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Gravitational Collapse and Star Formation

In this course we apply the equations of hydrodynamics to various phases of stellar life.
We start with the onset of star formation, asking under which conditions stars can form
out of the interstellar medium and which typical time scales govern the gravitational
collapse of a cloud.

The Jeans Criterion

We consider a homogeneous gas cloud with given density and temperature, and investigate
under which circumstances this configuration is unstable due to self-gravity. For simplicity,
we restrict the problem to a one-dimensional analysis. The gas is described by the equation
of continuity

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (1)

and the equation of motion

∂

∂t
(ρu) +

∂

∂x
(ρuu) = −∂P

∂x
− ρ

∂Φ

∂x
(2)

including the gravitational acceleration g = −∂Φ/∂x The gravitational potential Φ is
given by Poisson’s equation

∂2Φ

∂x2
= 4πGρ (3)

describing the self-gravity of the gas (G is the constant of gravitation).
We assume that the gas is isothermal and replace the energy equation by a barotropic

equation of state
P = c2

sρ (4)

where cs is the isothermal sound speed. This assumption is justified by the fact that the
energy exchange by radiation is very efficient for typical interstellar matter, i.e. the time
scales for thermal adjustment are short compared to the dynamical processes we study
here.

We assume that initially the gas has a constant density ρ0, a constant pressure P0 and
is at rest (u0 = 0). The corresponding gravitational potential Φ0 follows from Eq. 3. We
consider a small perturbation such that

ρ = ρ0 + ρ1 , P = P0 + P1 , u = u1 , Φ = Φ0 + Φ1 (5)

and all quantities with index ‘1’ (depending on space and time) are small compared to the
corresponding quantities with index ‘0’. In addition, we assume the perturbation itself to
be isothermal so that cs remains unchanged and

P1 = c2
s ρ1 . (6)
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Inserting the relations 5 into Eqs. 1, 2 and 3 and linearizing these equations we obtain

∂ρ1

∂t
+ ρ0

∂u1

∂x
= 0 (7)

∂u1

∂t
= −∂Φ1

∂x
− c2

s

ρ0

∂ρ1

∂x
(8)

∂2Φ1

∂x2
= 4πGρ1 (9)

This is a linear homogeneous system of differential equations for ρ1, u1 and Φ1 with
constant coefficients and we can assume that solutions exist with the space and time
dependence proportional to exp[i(kx + ωt)]. Therefore,

∂

∂x
= ik ,

∂

∂t
= iω (10)

and we obtain

ωρ1 + kρ0u1 = 0 (11)

k c2
s

ρ0

ρ1 + ωu1 + kΦ1 = 0 (12)

4πGρ1 + k2Φ1 = 0 . (13)

This homogeneous linear system of equations for ρ1, u1 and Φ1 can only have non-trivial
solutions if the determinant ∣∣∣∣∣∣∣∣

ω kρ0 0
k c2s
ρ0

ω k

4πG 0 k2

∣∣∣∣∣∣∣∣
(14)

is zero, i.e. if
ω2 = k2c2

s − 4πGρ0 . (15)

Assuming a non-vanishing wavenumber k we can distinguish two different cases:

• If k is sufficiently large then k2c2
s−4πGρ0 > 0 and ω is real. The perturbation varies

periodically in time and the equilibrium is stable with respect to this perturbation
(the amplitude does not increase with time).1

• If k2c2
s − 4πGρ0 < 0 then ω is of the form iζ where ζ is real. Therefore there exist

perturbations which grow exponentially with time, i.e. the equilibrium is unstable.

The border between this two regimes corresponds to a critical wavenumber

kJ =

(
4πGρ0

c2
s

)1/2

(16)

1In the limit k →∞ we obtain ω2 = k2c2
s which corresponds to isothermal sound waves.
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or to a critical wavelength (λ = 2π/k)

λJ =

(
π

Gρ0

)1/2

cs . (17)

Therefore, a perturbation with a wavelength λ > λJ (i.e. k < kJ) is unstable. This
condition is called the Jeans criterion after James Jeans who derived it in 1902.

Jeans Mass

Using the density ρ0 and (half of) the wavelength λJ as a length scale we can define a
critical mass

MJ = ρ0

(
λJ

2

)3

(18)

which is called Jeans mass. With the definition of the isothermal sound speed and the
equation of state of an ideal gas

cs =

(
P0

ρ0

)1/2

=

(
k

µmu

T0

)1/2

(19)

where k is the Boltzmann constant, µ the mean molecular weight and mu = 1.66 ·10−27 kg
the atomic mass unit, we obtain

MJ = ρ0

(
πk T0

4 µmuGρ0

)3/2

∝ T
3/2
0 ρ

−1/2
0 (20)

A gas cloud with given temperature T0 and density ρ0 and a mass larger than the Jeans
mass is unstable and will eventually collapse due to its own gravitation.

During the initial phases of the collapse the gas will stay isothermal as long as the
matter is more or less optically thin and the energy exchange by radiation is efficient.
In these phases the Jeans mass decreases with the increasing density, i.e. smaller and
smaller parts of the original cloud may become instable, leading to fragmentation and
the formation of a group of less massive stars. As the density increases, the collapsing
clouds finally become optically thick and the heat resulting from the compression can not
be radiated away any more. This leads to an increase of the temperature which finally
causes the Jeans mass to increase again, stopping further fragmentation.

Free-fall Collapse of a Homogeneous Cloud

In the previous section we have investigated under which conditions an interstellar gas
cloud may become unstable and collapse under the influence of its own gravitation. Now
we want to know what the typical timescales for the collapse are.

We consider a spherically symmetric, homogeneous collapsing cloud with mass M and
radius R, assuming free fall, i.e. neglecting the forces due to pressure gradients. Since
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the gravitational force is ≈ (GM)/R2 and the pressure term in the equation of motion
can be approximated by ∣∣∣∣∣

1

ρ

∂P

∂R

∣∣∣∣∣ ≈
P

ρR
≈ k T

µmu R
(21)

the ratio of the gravitation term to pressure term is ∝ M/(RT ), and increases during
the isothermal phases of the collapse with the decreasing radius R of the cloud (M is
constant).

We follow the evolution of a free-falling spherical mass shell with radius r in a co-
moving (Lagrangian) frame of reference. The equation of motion (free fall) is

d2r

dt2
= −Gm

r2
(22)

where m denotes the total mass contained within radius r. Introducing the velocity of
the shell

u(r(t)) =
dr

dt
(23)

we can re-write the left-hand side of the equation of motion as

d2r

dt2
=

d

dt

(
dr

dt

)
=

d

dt
(u(r)) =

dr

dt

d

dr
u = u

d

dr
u =

1

2

d

dr
u2 (24)

and the equation of motion as

1

2
d(u2) = −Gm

r2
dr . (25)

By integration we obtain

u2 = 2GM
(

1

r
− 1

R

)
(26)

where the constant of integration (second term on the right-hand side) has been chosen
such that the initial conditions u(t = 0) = 0, r(t = 0) = R and m = M are fulfilled.
Using u = dr/dt we find

dr

dt
= ±

[
2GM

(
1

r
− 1

R

)]1/2

(27)

or (chosing the solution with u < 0)

dt =
−dr

[
2GM

(
1
r
− 1

R

)]1/2
=

−dr
(

2GM
R

)1/2 (
R
r
− 1

)1/2
. (28)

With the substitution

ξ =
r

R
dξ =

dr

R
(29)

we obtain

dt = −
(

2GM

R3

)−1/2 dξ
(

1
ξ
− 1

)1/2
= −

(
8πGρ0

3

)−1/2
(

ξ

1− ξ

)1/2

dξ (30)
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where we have used M/R3 = 4πρ0/3 and ρ0 denotes the initial density of the cloud.
Integrating the right-hand side from ξ = 1 to ξ = 0 (i.e. r = R to r = 0) we obtain the
so-called free-fall time tff of the cloud,

tff = −
(

8πGρ0

3

)−1/2 ∫ 0

ξ=1

(
ξ

1− ξ

)1/2

dξ (31)

i.e. the time it takes until the (pressureless) cloud has contracted to a point (or a ra-
dius which is much smaller than its original radius R). The integral can be calculated
analytically (e.g. by using the substitution ξ = sin2φ) , and we find

tff =

(
3π

32Gρ0

)1/2

. (32)
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