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
bootstrap=True,
oob_score=False,
n_jobs=None,
random_state=None,
verbose=0,
warm_start=False)
*criterion
:"mse"使用均方误差mean squared error(MSE),"friedman_mse"使用费尔德曼均方误差; "mae"使用绝对平均误差MAE(mean absolute error)
* 对于回归来说,并不存在一个样本要被分到某个类别的概率问题,因此没有predict_proba这个接口。
* 对缺失值的处理参见 [https://blog.csdn.net/gracejpw/article/details/102611273]

2022年1月16日 (日) 14:16的版本

  • python中的机器学习软件库:[1]
       $ conda install scikit-learn-intelex
       $ python -m sklearnex my_application.py


随机森林

分类

  • sklearn.ensemble import RandomForestClassifier
  • n_estimators:随机森林中「树」的数量。
  • max_features:每个分割处的特征数。
max_features = 'sqrt' 这意味着如果有16个特征,则在每个树中的每个节点处,只考虑4个随机特征来拆分节点。
  • max_depth:每棵树可以拥有的最大「分裂」数。
  • min_samples_split:在树的节点分裂前所需的最少观察数。
  • min_samples_leaf:每棵树末端的叶节点所需的最少观察数。
  • bootstrap:是否使用 bootstrapping 来为随机林中的每棵树提供数据。(bootstrapping 是从数据集中进行替换的随机抽样。)
  • n_jobs: 可以决定要使用多少处理器内核来运行模型。设置「n_jobs = -1」将使模型运行最快,因为它使用了所有计算机核心。

回归

  • sklearn.ensemble.RandomForestRegressor [4]
  • 所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标, 参数Criterion不一致。
RandomForestRegressor(n_estimators='warn', 
                     criterion='mse', 
                     max_depth=None, 
                     min_samples_split=2, 
                     min_samples_leaf=1, 
                     min_weight_fraction_leaf=0.0, 
                     max_features='auto', 
                     max_leaf_nodes=None, 
                     min_impurity_decrease=0.0, 
                     min_impurity_split=None, 
                     bootstrap=True, 
                     oob_score=False, 
                     n_jobs=None, 
                     random_state=None, 
                     verbose=0, 
                     warm_start=False)
  • criterion
"mse"使用均方误差mean squared error(MSE),"friedman_mse"使用费尔德曼均方误差; "mae"使用绝对平均误差MAE(mean absolute error)
  • 对于回归来说,并不存在一个样本要被分到某个类别的概率问题,因此没有predict_proba这个接口。
  • 对缺失值的处理参见 [5]