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I. Linear fitting

Y = a x + b



Famous linear relations in 
astronomy

◼ period -luminosity relation of Cepheids

◼ MBH- relation

◼ Tully-Fisher (L - Vmax) relation

◼ Fundamental plane of ellipticals

◼ L-T, L- relation of groups and clusters

◼ All are statistical scaling relations, none of 
them are first principle like F=ma



Nature of the scaling relations

◼ Observables: (xi, yi) with error (x,i , yi)

◼ First, we should find some correlations, e.g. rank 
analysis

◼ To the first order, all the correlations are linear

◼ Y = a*X + b + 
◼  is the intrinsic scatter, may not be a constant

◼ Observables maybe biased
◼ e.g. some low-luminosity galaxies are not observed at given 

Vmax

◼ Some observables may only be upper limits
◼ E.g. we only get the upper-limit of Lx of some cluster



Ordinary Linear regression 
OLS(y|x)

◼ yi  with measurement error i

Code: fit in numeric recipes



Error on both x and y

Code: fitexy in numeric recipes

b ~ biased to infinity



Caveat: choose proper 
parameterization

◼ If we fit M = a log 
W+ b, a will be 
biased to smaller 
values

◼ Fit log W = a’ M + b’

is better

◼ At given M, no obvious 
in W

Obvious Malmquist bias here



Eddington(Malmquist) bias

◼ Distance dependent observable
◼ Eddington  (1915) Malmquist(1920)

◼ In magnitude limit sample, more faint source 
scattered in than bright source scattered out



Six different linear regression

◼ Reference
◼ Linear regression in astronomy I (1990, ApJ,364,104)

◼ Different regression method

◼ Linear regression in astronomy (1992ApJ...397...55)
◼ Truncated, censored data

◼ IDL code: sixlin
◼ Ordinary Least Squares (OLS) Y vs. X (c.f. linfit.pro) 

◼ Ordinary Least Squares X vs. Y 

◼ Ordinary Least Squares Bisector 

◼ Orthogonal Reduced Major Axis ;

◼ Reduced Major-Axis 

◼ Mean ordinary Least Squares 



• The applicability of the procedures is dependent on the nature of the 
astronomical data under consideration and the scientific purpose of the 
regression. 
• For problems needing symmetrical treatment of the variables, the OLS 
bisector performs significantly better than orthogonal or reduced major-axis 
regression.  



Error on both x and y and with 
a constant intrinsic scatter 



BCES (Akritas & Bershady, ApJ 
470, 706 1996)

◼ Regression with correlated measurement 
errors and intrinsic scatter
◼ allows for measurement errors on both variables

◼ allows the measurement errors for the two 
variables to be dependent

◼ allows the magnitudes of the measurement errors 
to depend on the measurements

◼ Intrinsic scatter: constant

◼ IDL code: BCES.pro (BCES: bivariate, 
correlate errors and scatter )



Linear fitting of scaling 
relations with intrinsic scatter



Special cases 



Robust estimation

◼ Data with outlier

See Numeric recipes  C15.7



Truncation due to flux limits

Malmquist bias in Hubble diagram (Deeming, Vistas Astr 1968, Segal, 
PNAS 1975)



Censoring due to non-detections

Presented for astronomy by Isobe, Feigelson & Nelson (ApJ 1986)
Implemented in Astronomy Survival Analysis (ASURV) package



A more straight-forward way

◼ Especially when amount of data is large in modern 
surveys

◼ First, at given bin of x, what is the distribution of y 
after correction for selection bias?
◼ Is y Gaussian distributed? What is the scatter compared 

with its measurement error?

◼ Then what is the PDF(y|x) changes as function of x
◼ Is this relation linear or non-linear?

◼ Build  the likelihood function and fit the model 
parameters



L – R relation of galaxies (Shen et al. 2003)

Data is 
biased here

We find, after 
correction for selection 
effect, at given Mr, Log 
R is intrinsically 
Gaussian distributed.



Intrinsic scatter is not a constant

We plot P(R|M) as
function of M.



Is the correlation between A and B  real or 

because  A and B are both correlated with C?

I.5: correlations between parameters



Partial correlation

◼ X correlated with Z, Y correlated with Z, 
whether X correlated with Y

◼ Distance dependent parameters, e.g. LR VS LX

◼ Idea: calculate the correlation between the 
residuals 

◼ assumes linear relationship.

◼ More generalized: multiple regression



Control sample

◼ We see different b/a values between AGNs 
and normal spirals. What does it mean? 
(Shen et al. 2010)
◼ b/a is function of stellar mass, size etc.

◼ AGNs biased to high stellar mass sample

◼ We build a control sample of galaxies, which 
have the same stellar mass, size, 
concentration, color distributions as AGNs
◼ We then compare the b/a of AGNs with control 

sample



II. Luminosity function of 
galaxies



LF of galaxies

◼ The basic statistical 
properties of galaxies 
in any galaxy survey

◼ Schechter function

◼ Characteristic 
luminosity M*

◼ Faint end slope 



Traditional Vmax estimation of 
LF(Felton 1977)

◼ Vmax: maximum volume of 
a galaxy with certain 
absolute luminosity can be 
observed in the flux limited 
sample
◼ For flux limit complete 

sample: <V/Vmax>=0.5

◼ Advantage: no assumption 
of the LF shape

◼ Shortcoming: based on the 
assumption that galaxy 
distribution is homogenous



Maximum likelihood estimation

◼ The probability of a galaxy in the sample

◼ Lmin(di), the minimum luminosity above the flux limit. 
◼ Selection effect

◼ The likelihood function

◼ Maximize L as function of  M*, 
◼ How to maximize?

◼ Analytical: exercise on a Gaussian distribution.
◼ numerical calculations in parameter space

◼ No direct constraint on *

P



Step-Wiese Maximum Likelihood 
method (Efstathiou et al. 1988)

◼ LF is function of N steps
◼ Avoid to use Schechter function as a prior



LF estimator of SDSS (Blanton 
et al. 2003)

◼ Using n Gaussian 
instead of steps

◼ Considering 
luminosity 
evolution (Q)



Notes on LF estimation

◼ Sample completeness is most important
◼ Low surface brightness galaxies are always the 

topic

◼ Should consider cosmic variance in high 
redshift survey

◼ With modern data, conditional LFs are 
discussed more and more
◼ Morphology, color, environment etc.



III. Stellar synthesis model



Stellar population synthesis 
model

◼ What can we say about the star formation history of 
galaxy from photometric colors or spectroscopy?

◼ Key elements
◼ Physics of stellar evolution [function (M,z)] is classic

◼ either empirical or theoretical grounds 

◼ Single-age, single-metalicity population (SSP)
◼ Linked to stellar isochrones with a statistical parameter IMF 

(Initial mass function)

◼ Stellar populations + other ingredients (e.g. dust attenuation, 
kinematics, HII regions, AGN) → observed galaxy properties



Composite stellar populations (CSPs)

◼ Galaxy composited by several SSPs

A galaxy made of two populations



linear regression of the stellar 
populations

◼ Output: color, spectra indices etc. yi

◼ Components: M SSPs of different age Xk

◼ Coefficient: ak

◼ Linear regression ‘lfit’ in Numeric recipes

◼ However, ai can not be negative
◼ Non-negative linear regression: also applied on image analysis
◼ IDL (Fortran) code: NNLS            Lawson and Hanson (1983) 

◼ Improved version: BVLS 
◼ solves linear least-squares problems with upper and lower bounds on the 

variables 



Choose your evidence

◼ If we have a spectrum of galaxy, what do we use as 
the constraints of  stellar populations?
◼ More features are better, more information, more constraints
◼ However, evidence may tell more than theory

◼ Emission lines should be removed
◼ UV continuum should be careful, dust
◼ SSP library maybe limited at certain wavelength

◼ E.g. BC03 VS BC07

◼ Choose the proper evidence to quantify specific 
question
◼ So science is not just statistics

Reference: Comparing six evolutionary population synthesis models through
spectral synthesis on galaxies (Chen et al. 2010)



Stellar synthesis: evolved 
stellar population

◼ We have prior information about star 
formation history (SFH) of galaxies
◼  an old/metal rich stellar population + a 

young/metal poor stellar population
◼ We know the cosmic star formation history (Madu 

plot)

◼ we may parameterize the SFH of galaxies in  
simple way, e.g. SFH=e-t/ (e.g. BC03)
◼ for limited evidence (data), e.g. only color
◼ Assumption may be too simplistic, but physics is 

there

Reference: stellar mass of SDSS galaxies, Kauffmann et al. 2003



SFH: Bayesian approach

• P(SFH|Spec)=P(SFH)*P(Spec|SFH)/P(Spec)
• Evidence: P(Spec)=1
• P(Spec/SFH): estimated from 2

• Prior: P(SFH) ?

• Build K SFH libraries
• i=1,KP(SFHi)=1  
• P(SFHi)/P(SFHj)=P(Spec|SFHi)/P(Spec|SFHj)

• Assumptions: 
• equal prior for each library
• Library cover all possibilities



Numeric Simulation, Semi-analytic 
model, phenomenological  model

◼ Numeric simulation: include as more known 
physics as possible
◼ But can not include all, anything new?
◼ SFH: N-body (dark matter) + SPH(gas) 

◼ Semi-analytic model: based on some results from 
simulation, parameterize some unknown physical 
process, e.g. star formation
◼ SFH: halo merge history (from simulation)+ 

parameterized star formation law

◼ Parameterize the complicate physical process 
e.g. SFH=e-t/



IV: stacking technique

◼ Only upper limits for very faint source

◼ needs deeper exposure

◼ Upper limit includes information

◼ Stacking: sources supposed to share similar 
properties, stacking then is equivalent to 
increase the exposure time 

◼ Space → time

◼ get average properties

◼ Signal may be dominated by few bright sources



Mean VS median

◼ Mean L2KeV at given L2500 in 
stacking

◼ Median L2KeV at given L2500
in individual linear fitting
◼ Fitting in  Log L2KeV-Log L2500

space

◼ Scatter of Log L2KeV is ~0.4
◼ mean and median difference 

is a factor of 1.7 

◼ Answer maybe the quasar 
variability
◼ Log-normal Solid: data from stacks of QSO. 

Dotted: data from individual detection.
Shen et al. 2006

Excellent agreement between stacks and
individual detection here is misleading



V: Extreme value statistics

◼ Extreme value populations are easily observed
◼ e.g. the brightest group/cluster galaxies, the brightest star of a 

star cluster
◼ Order statistics of the early-type galaxy luminosity function (Dobos & 

Csabai 2012)

◼ What can a extreme value tell us ?
◼ How unusual are the Shapley Supercluster and the Sloan Great 

Wall (Sheth & Diaferio 2011)

◼ Quantifying the rareness of extreme galaxy clusters (Hotchkiss 
2011)

◼ An application of extreme value statistics to the most massive 
galaxy clusters at low and high redshift (Waizmann, Ettori, & 
Moscardini 2012)

◼ Temperature maximum in CMB (coles 1988)



Extreme value statistics

◼ Three types of extreme value distribution, Depends 
on the tail shape (Fisher–Tippett–Gnedenko theorem)
◼ Weibull(no tail)

◼ Lowest temperature

◼ Fréchet(flat tail)

◼ Money of richest people 

◼ Gumbel (exponential tail)
◼ Height of people

◼ Requires sample size N>>1

◼ Brightest group/cluster galaxy
◼ Gumbel distribution?



Extreme value statistics/Order 

statistics (EVS/OS Dobos & Csabai 2011)

◼ Cumulative distribution of 
distribution function f (x)

◼ probability of a number  x < X

◼ N independently drawn 
numbers {x1, x2, . . . , xN}, the 
probability of max{xi} = Xm

◼ the probability density function 
of the maximum of a sample of 
size N

◼ The probability distribution of 
the kth largest value



EVS/OS: 
basic conclusions

◼ The mean extreme values of 
a lager sample  is larger
◼ Height of Chinese basket-ball 

team player is taller than 
Japanese

◼ Brightest galaxies of rich 
clusters is more luminous than 
poor groups

◼ The scatter of the extreme 
values of a lager sample  is 
smaller
◼ BCGs have small scatter
◼ The scatter of the higher order 

members is even smaller

Dobos & Csabai  2011



Other advanced topics not 
listed

◼ Principle component analysis (PCA)
◼ In spectrum analysis

◼ Fourier transform
◼ Image analysis

◼ Time series

◼ Monte-Carlo Markov chain
◼ Find the best model parameters in multi-dimensional space

◼ Data mining
◼ Virtual Observatory

◼ etc…



Final thoughts

◼ Use proper model
◼ Depend on your question. 

◼ Question is the first step of your science

◼ Use  proper way to do the statistics
◼ Need to know the principle, may need not know the detail.

◼ Use proper evidence
◼ Model explains everything is wrong

◼ Depend on your knowledge and experience

◼ Data mining


