“消光曲线”的版本间差异

来自Shiyin's note
跳到导航 跳到搜索
无编辑摘要
 
(未显示同一用户的2个中间版本)
第3行: 第3行:
*核球方向,近红外波段的消光曲线,还是比较陡[https://arxiv.org/abs/1710.04854]
*核球方向,近红外波段的消光曲线,还是比较陡[https://arxiv.org/abs/1710.04854]
*[[2175A bump]]是由C尘埃贡献,而整体的紫外消光是C尘埃和Si尘埃都贡献[https://arxiv.org/abs/1710.04905]
*[[2175A bump]]是由C尘埃贡献,而整体的紫外消光是C尘埃和Si尘埃都贡献[https://arxiv.org/abs/1710.04905]
* Empirical Extinction Curve Revealed by Gaia XP Spectra and LAMOST 0.336 to 4.6 μm [https://arxiv.org/abs/2407.12386]


==常用消光曲线==
==常用消光曲线==
第15行: 第16行:


以上参见图1 [http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0808.4115]
以上参见图1 [http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0808.4115]



==减光曲线 attenuation curve==
==减光曲线 attenuation curve==
* the featureless “Calzetti” attenuation law for the dust in local starburst galaxies (Calzetti et al. 1994);
* the featureless “Calzetti” attenuation law for the dust in local starburst galaxies (Calzetti et al. 1994);
: 利用发射线的强度比的不同,参考研究星系的光谱的差值红化,研究红化曲线,本质上假设了同一种红化曲线的形状 Battisti et al. 2016,
: 利用发射线的强度比的不同,参考研究星系的光谱的差值红化,研究红化曲线,本质上假设了同一种红化曲线的形状 Battisti et al. 2016,

*At low dust optical depths, the steep dust-attenuation curve is likely the result of dust scattering, with more red light (isotropic scattering) and less blue light (forward scattering) escaping the galaxy.
*In fact, the attenuation slope seems to become shallower with decreasing sSFR among starforming galaxies (e.g. Salim et al. 2018). Ultimately, observational (Salmon et al. 2016; Salim et al. 2018; Nersesian et al. 2020), theoretical (Witt & Gordon 2000; Charlot & Fall 2000; Calzetti 2001; Chevallard et al. 2013), and cosmological simulations (Narayanan et al. 2018; Shen et al. 2020) all point to a complex star-to-dust geometry as the main driver of the flattening of the attenuation curve


==其它==
==其它==

2025年2月8日 (六) 10:01的最新版本

银河系消光曲线

  • 核球方向,近红外波段的消光曲线,还是比较陡[1]
  • 2175A bump是由C尘埃贡献,而整体的紫外消光是C尘埃和Si尘埃都贡献[2]
  • Empirical Extinction Curve Revealed by Gaia XP Spectra and LAMOST 0.336 to 4.6 μm [3]

常用消光曲线

  • simple power-law
  • 在0.9mu到5mu可以近似为
  • 9.7(Si-O),18mu(O-Si-O)有硅酸盐吸收,3.4mu有烃吸收,6.2mu有PAH吸收
  • the Milky Way (MW) extinction curve (with a prominent bump at 2175)理论解释 [4]
尺度小于0.02mu的carbonaceous grains,石墨的π电子的激发吸收,PAH类似
  • the featureless Small Magellanic Cloud (SMC) extinction curve which steeply rises with inverse wavelength from near-IR to far-UV
  • the LargeMagellanic Cloud (LMC) curve being intermediate between that of the MW and the SMC;
  • the relatively flat “Maiolino” extinction law for the dust in the dense circumnuclear region of AGNs (Maiolino et al. 2001) where the dust size distribution is skewed toward large grains

以上参见图1 [5]


减光曲线 attenuation curve

  • the featureless “Calzetti” attenuation law for the dust in local starburst galaxies (Calzetti et al. 1994);
利用发射线的强度比的不同,参考研究星系的光谱的差值红化,研究红化曲线,本质上假设了同一种红化曲线的形状 Battisti et al. 2016,
  • At low dust optical depths, the steep dust-attenuation curve is likely the result of dust scattering, with more red light (isotropic scattering) and less blue light (forward scattering) escaping the galaxy.
  • In fact, the attenuation slope seems to become shallower with decreasing sSFR among starforming galaxies (e.g. Salim et al. 2018). Ultimately, observational (Salmon et al. 2016; Salim et al. 2018; Nersesian et al. 2020), theoretical (Witt & Gordon 2000; Charlot & Fall 2000; Calzetti 2001; Chevallard et al. 2013), and cosmological simulations (Narayanan et al. 2018; Shen et al. 2020) all point to a complex star-to-dust geometry as the main driver of the flattening of the attenuation curve

其它

类星体中的尘埃

  • 一种认为和SMC差不多 Hopkins et al. (2004)
  • 一种认为比较平 (Czerny et al. 2004; Gaskell et al. 2004).

see also 尘埃粒子的分布'

ARA&A文献:[6]