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‘L I. Linear fitting

Y=ax+Db



Famous linear relations in
‘L astronomy

= period -luminosity relation of Cepheids
s M,-o relation

s Tully-Fisher (L - V.,) relation

= Fundamental plane of ellipticals

s [-7, [-orelation of groups and clusters

= All are statistical scaling relations, none of
them are first principle like F=ma




Nature of the scaling relations

= Observables: (x; y;) with error (A,;, Ay)
= First, we should find some correlations, e.g. rank
analysis
= [0 the first order, all the correlations are linear
s Y=a*X+b+ o
= o is the intrinsic scatter, may not be a constant

= Observables maybe biased

= e.g. some low-luminosity galaxies are not observed at given
Vmax

= Some observables may only be upper limits
= E.g. we only get the upper-limit of L, of some cluster



Ordinary Linear regression

‘_L OLS(y|x)

= y; with measurement error o;
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Code: /it in numeric recipes



‘L Error on both x and y

i: —ﬂ—bi‘l)z
oo, +bo?,

i=1
Code: fitexy in numeric recipes

b ~ biased to infinity



Caveat: choose proper
‘L parameterization

s Ifwe fitM = alog .

W+ b, a will be
biased to smaller
values
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‘L Eddington(Malmquist) bias

= Distance dependent observable
» Eddington (1915) Malmquist(1920)

= In magnitude limit sample, more faint source
scattered in than bright source scattered out

T
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Log(distance)



Six different linear regression

= Reference
= Linear regression in astronomy I (1990, ApJ,364,104)
= Different regression method
= Linear regression in astronomy (1992ApJ...397...55)
= Truncated, censored data
s IDL code: sixlin
= Ordinary Least Squares (OLS) Y vs. X (c.f. linfit.pro)
= Ordinary Least Squares X vs. Y
= Ordinary Least Squares Bisector
= Orthogonal Reduced Major AXxis ;
= Reduced Major-Axis
= Mean ordinary Least Squares



X

Fig. 1. —Mustration of the different methods for minimizing the distance of
the data from a fitted line: (@) OLS(Y | X), where the distance 15 measured
vertically; (b) OLS(X | Y), where the distance is taken horizontally; (¢) OR,
where the distance i1s measured vertically to the line; and (d) RMA, where the
distances are measured both perpendicularly and horizontally. No illustration
of the OLS bisector is drawn in this figure.

e The applicability of the procedures is dependent on the nature of the
astronomical data under consideration and the scientific purpose of the
regression.

e For problems needing symmetrical treatment of the variables, the OLS
bisector performs significantly better than orthogonal or reduced major-axis
regression.



Error on both x and y and with
‘L a constant intrinsic scatter o

l
InlL = — EZ In (0% + Jﬁi + HZJ_E;')
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BCES (Akritas & Bershady, ApJ
i 470, 706 1996)

s Regression with correlated measurement
errors and intrinsic scatter
= allows for measurement errors on both variables

= allows the measurement errors for the two
variables to be dependent

= allows the magnitudes of the measurement errors
to depend on the measurements

s Intrinsic scatter: constant

= IDL code: BCES.pro (BCES: bivariate,
correlate errors and scatter )




Linear fitting of scaling
‘L relations with intrinsic scatter

InL=—— Z In (o +r:rz.+a2r:r2£)
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Special cases
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‘L Robust estimation

s Data with outlier

N .
S y; — ulr;ia) failof
mininuize over a E i o outers
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5 ee N u me r/'C reCl'peS C ] 5 7 Figure 15.7.1. Examples where robust statistical methods are desirable: (a) A cne-dimensional
. distnbution witha tail of outliers; statistical fluctuations m these outliers can prevent accurate determination
of the position of the central peak. (b) A distribution in two dimensions fitted to a straight line; non-robust

techniques such as least-squares fitting can have undesired sensitivity to outlying points.



i Truncation due to flux limits

1

L L 1
a 1 2 3 4 &

Malmaquist bias in Hubble diagram (Deeming, Vistas Astr 1968, Segal,
PNAS 1975)



i Censoring due to non-detections

4

Presented for astronomy by Isobe, Feigelson & Nelson (ApJ 1986)
Implemented in Astronomy Survival Analysis (ASURV) package



‘L A more straight-forward way

s Especially when amount of data is large in modern
surveys

= First, at given bin of x, what is the distribution of y
after correction for selection bias?

= Is y Gaussian distributed? What is the scatter compared
with its measurement error?

= Then what is the PDF(y|x) changes as function of x
= Is this relation linear or non-linear?

s Build the likelihood function and fit the model
parameters



L — R relation of galaxies (Shen et al. 2003)

M, =-23.75

We find, after
correction for selection
effect, at given Mr, Log
R is intrinsically
Gaussian distributed.

Data is
biased here
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Rs, (kpe)

o Early type {¢>2.88)
s late type (c<Z2.86)

-16 -18 -20 —-22 —-24

Intrinsic scatter is not a constant

We plot P(R|M) as
function of M.



| I.5: correlations between parameters

Is the correlation between A and B real or
because A and B are both correlated with C?



‘L Partial correlation

s X correlated with Z, Y correlated with Z,
whether X correlated with Y

= Distance dependent parameters, e.g. Ly VS Ly

s Idea: calculate the correlation between the
residuals

Por = PPy

» assumes linear relationship. #xv.z =

JU-ri)1-rk)
= More generalized: multiple regression



‘L Control sample

s We see different b/a values between AGNs
and normal spirals. What does it mean?
(Shen et al. 2010)
= b/a is function of stellar mass, size etc.
= AGNSs biased to high stellar mass sample

= We build a control sample of galaxies, which
have the same stellar mass, size,
concentration, color distributions as AGNs

= We then compare the b/a of AGNs with control
sample
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II. Luminosity function of
galaxies




‘L LF of galaxies

s [ he basic statistical

properties of galaxies
in any galaxy survey

s Schechter function

= Characteristic
luminosity M.

= Faint end slope a
= (&) on(- 1) 2

Blanton et al. (2003) {(astro-ph/0210215)

-1

- 0.1 S

! ! ! |
r—band
E Joir + 2.5 logjoh = —15.90+0.03
E M. — 5 log,h = —20.44+0.01
o = —1.05+0.01
F @ = 1.62+0.30
F P =0.18+0.57




Traditional Vmax estimation of

‘L LF(Felton 1977)

= Vmax: maximum volume of

a galaxy with certain
absolute luminosity can be
observed in the flux limited
sample

= For flux limit complete
sample: <V/Vmax>=0.5

= Advantage: no assumption
of the LF shape

= Shortcoming: based on the
assumption that galaxy
distribution is homogenous

1/V_, corrections for Malmquist bias
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‘L Maximum likelihood estimation

= The probability of a galaxy in the sample

) (- )5
P\ I

o @(L) ) _ L

o me(a’), the minimum luminosity above the qux limit.

= Selection effect

= The likelihood function  p = H 2

= Maximize L as function of M., a
= How to maximize?

= Analytical: exercise on a Gaussian distribution.

= Numerical calculations in parameter space
= No direct constraint on ¢,

olnP
S

AnP
OL*




Step-Wiese Maximum Likelihood
‘L method (Efstathiou et al. 1988)

s LF is function of N steps
» Avoid to use Schechter function as a prior

(L) =¢p. Le(Lp—AL/2,Lp+AL/2). k=1 ....N

The likelihood, as in the previous method, then is:

N N N
InL = Z W(Li—Ly) gy —> W{> ¢;ALH[L; — Lyin(2)]} +C
i=1 i=1

i=1



LF estimator of SDSS (Blanton
‘L et al. 2003)

O(M,z) =nl04= PZ@{

Blanton et al. (2003) (astro-ph/0210215)
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= Using 17 Gaussian :
instead of steps !

s Considering
luminosity A Wi
evolution (Q)




Notes on LF estimation

s Sample completeness is most important

» Low surface brightness galaxies are always the
topic

= Should consider cosmic variance in high
redshift survey

« With modern data, conditional LFs are
discussed more and more

= Morphology, color, environment etc.
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I1I. Stellar synthesis model




Stellar population synthesis
model

= What can we say about the star formation history of
galaxy from photometric colors or spectroscopy?

= Key elements
= Physics of stellar evolution [function (M,z)] is classic
= either empirical or theoretical grounds
= Single-age, single-metalicity population (SSP)

= Linked to stellar isochrones with a statistical parameter IMF
(Initial mass function)

= Stellar populations + other ingredients (e.g. dust attenuation,
kinematics, HII regions, AGN) - observed galaxy properties



i Composite stellar populations (CSPs)

s Galaxy composited by several SSPs

!
F\(1,7) = / (it —1)S\(', Z)e ™ dr’
0

A galaxy made of two populations

Fx ~ QM)V()SAMy, 1) + (M) V(1) SA (M2, 1)



linear regression of the stellar
populations

Output: color, spectra indices etc. v,
Components: M SSPs of different age X,
Coefficient: a,

Linear regression ‘Ifit’ in Numeric recipes

=1
M
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However, a can not be negative
= Non-negative linear regression: also applied on image analysis
= IDL (Fortran) code: NNLS Lawson and Hanson (1983)
Improved version: BVLS

= solves linear least-squares problems with upper and lower bounds on the
variables



Choose your evidence

= If we have a spectrum of galaxy, what do we use as
the constraints of stellar populations?
= More features are better, more information, more constraints
= However, evidence may tell more than theory
= Emission lines should be removed

« UV continuum should be careful, dust

= SSP library maybe limited at certain wavelength
E.g. BCO3 VS BC07

= Choose the proper evidence to quantify specific
question
= S0 science is not just statistics

Reference: Comparing six evolutionary population synthesis models through
spectral synthesis on galaxies (Chen et al. 2010)




Stellar synthesis: evolved
‘L stellar population

= \We have prior information about star
formation history (SFH) of galaxies

= ® an old/metal rich stellar population + a
young/metal poor stellar population

g V\Ile ;mow the cosmic star formation history (Madu
plot
= We may parameterize the SFH of galaxies in
simple way, e.g. SFH=eV* (e.g. BC03)
» for limited evidence (data), e.g. only color

= Assumption may be too simplistic, but physics is
there

Reference: stellar mass of SDSS galaxies, Kauffmann et al. 2003




i SFH: Bayesian approach

e P(SFH|Spec)=P(SFH)*P(Spec|SFH)/P(Spec)
e Evidence: P(Spec)=1
e P(Spec/SFH): estimated from y?
e Prior: P(SFH) ?
e Build K'SFH libraries
* I «P(SFH)=1
e P(SFH;)/P(SFH,)=P(Spec|SFH;)/P(Spec|SFH)
e Assumptions:
e equal prior for each library
e Library cover all possibilities




Numeric Simulation, Semi-analytic
model, phenomenological model

= Numeric simulation: include as more known
physics as possible
= But can not include all, anything new?
= SFH: N-body (dark matter) + SPH(gas)

= Semi-analytic model: based on some results from
simulation, parameterize some unknown physical
process, e.g. star formation

=« SFH: halo merge history (from simulation)+
parameterized star formation law

s Parameterize the complicate physical process
e.g. SFH=e V"




‘L IV: stacking technique

= Only upper limits for very faint source
= needs deeper exposure

= Upper limit includes information

s Stacking: sources supposed to share similar
properties, stacking then is equivalent to
increase the exposure time
= Space - time

= get average properties
= Signal may be dominated by few bright sources



i Mean VS median

Mean L at given L IN
st ackméKeV J 2500 Excellent agreement between stacks and

s Median L2Kev at given L2500 individual detection here is misleading
in individual linear fitting

= Fitting in Log Lye,-LOGg Lye,
space

s Scatter of Log L.y is ~0.4
= Mmean and median difference

1087 ;_

1038 :

ovey (ETES 'Hz 1)

is a factor of 1.7 Fom 7 Hﬂl =
= Answer maybe the quasar o o
variability
= Log-normal Solid: data from stacks of QSO.

Dotted: data from individual detection.
Shen et al. 2006




‘L V: Extreme value statistics

= Extreme value populations are easily observed

= e.g. the brightest group/cluster galaxies, the brightest star of a
star cluster
= Order statistics of the early-type galaxy luminosity function (Dobos &
Csabai 2012)

= What can a extreme value tell us ?
»« How unusual are the Shapley Supercluster and the Sloan Great
Wall (Sheth & Diaferio 2011)
o %ulal?tifying the rareness of extreme galaxy clusters (Hotchkiss
= An application of extreme value statistics to the most massive

galaxy clusters at low and high redshift (Waizmann, Ettori, &
Moscardini 2012)

= Temperature maximum in CMB (coles 1988)



‘L Extreme value statistics

= Three types of extreme value distribution, Depends
on the tail shape (Fisher-Tippett—Gnedenko theorem)
=« Weibull(no tail)
= Lowest temperature
» Fréchet(flat tail)
= Money of richest people
= Gumbel (exponential tail)
= Height of people
= Requires sample size N>>1

= Brightest group/cluster galaxy
= Gumbel distribution?



Extreme value statistics/Order
i statistics (EVS/OS Dobos & Csabai 2011)

= Cumulative distribution of Flx) = f Fw) du.
distribution function 7(x) R

= probability of a number x < X

s /Nindependently drawn  Pu(Xwm) = P(xi < Xu) = PY(x < Xu) = F" (Xu).
numbers {x;, X%, . .., X/}, the
probability of max{x. } = X

= the probability density function P Xy N) = NF¥N1 (X)) F(x),
of the maximum of a sample of

P(x < X) = F(X).

size N
= The probability distribution of P (Xa, N)
the 4th largest value N r et FY X £ X,

~ k—DUN —k)!



EVS/OS:
basic conclusions

= The mean extreme values of
a lager sample is larger N A

= Height of Chinese basket-ball O 200 400 600 §00 1000 1200 1400
team player is taller than T —
Japanese

= Brightest galaxies of rich
clusters is more luminous than
pOOr groups
s he scatter of the extreme
values of a lager sample is N N ;
smaller f ] -
s BCGs have small scatter 0.00 ]
0 200 400 600 800 1000 1200 1400

» The scatter of the higher order .
members is even smaller

Dobos & Csabai 2011



Other advanced topics not

‘L listed

= Principle component analysis (PCA)
= In spectrum analysis

s Fourier transform
= Image analysis
= [Ime series

= Monte-Carlo Markov chain

= Find the best model parameters in multi-dimensional space
= Data mining

= Virtual Observatory
= etc...




i Final thoughts

= Use proper model
= Depend on your question.
= Question is the first step of your science

s Use proper way to do the statistics
= Need to know the principle, may need not know the detail.

= Use proper evidence
= Model explains everything is wrong
= Depend on your knowledge and experience

= Data mining



