“Pytorch”的版本间差异
		
		
		
		
		
		跳到导航
		跳到搜索
		
				
		
		
	
 (→函数)  | 
				 (→函数)  | 
				||
| 第12行: | 第12行: | ||
*torch.view()  | 
  *torch.view()  | 
||
:相当于numpy的reshape,某个维度上等于-1,就是让计算机自己算一下这一维度上应该有多少  | 
  :相当于numpy的reshape,某个维度上等于-1,就是让计算机自己算一下这一维度上应该有多少  | 
||
*torch.cat & torch.stack  | 
|||
:orch.stack()沿着一个新维度对输入张量序列进行连接。 序列中所有的张量都应该为相同形状。  | 
|||
:torch.cat()是为了把函数torch.stack()得到tensor进行拼接而存在的 (不增加新的维度)  | 
|||
==Tensor==  | 
  ==Tensor==  | 
||
2021年10月17日 (日) 08:41的版本
网络初始化
- Xavier and Kaiming initialization [4]
 
函数
- torch.clamp(input, min=None, max=None, *, out=None) → Tensor
 
- Clamps all elements in input into the range [ min, max ]. Letting min_value and max_value be min and max, respectively
 
- torch.eye(n, m=None, out=None)
 
- 返回一个2维张量,对角线位置全1,其它位置全0
 
- torch.view()
 
- 相当于numpy的reshape,某个维度上等于-1,就是让计算机自己算一下这一维度上应该有多少
 
- torch.cat & torch.stack
 
- orch.stack()沿着一个新维度对输入张量序列进行连接。 序列中所有的张量都应该为相同形状。
 - torch.cat()是为了把函数torch.stack()得到tensor进行拼接而存在的 (不增加新的维度)
 
Tensor
- cpu() numpy() detach() item() [5]
 
- 注意cuda上面的变量类型只能是tensor,不能是其他
 
torchvision
- PyTorch框架中有一个非常重要且好用的包:torchvision,该包主要由3个子包组成,分别是:torchvision.datasets、torchvision.models、torchvision.transforms [6]
 - __all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize",
 
"Scale", "CenterCrop", "Pad", "Lambda", "RandomCrop", "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop","LinearTransformation", "ColorJitter", "RandomRotation", "Grayscale", "RandomGrayscale"]