“Scikit-learn”的版本间差异
跳到导航
跳到搜索
(→随机森林) |
(→随机森林) |
||
第11行: | 第11行: | ||
===随机森林=== |
===随机森林=== |
||
* 参考 [https://zhuanlan.zhihu.com/p/51165358] [https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76] |
* 参考 [https://zhuanlan.zhihu.com/p/51165358] [https://towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-in-python-77bf308a9b76] |
||
*n_estimators |
|||
*超参: |
|||
*max_features |
|||
*min_samples_split |
2022年1月16日 (日) 12:51的版本
- python中的机器学习软件库:[1]
- Installed package of scikit-learn can be accelerated using scikit-learn-intelex. More details are available here: https://intel.github.io/scikit-learn-intelex. For example:
$ conda install scikit-learn-intelex $ python -m sklearnex my_application.py
包
- MLPRegressor回归,参考 http://www.weixueyuan.net/a/914.html