“Pandas”的版本间差异

来自Shiyin's note
跳到导航 跳到搜索
无编辑摘要
第2行: 第2行:


==数据结构==
==数据结构==
*https://www.cnblogs.com/songxiaohua/p/9445087.html
===DataFrame===
===DataFrame===
*参见 https://blog.csdn.net/u014281392/article/details/75331570
*参见 https://blog.csdn.net/u014281392/article/details/75331570
第7行: 第8行:
* 表格方式定义,行是 index, 列是columns
* 表格方式定义,行是 index, 列是columns
*调用行 df.loc(['a']),调用列 df['col1']
*调用行 df.loc(['a']),调用列 df['col1']
===Series===
*比较像字典,有index和values


===Index===
*比较像集合set,但是元素可以重复


==io==
==io==

2019年12月17日 (二) 16:07的版本

Python Data Analysis Library

数据结构

DataFrame

df = pd.DataFrame([[1, 2, 3],[4, 5, 6]], columns=['col1','col2','col3'], index=['a','b'])
  • 表格方式定义,行是 index, 列是columns
  • 调用行 df.loc(['a']),调用列 df['col1']

Series

  • 比较像字典,有index和values

Index

  • 比较像集合set,但是元素可以重复

io

  • read_csv
import pandas as pd
data=pd.read_csv('cGs_for_LAMOST.csv',comment='#')
data.columns
ra=data['ra']
dec=data['dec]
comment='#'
sep=' '(或者'\s' ;sep='\t'(分隔符是Tab键)
  • read_table

:读普通的ascii文件

file=pd.read_table(path+'test1.spectrum',skiprows=range(0,6),\
                 delim_whitespace=True, names=('A', 'B', 'C'), dtype={'A': np.int64, 'B': np.float64, 'C': np.float64})

pickle

  • 使用DataFrame的to_pickle属性就可以生成pickle文件对数据进行永久储存
df = pd.DataFrame(np.arange(20).reshape(4,5))
df.to_pickle('foo.pkl')
pd.read_pickle('foo.pkl')