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Preface

This text is aimed at students and researchers in both
astronomy and physics. Spectroscopy links the two dis-
ciplines; one as the point of application and the other
as the basis. However, it is not only students but also
advanced researchers engaged in astronomical observa-
tions and analysis who often find themselves rather at a
loss to interpret the vast array of spectral information that
routinely confronts them. It is not readily feasible to reach
all the way back into the fundamentals of spectroscopy,
while one is involved in detailed and painstaking analysis
of an individual spectrum of a given astrophysical object.
At the same time (and from the other end of the spec-
trum, so to speak) physics graduate students are not often
exposed to basic astronomy and astrophysics at a level that
they are quite capable of understanding, and, indeed, that
they may contribute to if so enabled.

Therefore, we feel the need for a textbook that lays
out steps that link the mature field of atomic physics,
established and developed for well over a century, to
the latest areas of research in astronomy. The challenge
is recurring and persistent: high-resolution observations
made with great effort and cost require high-precision
analytical tools, verified and validated theoretically and
experimentally.

Historically, the flow of information has been both
ways: astrophysics played a leading role in the devel-
opment of atomic physics, and as one of the first great
applications of quantum physics. As such, it is with basic
quantum mechanics that we begin the study of astrophysi-
cal spectroscopy. The atomic physics and the astrophysics
content are intended to be complementary, and attempt to
provide a working knowledge in the two areas, as nec-
essary for spectral analysis and modelling. The emphasis
is on the introductory theoretical basics, leading up to
a practical framework for applications of atomic spec-
troscopy. While we limit ourselves to atomic physics, we
have attempted to highlight and delineate its reach into the
main areas of astronomy.

The link between basic-to-advanced atomic physics
and spectral analysis is increasingly important in ever

more sophisticated astrophysical models. But the chal-
lenge of writing a book such as this one has been to
find a balance between basic physics treatment that is
not superficial, and state-of-the-art astrophysical appli-
cations that are not too technical. Though that defined
and delimited the scope, it was still clear from the out-
set that the material should encompass a wide variety
of topics. But what is essential and what is superflu-
ous is, to some extent, a matter of subjective judgement.
The level of depth and breadth of each topic is subject
to these constraints. However, owing to the objective
needs before us, we have tried to be as comprehen-
sive as possible (limited by our own expertise, of
course).

The text is evenly divided into atomic physics and
astrophysics. The first seven chapters form the founda-
tional elements of atomic processes and spectroscopy. The
next seven chapters deal with astrophysical applications
to specific objects and physical conditions. Each chapter
follows the same plan. We begin with the essentials that
all readers should be able to follow easily. However,
towards the end of each chapter we outline some of the
more advanced or specialized areas. The subject mat-
ter is broadly divided into ‘basic’ material in both areas,
and ‘advanced’ material that incorporates state-of-the-art
methods and results. The underlying atomic physics is
intended as an introduction to more specialized areas, such
as spectral diagnostics, astrophysical models, radiative
transfer, plasma opacities, etc.

Emphasizing the unifying and connecting themes, the
text is planned as follows. Following the Introduction,
the next six chapters cover ‘basic’ collisional and radia-
tive atomic structure and processes. The second part of
the text, the other seven chapters, are the ‘applications’ of
the physical framework developed in the first part. Chap-
ters 8 and 9 describe the interaction of radiation with
matter and spectral formation. The remainder of the text,
Chapters 10–14, deals with descriptions of astronomical
sources: stars, nebulae, active galactic nuclei and cos-
mology. A special chapter is devoted to a description of
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the largest single application of atomic physics to astron-
omy: stellar opacities (Chapter 11). However, the content
of these chapters is not designed to be exhaustive, but
mainly to exemplify spectral formation in astrophysical
environments. Each of Chapters 10–14 contains tables
and sample spectra characteristic of the particular astro-
physical source(s). The appendices provide some of the
tools, and some of the atomic data, needed in spec-
tral modelling. However, they are not comprehensive and
readers are advised to consult the websites described
below.

Supplementary to the present text are the authors’
websites.1 They will provide continual updates and revi-
sions related to atomic data and developments in atomic
astrophysics. Eventually, this facility is designed to be
user-interactive, with features such as on-line calcula-
tion of spectral line intensities and ratios, model cal-
culations of ionization fractions, etc., using up-to-date
atomic data.

1 www.astronomy.ohio-state.edu/ ∼pradhan and

www.astronomy.ohio-state.edu/ ∼nahar.
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1 Introduction

1.1 Atomic astrophysics
and spectroscopy

Spectroscopy is the science of light–matter interaction.
It is one of the most powerful scientific tools for study-
ing nature. Spectroscopy is dependent on, and therefore
reveals, the inherent as well as the extrinsic properties
of matter. Confining ourselves to the present context, it
forms the link that connects astronomy with fundamental
physics at atomic and molecular levels. In the broadest
sense, spectroscopy explains all that we see. It under-
lies vision itself, such as the distinction between colours.
It enables the study of matter and light through the
wavelengths of radiation (‘colours’) emitted or absorbed
uniquely by each element. Atomic astrophysics is atomic
physics and plasma physics applied to astronomy, and it
underpins astrophysical spectroscopy. Historically, astro-
physical spectroscopy is older than modern astrophysics
itself. One may recall Newton’s experiments in the seven-
teenth century on the dispersion of sunlight by a prism
into the natural rainbow colours as an identification of
the visible band of radiation. More specifically, we may
trace the beginning of astrophysical spectroscopy in the
early nineteenth century to the discovery of dark lines
in the solar spectrum by Wollaston in 1802 and Fraun-
hofer in 1815. The dark lines at discrete wavelengths
arise from removal or absorption of energy by atoms or
ions in the solar atmosphere. Fraunhofer observed hun-
dreds of such features that we now associate with several
constituent elements in the Sun, such as the sodium D
lines.

Figure 1.1 shows the Fraunhofer lines. Fraunhofer
himself did not associate the lines with specific elements;
that had to await several other crucial developments,
including laboratory experiments, and eventually quantum
theory. He labelled the lines alphabetically, starting from
A in the far red towards shorter wavelengths. It is instruc-
tive to revisit the proper identification of these historic

lines. Going from right to left in Fig. 1.1, the first two
lines A (7594 Å) and B (6867 Å) do not originate in the
Sun but are due to absorption by oxygen in the terrestrial
atmosphere. The line C at 6563 Å is due to absorption by
hydrogen (the same transition in emission is a bright red
line). The three lines A, B and C lie towards the red end
of the visible spectrum. In the middle region of the spec-
trum are the two orange lines D1 and D2 (5896, 5890 Å,
respectively) that are the characteristic ‘doublet’ lines of
sodium (sodium lamps have an orange hue, owing to emis-
sion in the very same transitions). Towards the blue end
we have the strong line E at 5270 Å, due to absorption by
neutral iron, and another line, F (4861 Å), due to hydro-
gen. The molecular G band of CH lies around 4300 Å.
Farther into the blue, there are the H and K lines (3968,
3934 Å, respectively) from singly ionized calcium, which
are among the strongest absorption lines in the solar spec-
trum. Although the letters have no physical meaning, this
historic notation is carried through to the present day.
Much of early astrophysics consisted of the identifica-
tion of spectral lines, according to the presence of various
atomic species in stars and nebulae.

The lightest and most abundant element in the Uni-
verse is hydrogen, chemical symbol H. The abundances
and line intensities of other elements are expressed rel-
ative to H, which has the most common spectroscopic
features in most astronomical sources. Observed line
wavelengths led to an early grasp of specific spectra, but
it needed the advent of quantum mechanics to understand
the underlying structure. The pioneering exploration of
the hydrogen spectrum and of alkali atoms by Rydberg
was the first systematic attempt to analyze the pattern
of spectral lines. We shall see later how useful simple
variants of the empirical Rydberg formula can be in the
analysis of astrophysical spectra.

Spectroscopy also predates quantum mechanics. In
spite of the empirical work and analysis, a quantitative
understanding of spectroscopy had to await the quantum
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FIGURE 1.1 The Fraunhofer lines (Courtesy Institute for Astronomy, University of Hawaii, www.harmsy.freeuk.com).

theory of the atom. Schrödinger’s success in finding the
right equation that would reproduce the observed hydro-
genic energy levels according to the Bohr model and the
Rydberg formula was the crucial development. Mathemat-
ically, Schrödinger’s equation is a rather straightforward
second-order differential equation, well-known in math-
ematical analysis as Whittaker’s equation [1]. It was the
connection of its eigenvalues with the energy levels of
the hydrogen atom that established basic quantum the-
ory. In the next chapter, we shall retrace the derivation
that leads to the quantization of apparently continuous
variables such as energy. However, with the exception
of the hydrogen atom, the main problem was (and to
a significant extent still is!) that atomic physics gets
complicated very fast as soon as one moves on to non-
hydrogenic systems, starting with the very next element,
helium. This is not unexpected, since only hydrogen (or
the hydrogenic system) is a two-body problem amenable
to an exact mathematical solution. All others are three-
body or many-body problems that mainly have numerical
solutions obtained on solving generalized forms of the
Schrödinger’s equation. With modern-day supercomput-
ers, however, non-hydrogenic systems, particularly those
of interest in astronomy, are being studied with increasing
accuracy. A discussion of the methods and results is one
of the main topics of this book.

Nearly all astronomy papers in the literature iden-
tify atomic transitions by wavelengths, and not by the
spectral states involved in the transitions. The reason
for neglecting basic spectroscopic information is because
it is thought to be either too tedious or irrelevant to
empirical analysis of spectra. Neither is quite true. But
whereas the lines of hydrogen are well-known from under-
graduate quantum mechanics, lines of more complicated
species require more detailed knowledge. Strict rules,
most notably the Pauli exclusion principle, govern the
formation of atomic states. But their application is not
straightforward, and the full algebraic scheme must be
followed, in order to derive and understand which states
are allowed by nature to exist, and which are not. More-
over, spectroscopic information for a given atom can

be immensely valuable in correlating with other similar
atomic species.

While we shall explore atomic structure in detail in
the next chapter, even a brief historical sketch of atomic
astrophysics would be incomplete without the noteworthy
connection to stellar spectroscopy. In a classic paper in
1925 [2], Russell and Saunders implemented the then new
science of quantum mechanics, in one of its first major
applications, to derive the algebraic rules for recoupling
total spin and angular momenta S and L of all electrons
in an atom. The so-called Russell–Saunders coupling or
LS coupling scheme thereby laid the basis for spectral
identification of the states of an atom – and hence the
foundation of much of atomic physics itself. Hertzsprung
and Russell then went on to develop an extremely use-
ful phenomenological description of stellar spectra based
on spectral type (defined by atomic lines) vs. tempera-
ture or colour. The so-called Hertzsprung–Russell (HR)
diagram that plots luminosity versus spectral type or tem-
perature is the starting point for the classification of all
stars (Chapter 10).

In this introductory chapter, we lay out certain salient
properties and features of astrophysical sources.

1.2 Chemical and physical properties
of elements

There are similarities and distinctions between the chemi-
cal and the physical properties of elements in the periodic
table (Appendix 1). Both are based on the electronic
arrangements in shells in atoms, divided in rows with
increasing atomic number Z . The electrons, with prin-
cipal quantum number n and orbital angular momentum
�, are arranged in configurations according to shells (n)
and subshells (nl), denoted as 1s, 2s, 2p, 3s, 3p, 3d . . . (the
number of electrons in each subshell is designated as the
exponent). The chemical properties of elements are well-
known. Noble gases, such as helium, neon and argon, have
low chemical reactivity owing to the tightly bound closed
shell electronic structure: 1s2 (He, Z = 2) 1s22s22p6 (Ne,
Z = 10) and 1s22s22p63s23p6 (argon, Z = 18). The
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alkalis, lithium (Li, Z = 3), sodium (Na, Z = 11), potas-
sium (K, Z = 19), etc., have relatively high chemical
reactivity owing to the single valence electron ns out-
side a closed shell configuration, e.g., 1s22s1 (Li) (see
Chapter 2 for a detailed discussion). Chemical reactiv-
ity is responsible for molecular formation and processes.
Sodium or potassium atoms combine easily with chlo-
rine, a halogen with a vacancy in the 3p electronic orbit
(1s22s22p63s23p5), to form NaCl or KCl (common salts);
the pairing is through an ionic bond, reflecting the fact that
the Na atom ‘donates’ an electron, while the chlorine atom
gains an electron to fill the ‘vacancy’ to close the outer
shell. The chemical properties involving valence electrons
and the reactivity of an element are determined by the
electron affinity, the energy required to remove valence
electrons. Atoms with more than one valence electron in
an open shell form molecular bonds in a similar man-
ner. The carbon atom has two valence electrons in the 2p
shell, which can accommodate six electrons as a closed
shell. The four vacancies can be filled by single elec-
trons from four H atoms to form one of the most common
molecular compounds in nature, CH4 (methane), which,
for instance, is probably the predominant constituent of
‘oceans’ on Saturn’s moon Titan. Carbon monoxide, CO,
is one of the most abundant molecular species in astro-
nomical sources. Its stability lies in the match between
the two valence electrons in the carbon atom and the two
vacancies in the oxygen atom, which has four electrons in
the 2p shell. In general, the chemical properties of ele-
ments are concerned with valence electrons and shells
of atoms.

On the other hand, by physical properties of elements,
we refer largely to spectroscopic and atomic processes,
such as energy level structure, radiative transitions, exci-
tations, ionization and more. Of course, these are also
based on the electronic structure of atoms and ions but
in a different manner than those of chemical processes.
To begin with, the physical and chemical properties are
expected to be similar for elements along the columns of
the periodic table, since the electronic structures are simi-
lar (discussed in detail in Chapter 2). For example, boron
(B) and aluminium (Al) both have a single valence elec-
tron in the p shell, preceded by an inner two-electron filled
s shell: 1s22s22p1 (B) and 1s22s22p63s23p1 (Al). There-
fore, the energy-level structure and processes involving
those levels are usually similar. Both boron and alu-
minium display two-level fine structure splitting of the

ground state np
(

2Po
1 2
− 2Po

3 2

)
. Transitions between these

two levels generate a weak ‘forbidden’ spectroscopic line
in both the elements. Likewise, the atoms of flourine and

chlorine in the halogen column have energy-level struc-
tures and spectral features similar to B and Al, owing to
the fact that a single-vacancy p shell has the same spec-
tral composition as a single-valence p electron: 1s22s22p5

(F) and 1s22s22p63s23p5 (Cl); both atoms also have the
same ground state as B and Al, 2Po, and the same type of
forbidden transition.

From the point of view of atomic and astrophysical
spectroscopy one of the most important manifestations
of physical properties is for ions along an isoelectronic
sequence: ions of different elements and atomic number
Z , but with the same number N of electrons. For example,
the helium isolectronic sequence consists of the ions of all
elements of the periodic table stripped down to two elec-
trons: 1s2 in the ground state (He-like ions. The columns
of the periodic table already provide a guide to similarity
of physical properties, for if similar electronic structure
leads to similar properties, then the same electronic struc-
ture should do so also. For example, the singly charged
carbon ion (expressed by C+ or C II) has five electrons,
isoelectronic with boron; similarly the nitrogen ion N III,
the oxygen ion O IV and each ion of an element (Z > 5)
with five electrons belongs to the boron sequence. How-
ever, there is a crucial physical difference with neutral
elements along a column in the periodic table: not only
is the atomic number Z different, but also the charge on
each ion +z = Z − N in the isoelectronic sequence is
different. Therefore, the atomic physics, which depends
basically on the electromagnetic potential in the atom or
ion, is different for each ion. As Z increases, the attractive
electron–nucleus Coulomb potential increases, resulting
in higher-speed electrons. When the velocities are suf-
ficiently high, relativistic effects become important. The
energy-level splittings and processes dependent on rela-
tivistic and inter-electron interactions lead to significant
differences in spectral formation for ions within the same
isoelectronic sequence. We shall discuss a number of
aspects of isoelectronic sequences in much more detail in
later chapters.

Physical properties of elements also refer to interac-
tion of radiation with matter on the atomic scale, which
brings forth some physical processes not usually within
the realm of chemistry, such as excitation and ionization
of electrons.1 Finally, physical phenomena are dependent

1 To some extent the distinction between physical and chemical

processes, as we have drawn here, is superficial from a fundamental

viewpoint. But we do so purposefully to emphasize the physical nature

of elemental species as they lead to atomic and astrophysical

spectroscopy.
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on environmental properties, primarily the temperature
and density of the ambient plasma medium. The diver-
sity of astrophysical environments makes it necessary to
consider the intrinsic physical properties of atoms in con-
junction with extrinsic plasma parameters. This book is
concerned with the physical properties of elements in var-
ious ionization stages, particularly from an astrophysical
perspective.

1.3 Electromagnetic spectrum
and observatories

Astrophysical observations using state-of-the-art spec-
trometers on-board space missions and on ground-based
telescopes are revealing spectral features at very high
resolution in all wavelength ranges. Indeed, one may
view astronomical sources as ‘astrophysical laboratories’
for atomic physics – a reversal of roles that greatly
enhances the reach of both disciplines, atomic physics and
astronomy.

Radiation emission from astronomical objects ranges
over the whole electromagnetic spectrum from radio
waves to gamma rays. The photon energy hν and wave-
length λ corresponding to each type of radiation are
related inversely as

ν = c/λ. (1.1)

The least energetic radio wave photons have the longest
wavelength λ > 1 m, and the most energetic gamma
rays have wavelengths more than ten orders of magnitude
smaller, λ< 0.1 Å. (Note that 1 Å= 10−10 m= 10−4 μm
= 0.1 nm, where a μm is also referred to as micron and
‘nm’ refers to nano-metre.)

Figure 1.2 is a schematic representation of the dif-
ferent regions of the electromagnetic spectrum of solar
radiation transmitting through the terrestrial atmosphere.
The atmosphere blocks out most regions of the spectrum
(shaded area), except the optical or visible (vis), the near
infrared (NIR), and the radio waves. The visible band is,

in fact, a very narrow range in wavelength, but of course
the one most accessible. The shaded regions are opaque to
an observer on the ground, owing to higher atmospheric
opacity. For example, water vapour in the atmosphere
is very effective in blocking out IR radiation, owing to
absorption by H2O molecules, except in a few ‘windows’
or bands around 100–1000 nm or 1–10 μm (discussed
later). This atmospheric ‘blanketing’ is also beneficial to
us since it not only retains the re-radiated energy from the
Earth (the greenhouse effect), but also absorbs the more
energetic radiation from the Sun. Even a little more of the
Sun’s ultraviolet (UV) radiation could be biologically dis-
astrous, not to mention the effect of high energy particles
and other cosmic radiation of shorter wavelengths, which,
although some do get through, are largely blocked out by
the atmosphere. The use of ground-based telescopes is,
therefore, confined to the wavelength ranges accessible
from the Earth, after propagation of radiation through the
atmosphere. For all other wavelengths we need to go into
Outer Space.

Figure 1.2 also shows the general division of the elec-
tromagnetic spectrum for the Earth-based and space-based
telescopes. Satellite-based space observatories make
observations in the opaque regions. Some recent space
observatories are the Compton Gamma-Ray Observatory
(GRO), the X-ray Multi-Mirror Mission-Newton (XMM-
Newton), the Chandra X-ray Observatory (CXO), Hubble
Space Telescope (HST), Spitzer Infra-red Observatory,
etc., respectively named after famous scientists: Arthur
Compton, Isaac Newton, Subrahmanyan Chandrasekhar,
Edwin Hubble and Lyman Spitzer. Another current mis-
sion includes the multi-wavelength X-ray–γ -ray NASA
satellite Swift, to study gamma-ray bursts that are found
to occur all across the sky, and X-ray observations from
active galactic nuclei and other sources.

There is significant overlap in the approximate wave-
length ranges given, depending on the detectors and
instrumentation. Ground-based telescopes have sensitive
spectrometers that can range somewhat outside the range
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FIGURE 1.2 The electromagnetic spectrum of transmitted radiation through the Earth’s atmosphere (http://imagine.gsfc.nasa.gov).
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visible to the human eye, 4000–7000 Å. Optical CCDs
(charge-coupled devices) can detect radiation from near
UV to near IR, 3000–10 000 Å. The detector capability,
measured in terms of the percentage of photons detected,
called the quantum efficiency, deteriorates rapidly near
the edges of some spectral windows. Subsequent chap-
ters on astronomical objects will describe the prominent
atomic species and spectral features. Atomic and molec-
ular processes play the dominant role at all wavelengths
except gamma-rays due to nuclear processes and electron–
positron annihilation or synchrotron radiation.

Exercise 1.1 Compile a list of current major ground and
space observatories with spectroscopic instruments and
corresponding wavelength ranges.

1.4 Astrophysical and laboratory
plasmas

Ionized materials in astrophysical plasmas constitute over
99% of the observed matter in the Universe – that is,
all the matter in stars, nebulae and interstellar matter,
which comprise observable galaxies.2 As we mentioned,
the analysis of characteristic light is the science of spec-
troscopy, and nearly all information on observable matter
is derived from spectroscopy. This is how we really see the
Universe in all its glory. Observable matter spans a huge
range in density–temperature parameter space. Whereas
the interstellar medium may be cold and thin, down to
a few K and to less than one particle per cm3, highly
energetic plasmas in the vicinity of black holes at cen-
tres of galaxies may approach a thousand million K and
immense (as yet unknown) densities. An important set

2 It is worth mentioning how astronomers currently view matter and

energy. There is considerable evidence that observable matter

comprises only 4% of the Universe. About 22% is so-called ‘dark

matter’ that apparently does not interact with electromagnetic radiation

to emit or absorb light, and is therefore not observed. The existence of

dark matter may be inferred by its gravitational influence on objects.

For example, the rotation rate of matter within galaxies is observed not

to decrease with increasing distance from the centre as expected, but

rather remains roughly constant to very large distances. This implies

that there is unseen matter in and beyond the observable halo of

galaxies. Some of the matter may also be hidden in hot and highly

ionized gas in the intergalactic medium, which is indicated by X-ray

spectroscopy. The remaining 74% constituent is called dark energy, if

one interprets the observed acceleration in the expansion rate of the

Universe as part of the gravitational mass-energy balance. We discuss

these topics in detail in Chapter 14.
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FIGURE 1.3 Temperature–density regimes of plasmas in
astrophysical objects, compared with laboratory plasmas in
magnetic confinement fusion devices, such as tokamaks, and
inertial confinement fusion (ICF) devices, such as Z -pinch
machines and high-powered laser facilities. BLR-AGN refers to
‘broad-line regions in active galactic nuclei’, where many
spectral features associated with the central massive black hole
activity manifest themselves.

of temperature–density combinations is the one in stellar
cores: exceeding ten million K and 100 g cm−3 , condi-
tions required for hydrogen nuclear fusion that provides
most of stellar energy.

Figure 1.3 shows astrophysical and laboratory plasma
sources and their approximate temperatures and densities.
As one might see, the astrophysical objects correspond
to several regimes of electron temperature Te and den-
sity ne. Often, only some parts of a source are observed.
Ordinary stars, for instance, range from a temperature
T ∼ 2000–3000 K in their outer atmospheres to >107 K
in the core, where thermonuclear fusion creates their
energy. The directly observable parts of a star are its pho-
tosphere, from which most of its radiation is emitted, and
the hot highly ionized gas in the corona, a tenuous but
extended region surrounding the main body of the star.
In an extreme manifestation of temperature ranges, a stel-
lar condition called supernova begins with an explosive
plasma ball of some thousand million degrees, to less
than 103 K after a few years of expansion into a ‘neb-
ular’ remnant of the diffuse ionized plasma. It contains
mainly H II and the material ejected from the progeni-
tor star, as well as matter swept up from the interstellar
medium. The detailed temperature–density–abundance–
ionization structure of objects is revealed by spectral
analysis of the observable regions of each type of object
in different wavelength ranges, as discussed in individual
chapters.
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1.4.1 Laboratory astrophysics

Is it possible to create conditions in the laboratory that
simulate those in astrophysical sources? If yes, then it
would be possible to study precisely the physical pro-
cesses at play as well as measure the basic physical
quantities that would enable modelling or numerical sim-
ulation of the source plasma in general. As we have seen,
owing to the vast range of conditions prevailing in astro-
physical sources, that is only possible under the restricted
conditions available in a laboratory. In fact, experimen-
tal conditions are often quite stringent. The temperatures,
densities and particle energies must be precisely measur-
able to obtain meaningful results for physical parameters
of interest, such as cross sections and rates. Neverthe-
less, such experiments constitute what is called laboratory
astrophysics. Laboratory devices need to create and main-
tain a plasma for sufficiently long periods of time for
measurements to be carried out. This is quite difficult,
especially for measuring absolute cross sections with high
accuracy, since the results need to be calibrated relative to
some independent criterion.

Essentially, the experimental techniques are designed
to enable electrons and photons to interact with atoms or
ions. This is accomplished either by colliding or merging
beams of interacting particles, or in devices that confine
an (electron + ion) plasma. Among these instruments for
high-resolution measurements are electron beam ion traps
(EBIT), which create a trapped plasma of ions interacting
with an electron beam of controlled energy within some
beam width, ion storage rings, where ions are magneti-
cally trapped for long periods of time in a ring-like struc-
ture, enabling electron-ion experiments, and advanced
light sources (ALS) of photons mounted on synchrotron
accelerators for targeting the ‘stored’ ions and measur-
ing photoionization cross sections. We will describe these
experiments later, while discussing benchmarking and
validation of theoretical results.

Laboratory plasma sources, while quite different from
astrophysical sources in spatial and temporal behaviour,
also span a wide range of temperature–density regimes.
Most of the spectral diagnostics and atomic data we
describe in this text also apply to laboratory plasmas. In
particular, two classes of device for controlled thermonu-
clear fusion are shown in Fig. 1.3: (i) magnetically con-
fined plasma reactors, called tokamaks, and (ii) inertial
confinement fusion (ICF) devices. The ICF machines are
essentially of two types. The first kind is based on laser-
induced fusion, wherein an arrangement of symmetrically
directed and powerful lasers is fired at a small deuterium-
tritium pellet (heavy isotopes of hydrogen containing

either one or two neutrons respectively), causing it to
implode. The second kind are the so-called Z -pinch3

machines, wherein a very high electrical discharge passes
through wires of a heavy element, arranged cylindrically,
which explode and emit X-rays that are directed towards
the pellet. The fusion pellet is placed inside the cylindri-
cal formation or cavity, which is called the hohlraum. At
high temperatures, heavy elements exist in many ioniza-
tion stages and emit copious amount of radiation; gold
(Z = 79) is the common choice for hohlraum wires.

1.4.2 Astrophysical plasma composition and
abundances

Astronomical objects are generally electrically neutral,
i.e., an equal number of negative (electrons) and positive
(protons and other ions) charges exists. The electrons are
the dominant and most ‘active’ constituents, since their
velocities compared with those of protons are ve/vp =√

mp/me = 42.85. In astronomical plasmas, typical pro-
ton densities are ∼80% of ne, and other heavier ions,
such as helium nuclei (α particles), and partially or fully
stripped ions of heavier elements constitute the rest of the
positively charged particles. In astrophysical nomencla-
ture, all elements heavier than helium are called ‘metals’.
Cosmic plasma compositions denote the H-abundance as
‘X’, He-abundance as ‘Y’, and all other metals combined
as ‘Z’. For instance, the solar elemental composition by
mass is X = 0.70, Y = 0.28, Z = 0.02. Although met-
als constitute only 2% of the plasma, they are responsible
for most of the spectral features, and they crucially deter-
mine properties, such as the plasma opacity that governs
the transfer of radiation through the source (Chapter 10).
Further study of plasmas in various situations requires
us to consider the fundamental bulk properties associated
with this most prevalent state of matter.

1.5 Particle distributions

A plasma of charged particles and a radiation field of
photons can be treated with certain distribution functions.

3 The ‘Z’ here refers not to the atomic number but the fact that a current

passing along the z-axis through a wire creates a surrounding magnetic

field, which acts naturally to constrain or ‘pinch’ the exploding plasma;

the wires are indeed made of high-Z material!
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1.5.1 Fermions and bosons

Concepts of indistinguishability and symmetry play a fun-
damental role in quantum mechanics. All particles of a
given kind; electrons, protons, photons, etc., have the
same observational property of being indistinguishable
from other particles of the same kind. This universal fact
is of profound importance and is known as the prin-
ciple of indistinguishability [3]. Quantum mechanically,
all observable quantities are expressed in terms of prob-
abilities derived from a wavefunction formed for each
kind of particle in terms of its spatial and spin coordi-
nates. But the probabilities are related to the squares of
the wavefunctions. That introduces an ambiguity in the
actual sign of the wavefunction, which can be ‘+’ or ‘−’.
The total wavefunction of an ensemble of identical parti-
cles is therefore fixed by nature into two kinds. The first
kind, bosons, refers to a symmetric total wavefunction,
corresponding to the fact that interchange of coordinates
of any two particles leaves the sign of the wavefunction
unchanged. The second kind are called fermions, which
correspond to an antisymmetric total wavefunction that
changes sign upon interchange of coordinates.4 The spin
is a special ‘coordinate’, and has a value that is either inte-
gral (or zero), or half-integral. Bosons are particles of zero
or integral spin, and fermions possess half-integral intrin-
sic angular momentum. Bosons and fermions obey differ-
ent statistical mechanics: Bose–Einstein statistics in the
case of bosons, and Fermi–Dirac statistics for fermions,
both discussed in the next section.

1.5.2 Temperature: Maxwellian and Planck
functions

The concept of ‘temperature’, which gives a measure
of hot and cold in general sense, needs a more precise
description in astronomy. For a given system of particles,
say photons or electrons, the temperature has a meaning if
and only if it corresponds to a distinct radiation (photon)
or particle (electron) energy distribution. In the ordinary
sense, the ‘temperature’ of a photon or an electron, or even
a photon or electron beam, is meaningless. But the root-
mean-square (rms) particle energy may be simply related
to the kinetic temperature according to

E = hν ∼ kT, and E = 1/2 mv2. (1.2)

With three-dimensional compoments of the velocity,

4 A simple and elegant ‘proof’ is given in the classic textbook by E. U.

Condon and G. H. Shortley [3].

1

2
mv2 = 3

2
kT, k = 8.6171× 10−5 eV K−1

= 1.380 62× 10−16 erg K−1 (1.3)

where k is the Boltzmann constant. Consider a star ioniz-
ing a molecular cloud into a gaseous nebula. Nebulae are
a class of so-called H II regions where the principal ionic
species is ionized hydrogen (protons). The two distinct
objects, the star and the nebula, have different tempera-
tures; one refers to the energy of the radiation emitted by
the star, and the other to the energy of electrons in the
surrounding ionized gas heated by the star.

1.5.2.1 Black-body radiation and the Sun
The total energy emitted by an object per unit area per unit
time is related to its temperature by the Stefan–Boltzmann
Law

E = σT 4, where σ = 5.67× 10−8 W (m−2 K−4)

(1.4)

is known as the Stefan constant. The Stefan–Boltzmann
relation holds for a body in thermal equilibrium. The term
black body expresses black colour or rather the lack of any
preferred colour, absorbing radiation most efficiently at all
wavelengths. Kirchhoff’s law states that the emissivity of
a black body is related to its absorptivity; a black body is
also the most efficient radiator (emitter) at all wavelengths
(discussed further in Chapter 10). At any temperature, a
black body emits energy in the form of electromagnetic
radiation at all wavelengths or frequencies. However, the
distribution of emitted radiation changes with tempera-
ture such that the peak value and form of the distribution
function defines a unique temperature for the object (black
body), as discussed in the next section. The total luminos-
ity L of a spherical black body of radius R, such as a star,
integrated over all frequencies, is called the bolometric
luminosity,

L = 4πR2σT 4. (1.5)

The radiation field of a star, considered to be a black
body, is given by the Planck distribution function,5 which
defines the energy–frequency relationship at a given tem-
perature:

Bν(T∗) = 2hν3

c2

1

exp(hν/kT∗)− 1
, (1.6)

where T∗ is the radiation temperature of the star and ν is
the frequency of the photons. In terms of wavelengths it
reads

5 This is the underlying radiation field, which is attenuated by spectral

features, such as lines and bands particular to the star.
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FIGURE 1.4 Planck distributions of photon
intensity vs. wavelength at radiation temperatures
T∗ of various stars. Light from the Sun
corresponds to T∗ = 5770 K, which peaks at
wavelengths around yellow; stars with
higher(lower) temperature are bluer (redder).
The Planck function Bλ is discussed in the text.
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Robert A. Rhode,
http://globalwarmingart.com/wiki/
Image:Solar_Spectrum.png).

Bλ(T∗) = 2hc2

λ5

1

exp(hc/λkT∗)− 1
. (1.7)

A surface temperature of T∗ = 5770 K corresponds to the
peak emission of a black body in the characteristic colour
of the Sun – yellow – around 5500 Å. Hotter stars radiate
more in the blue or ultraviolet and are ‘bluer’; cooler stars
radiate a greater fraction in the infrared and are ‘redder’
than the Sun. Figure 1.4 shows the black-body curves for
several temperatures T∗ representative of stars. Wien’s law
states that the black body distribution Bλ(T ) peaks at

λp = 2.8978× 107 Å

T/K
, (1.8)

thus peaking at
2.898× 103 Å

T/10 000 K
or 2900 Å at 10 000 K.

We have already noted the historical relevance of the
spectrum of the Sun. But, of course, the Sun is of great

importance otherwise. It is therefore instructive to intro-
duce a few salient features of solar spectra, some of which
we shall deal with in later chapters.

Figure 1.5 illustrates several aspects of ‘sunlight’ as
received on the Earth. First, following the discussion
above about black-body curves associated with the radi-
ation of stars, Fig. 1.5 is fitted to a black body at a slightly
lower temperature, 5250 K, than at the surface of the Sun.
The best fitting Planck function corresponds to a some-
what lower temperature than the actual spectrum observed
above the atmosphere (light grey). The spectrum at sea
level (dark grey) is seen to be significantly attenuated
by absorption by the constituents of the atmosphere, pri-
marily molecular bands due to water, oxygen and ozone.
Figure 1.5 also shows that, although the peak of Sun’s
radiation is in the visible, there is a long tail indicat-
ing significant flux in the infrared. Water vapour in the
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atmosphere absorbs much of the longer wavelength (λ >
1000 nm = 10 000 Å = 1 μm) IR radiation via molecular
transitions in H2O.6 But water also allows a consider-
able amount of solar radiation to be transmitted through
the atmosphere through what are referred to as ‘windows’
in certain wavelength bands where H2O has inefficient
absorption (weak molecular transitions). Three of these
windows are of particular importance, since they enable
astronomical observations to be made from ground level
in these IR bands, referred to as the J, H and K bands7

centred around 1.2 μm, 1.6 μm and 2.2 μm, respectively.
Another interesting feature of Fig. 1.5 is the differ-

ence in radiation above and below the atmosphere on the
UV side where, unlike the IR, the solar UV flux drops
off rapidly. This is the ozone effect, as O3 prevents the
harmful UV radiation from reaching the Earth and thereby
makes life as we know it possible.

1.5.2.2 Maxwellian particle distribution

Using old quantum theory (before the invention of wave
mechanics), Einstein proposed an explanation of the pho-
toelectric effect that relates Planck’s quantum of energy
hν to absorption by an atom with the ejection of an elec-
tron. For instance, if the atom is surrounded by other
atoms as in a metal, then a certain amount of energy
is needed for the electron to escape. Hence the kinetic
energy of the photoelectron is obtained as

1

2
mv2 = hν − W, (1.9)

where W is called a work function. In the process of pho-
toionization, where an atom or ion is ionized by absorbing
a photon, W may be thought of as the ionization energy EI
of a bound electron.

The charged particles in the plasma ionized by a star
in an H II region have an electron temperature Te associ-
ated with the mean kinetic energy of the electrons given
by Eq. 1.2. But it makes little sense to refer to the tem-
perature of a single particle. Hence an averaged kinetic
energy over a specified distribution of particle velocities is

6 The basic composition of the Earth’s atmospheric gases by volume at

sea level is N2 ∼78%, O2 ∼21%. Note that these two gases alone

comprise ∼99% of the dry atmosphere. But there are variations,

allowing for H2O < 4% and CO2 ∼ 0.036%, and some other trace

gases. Both H2O and CO2 are greenhouse gases that regulate the

greenhouse effect on Earth. Although the CO2 concentration is usually

only about one hundredth of that of H2O, it can be pivotal in global

warming, since it is directly affected by life on Earth and carbon-based

fossil fuels.
7 Not to be confused with the H and K lines of ionized calcium.
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FIGURE 1.6 Maxwellian distributions, f(E,Te) of free electron
energies at three bulk plasma kinetic temperatures Te.

defined. In most astrophysical sources the fractional prob-
ability of electrons as a function of velocity or energy is
characterized by a Maxwellian distribution of electrons at
temperature Te as

f (v) = 4√
π

( m

2kT

)3/2
v2 exp

(
−mv2

2kT

)
. (1.10)

Figure 1.6 shows the general form of the Maxwellian
distribution functions at a few characteristic tempera-
tures Te. An example of the distinction, as well as the
physical connection, between the Planck function and
the Maxwellian function is found in H II regions. They
are ionized by the hottest stars with black-body tem-
peratures of T∗ ≈ 30 000–40 000 K. The resulting ioniza-
tion of hydrogen in a molecular cloud (see Chapter 12)
creates a plasma with electron kinetic energies that can be
described by a Maxwellian distribution at Te ≈ 10 000–
20 000 K. Since 1 eV≡ 11 600 K

(
see Eq. 1.3

)
, the elec-

tron temperature is of the order of 1 eV in H II

regions.
Plasmas need not always have a Maxwellian distribu-

tion; electron velocity (energy) distributions may not be
given by Eq. 1.10. For example, in the expanding ejecta
of supernovae, solar flares or laboratory fusion devices,
some electrons may be accelerated to very high veloc-
ities. Such non-Maxwellian components or high-energy
‘tails’ may co-exist in a source otherwise characterized by
a Maxwellian plasma that defines the bulk kinetic temper-
ature. Another example is that of mono-energetic beams
used in laboratory experiments; the beam widths may be
described by the well-known Gaussian distribution cen-
tred around a given energy. It should be noted that often
the subscripts on temperature T are omitted, and it is
the context that determines whether the reference is to
radiation or the electron temperature, T∗ or Te. The kinetic
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temperature of other particle constituents in a plasma,
such as protons or other ions (Tp, Ti), is also character-
ized in terms of a Maxwellian. However, it may happen
that Te �= Tp or Ti, if there are bulk motions or processes
that separate electrons from protons or ions.

1.6 Quantum statistics

Free particles, such as fermions and bosons, usually obey
the Maxwellian or Planckian distributions associated with
a temperature. When particles congregate to form struc-
tures like atoms, molecules, etc., they do so in accordance
with laws of quantum mechanics described by energy
levels quantized in energy and other variables such as
momentum. The statistical mechanics of quantum distri-
bution of particles among those levels is quantum statis-
tics. There are three statistical distributions that relate to
plasma sources. Once again, temperature is the crucial
variable that determines the energies of particles and the
levels they can occupy, subject to the principle of indistin-
guishability (and hence their fundamental classification as
fermions or bosons) and quantum mechanical rules, such
as the Pauli exclusion principle.

1.6.1 Maxwell–Boltzmann statistics

In thermal equilibrium, temperature determines the energy
available for particles to be excited to higher levels, and
the population distribution among them. Assuming a tem-
perature T and a given excited energy level Ei , the
distribution of the number of particles in level i relative
to the total is

Ni

N
= gi e−Ei /kT∑

j g j e−E j /kT
. (1.11)

Here, gi is the statistical weight for level i or its maximum
possible occupancy number. The Maxwell–Boltzmann
distribution is the one most frequently used to evaluate the
number of electrons in excited levels of an atom or ion.
The denominator in Eq. 1.11 is referred to as the partition
function,

U =
∑

i

gi e−Ei /kT . (1.12)

It is related to what is known as the equation-of-state for
a plasma and is discussed in detail in Chapter 10.

1.6.2 Fermi–Dirac statistics

What happens as T→0? In that limit, the distribution
of particles depends on their basic nature; fermions or

bosons. Since fermions are particles with half-integral
spin they must occupy discrete states in accordance with
the Pauli exclusion principle, which states that no two
fermions can occupy the same quantum mechanical state.
This basic fact leads to atomic structure, corresponding to
the states of the atom defined by the couplings of angular
and spin momenta of all electrons (Chapter 2). As the tem-
perature approaches absolute zero, the electrons have no
energy to be excited into higher levels. But not all atomic
electrons can occupy the same quantum mechanical state,
in particular the ground state, since that would violate
the exclusion principle. So they occupy the next available
higher levels, until a highest level, called the Fermi level,
with energy EF. The Fermi–Dirac probability distribution
is given by

f (Ei , T ) = 1

exp[(Ei − EF)/kT ] + 1
. (1.13)

At T = 0, we have probabilities f (E, T ) = 1 if E ≤
EF and f (E, T ) = 0 otherwise. We may visualize the sit-
uation as in Fig. 1.7. All levels up to the Fermi level are
filled at absolute temperature zero, constituting an ensem-
ble of fermions called the Fermi sea. As T increases,
particles get excited to higher levels, out of the Fermi sea.
Eventually, for sufficiently high temperature and kT � E ,
the Fermi–Dirac distribution approaches the Maxwell–
Boltzmann distribution characterized by the exponentially
decaying probability as exp(−E/kT ) in Eq. 1.11. The
probability

(
Eq. 1.13

)
is related to the actual number of

particles in an energy level i as

Ni (FD) = gi

exp[(Ei − EF)/kT ] + 1
. (1.14)

Thus far we have considered only the temperature as
the primary physical quantity. But in fact the density of
the plasma plays an equally important role. Intuitively
one can see that for sufficiently high densities, at any
temperature, particles may be forced together so that the
exclusion principle applies. In such a situation one can
think of a ‘quantum degeneracy pressure’ owing to the
fact that no two electrons with all the same quantum num-
bers can be forced into the same state. When that happens,
all accessible levels would again be occupied at the given
temperature and density. The foremost example of Fermi–
Dirac distribution in astrophysics is that of white dwarfs
Chapter 10). These are stellar remnants of ordinary stars,
like the Sun, but at the end of stellar evolution after the
nuclear fuel (fusion of H, He, etc.) that powers the star
runs out. The white dwarfs have extremely high densi-
ties, about a million times that of the Sun. The electrons
in white dwarfs experience degeneracy pressure, which
in fact prevents their gravitational collapse by forcing the
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electrons to remain apart (up to a certain limit, as we shall
see in Chapter 10).

1.6.3 Bose–Einstein statistics

Zero-spin or integral-spin particles are unaffected by the
Pauli exclusion principle and any number may occupy any
energy level. They follow the Bose–Einstein probability
distribution for the number of particles

Ni (B E) = gi

exp Ei/kT − 1
. (1.15)

All bosons at absolute zero tend to congregate in the same
quantum mechanical state, in what must be the ground
state. The Bose–Einstein distribution also approaches the
Maxwell–Boltzmann distribution for kT � Ei.

Bosons might be not only single particles, such as
photons (spin 0), but also a system of atomic particles
with the total spin of all electrons, protons and neutrons
adding up to an integral value or zero in each atom.
Atoms of alkali elements, such as rubidium, are exam-
ples of bosons, which have been experimentally shown to
undergo condensation into the same structure-less state.
As an alkali, rubidium atoms have an unpaired electron
and an odd-atomic numbered nucleus, both of which have
a spin quantum number of 1/2 that, in the lowest state,
corresponds to a total spin of 0. The so-called Bose–
Einstein condensation (BEC) is achieved by lowering the
kinetic temperature to practically zero by slowing down
the atomic velocities through laser impact (laser cool-
ing). Recall the simple kinetic theory expression (Eq. 1.2),
which relates velocity to temperature; bringing the atoms
in a gas to a virtual standstill occurs in the μK range.
At such a temperature the atoms coalesce into a Bose–
Einstein condensate. There is very little hard scientific
evidence on any astrophysical entity that would be a boson
condensate. But the hypothesis of a ‘boson star’, perhaps

following gravitational collapse, has been contemplated.
That, if observed, would be complementary to known
objects, such as neutron stars, made of fermions.

1.7 Spectroscopy and photometry

Spectroscopy and imaging of astrophysical sources, i.e.,
spectra and ‘pictures’, complement each other in astro-
physical studies. In between the two lies photometry,
or the calibrated measurement of brightness in a given
wavelength band (or ‘colour’). The division between spec-
troscopy and photometry rests essentially on the study of
energy at a given wavelength of spectroscopy or in a given
wavelength region of photometry. Finer divisions between
the two rest on resolution, techniques and instruments.

1.7.1 Photometry and imaging

Photometry involves measurement and calibration of
brightness in certain wavelength ranges or bands, e.g. in
the optical. As already mentioned, the general division
between spectroscopy and photometry is that, while the
former refers to the study of energy emitted in the contin-
uum and lines, the latter concerns total emission across a
region in the electromagnetic spectrum. However, the dif-
ference may be thought of simply in terms of resolution:
photometry measures spectral energy with low resolution,
and spectroscopy determines the division of energy with
high resolution at specific wavelengths (usually associated
with atomic and molecular transitions).

Photometric observations correspond to integrated
energy (brightness) in a wavelength band weighted by the
response function of the filter or the detector. Around
the visible region of the spectrum, transmitted through
the atmosphere and observable from the ground, the main
wavelength bands are denoted as ultraviolet, violet, blue,
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green, red and infrared regions. There are a number of
systems in observational use for the exact division of
wavelengths. One of the more common schemes is as fol-
lows. The approximate peak wavelengths are, in Å: 3650
(ultraviolet), 4800 (blue), 5500 (green), 7000 (red), and
8800 (infrared). In addition the near-IR bands are divided
into three parts, corresponding to atmospheric transmis-
sion windows (Figs 1.2 and 1.5): 12000 (J), 16000 (H)
and 22000 (K). Astronomical photometry forms the basis
of ‘colour-magnitude’ diagrams of stars and galaxies that
relate the bulk energy emitted to temperature, luminos-
ity and other physical properties. Thus photometry is
useful for information on a macroscopic scale, such as
size, location or surroundings of an astronomical object,
whereas spectroscopy yields more detailed information on
microscopic physical processes.

1.7.2 Spectroscopy

The formation of the spectrum from an astrophysical
plasma depends on atomic processes that emit or absorb
radiation. The astrophysical plasma constituents are in
general electrons, protons and trace elements in various
ionization stages. Also, there is often an external radiation
field, for example, from another star or galactic nucleus,
interacting with the plasma. The radiative and collisional
interactions, in turn, depend on the prevailing density,
temperature and radiation source. A variety of atomic
interactions, mainly between the electrons and ions, deter-
mine the observed spectral features that are divided into
the primary components of a typical spectrum: (i) a con-
tinuum defining the background radiation, if present, and
(ii) a superposition of lines that add or subtract energy
to or from the continuum, characterized by emission or
absorption, respectively. The relative magnitudes of inten-
sities of the continuum and the lines is a function of the
densities, temperatures, radiation field and abundances of
elements in the source. Atomic astrophysics seeks to study
the qualitative and quantitative nature of the microscopic
atomic interactions and the observed spectra.

Among the first quantities to be obtained from spec-
troscopy is the temperature, which generally determines
the wavelength range of the resulting spectra, as well as a
measure of the total energy output of the source (such as a
star). Another useful parameter derived from spectroscopy
of an astronomical object is its gross composition in terms
of the amount of ‘metals’ present or its metallicity. But
the metallicity is generally measured not with respect to
all the metals in the source but to iron, which is one of
the most abundant elements. Iron often provides hundreds,

if not thousands, of observable spectral lines. Metallicity
is therefore the ratio of iron to hydrogen, Fe/H, and is
denoted relative to the same ratio in the Sun (defined in
Chapter 10). In practice the Fe/H ratio is determined from
a few lines of neutral or singly ionized iron.

Sometimes it is difficult to carry out spectroscopic
studies, especially in the case of faint objects that may
be far away (at high redshift for instance). In other
cases a broad classification involving the total emission
in two or more wavelength ranges is sufficient. Therefore,
astronomers avail themselves of whatever energy they can
collect and measure, as described in the next section.

1.7.3 Spectrophotometry

Spectroscopy and photometry may be combined as spec-
trophotometry, which refers to calibrated spectral energy
distribution. It is also useful to carry out narrow-band or
single-line imaging of a given source, say at a specific
wavelength, e.g., the well-known 5007 green line from
O III (Chapter 9). The advantage of such a combination of
observations is that one can ascertain the spatial distribu-
tion, as well as the emission, from plasma in an extended
source such as a nebula. For instance, the λ 5007 line
may indicate the temperature distribution in the source,
e.g., a supernova remnant in a late phase that resembles a
gaseous nebula.

An example of measurements that lie in between pho-
tometry and spectroscopy is that of photometric redshifts
of distant objects, now being derived observationally.
The redshift of a spectral line, usually the strongest line
Lyα, indicates the distance of the source at the present
epoch due to the cosmological expansion of the Uni-
verse (Chapter 14). A similar redshift also occurs in the
entire wavelength region, since all photons from the reced-
ing source undergo the same redshift. If spectroscopic
observations are not possible or difficult owing to the
large distance of an object, photometric redshifts may
be derived from the much larger photon flux that can be
detected in a wavelength region as opposed to a single
wavelength.

1.8 Spectroscopic notation

A Roman numeral or a numerical superscript after the
chemical symbol of the element denotes its ionization
state: I or 0 for neutral, II or + for singly ionized, and
so on; e.g., Li I or Li0, Li II or Li+, and Li III or Li2+.
The last ionization state, the fully stripped bare ion, has
a numeral equal to Z , the atomic (proton) number in
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the nucleus. These are the common notations in atomic
physics and spectroscopy. However, the astronomy usage
can vary according to context in a sometimes confus-
ing manner. While the spectroscopic notation with the
numeral refers to an ionization state, the superscript nota-
tion may refer to the abundance of an element. For exam-
ple, Fe II refers to singly ionized iron, but Fe+ refers to its
abundance when written as, e.g., O+/Fe+, which means
the abundance by number of O II ions relative to Fe II.

1.9 Units and dimensions

Until one turns to routine calculations, in particular to
computers, which have no concept of physical quantities
and, apart from logical and bookkeeping operations, are
good only for number crunching, one stays with phys-
ical equations. Being invariant to choice and change of
‘yardsticks’, the outcome of Eq. 1.7, for instance, remains
unaltered if one measures the wavelength λ in units of Å,
km or, if one prefers, units bigger than parsecs or smaller
than fm (femtometres, 10−15 metres).8 The electric and
magnetic interactions are controlled by the dimensionless
electromagnetic coupling parameter

α = e2

� c
= 1 / 137.0360 , (1.16)

often referred to as the fine-structure constant. In the
atomic shell environment, energies are most naturally
measured in units of

1 Ry = α2

2
mc2 = 13.6 eV , (1.17)

the ionization energy of a hydrogen atom out of its ground
state.

Strict observance of phase invariance for canonical
pairs of observables fixes the unit of time:

τ0 = �/Ry = 4.8378× 10−17 s , (1.18)

the ‘Rydberg’ time of around 50 as (attosecond, 10−18s,
lasts as long as it takes a hydrogen electron in its ground
state with velocity c · α to traverse the diameter of the

8 Physical quantities are the product of a ‘quality’ (a yardstick) and an

‘intensitiy’ (the measure taken with it), and as one factor in the product

increases, the other decreases (e.g., in Eq. 2.40). Turning from scale

invariance to calculations involving the atomic shell, ‘qualities’ that

keep the intensities within a convenient range are as described herein.

atom, whose radius a0 of about 0.5 Å we pick as the unit
of length:

a0 = �

mc

/
α = λC/(2π α) = 0.529177× 10−8 cm.

(1.19)

Again it is a ‘mechanical’ property of the electron, now
its Compton wavelength, that leads to the Bohr radius a0;
momentum mc rather than λC = h/(mc). This fixes the
unit of linear momentum p = �k or wavenumber k, such
that

k → k · a0 (1.20)

secures an invariant phase (kr) if r → r/a0.
The third canonical pair of observables in atomic

physics is a familiar affair, which in a sense started atomic
physics and spectroscopy; the uncertainty relation for
angular momentum d ,


d ·
ϕ = h , (1.21)

yields h/(2π) = � as the natural unit of angular momen-
tum, because the angle ϕ is uncertain by 2π in a closed
orbit.

For convenience, one uses less natural units, such
as for energy the Hartree (H) and Rydberg units (also
referred to as atomic units (au)

1 H = 2 Ry = 27.21 eV, (1.22)

which implies τH = τ0/2 ,
The atomic units are arrived at technically on dropping the
quantities �, m and e (or equivalently setting them equal
to unity), while the physical units are derived from the
equation of motion. This is akin to saying that in the MKS
(metre–kilogram–second) system a day lasts 86 400 MKS
or the equator spans 4 × 107 MKS. We rather focus on
(conjugate pairs of) observables. Notably the elementary
electric charge e is not an observable: it enters atomic
structure by way of coupling with an external electro-
magnetic field.9 The assignments in Eqs 1.17 and 1.19
conceptually define its role via

e2 = 2 a0 Ry . (1.23)

9 As W. Eissner points out, only via approaches such as Millikan’s

experiment, followed by the long [hi]story of QED. Historically,

Sommerfeld named α the fine-structure constant before its primary role

in QED could be appreciated. The square e2 does appear in the

equations of motion, but only as the electromagnetic coupling

parameter α with the two other universal structure constants (Eq. 1.16).

In Chapter 14, we address the issue of variation of fundamental natural

constants, which of course would alter phase space and physical

relations such as the Heisenberg uncertainty principle and, in fact, lead

to a different Universe or an evolution thereof.
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Rydberg’s constant began in spectroscopy as

R∞ = Ry

� c
= 109 737.32 cm−1, (1.24)

or rather in a form corrected along

1RM = M

M + me
R∞ (1.25)

for the finite mass M ≈ 1820 me of the hydrogen nucleus:

RH = 109, 677.576 / cm . (1.26)

The wavenumber R readily translates into the (vacuum)
wave length λ of a photon needed to ionize the ground
state 1s 2S:

λPI
H = 1/R = 911.76 Å . (1.27)

The equivalent temperature of 1 Ry follows from Eqs 1.17

and 1.3 as

1 Ry ≡ 157 885 K . (1.28)

It is interesting that atomic sizes of all elements are
remarkably similar. Given the Bohr radius (Eq. 1.19) of
the electron orbit in the hydrogen atom the size (diame-
ter) of the H atom is ∼1 Å. One might think that heavier

atoms would increase in size according to atomic number
along the periodic table (see Appendix A). But this is not
so when one examines the calculated radii of atoms of var-
ious elements. All atoms lie in the narrow range ∼1–3 Å.
This is because the inner electrons are pulled in closer to
the nucleus as Z increases. Nonetheless, it is remarkable
that atomic size is constant to within a factor of three for
all elements, though Z varies by nearly a factor of 100. Of
course, the size of atomic ions varies significantly from
these values since for ions the size depends on both Z and
the number of electrons N in the ion, i.e., the ion charge
z ≡ Z − N + 1.

A table of physical constants useful in atomic physics
and astronomy is given in Appendix A.

Exercise 1.2 Write a program to compute and plot the
Maxwellian and Planck functions corresponding to a
range of Te and T∗, respectively.

Exercise 1.3 Plot the black-body function (a) at the
effective temperature of the Sun, T∗ = 5700 K, and
(b) at T∗ = 2.73 K, the microwave background tem-
perature of the Universe; compare the latter with data
obtained by space satellites, such as the Cosmic Back-
ground Explorer (COBE). The Universe would be a per-
fect black body, provided one ignored all the matter
in it!
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As mentioned in the first chapter, astrophysical applica-
tions played a crucial role in the development of atomic
physics. In their 1925 paper, Russell and Saunders [2]
derived the rules for spectroscopic designations of vari-
ous atomic states based on the coupling of orbital angular
momenta of all electrons into a total L , and the coupling
of all spin momenta into a total S, called the L S coupling
scheme. Each atomic state is thus labelled according to the
total L and S.

Atomic structure refers to the organization of electrons
in various shells and subshells. Theoretically it means
the determinations of electron energies and wavefunc-
tions of bound (and quasi-bound) states of all electrons
in the atom, ion or atomic system (such as electron–ion).
As fermions, unlike bosons, electrons form structured
arrangements bound by the attractive potential of the
nucleus. Different atomic states arise from quantization of
motion, orbital and spin angular momenta of all electrons.
Transitions among those states involve photons, and are
seen as lines in observed spectra.

This chapter first describes the quantization of individ-
ual electron orbital and spin angular momenta as quantum
numbers l and s, and the principal quantum number n,
related to the total energy E of the hydrogen atom. The
dynamic state of an atom or ion is described by the
Schrödinger equation. For hydrogen, the total energy is
the sum of electron kinetic energy and the potential energy
in the electric field of the proton.

For multi-electron atoms the combination of indi-
vidual l and s follows strict coupling rules for the
total angular momenta, which define the symmetry of
atomic levels. In a given atom or ion, the rules consti-
tute the angular algebra for all possible atomic states to
be determined independently of dynamical variables in
any effective atomic potential. The orbital spin and the
dynamical parts are separately quantized and therefore
separable in the Hamiltonian. With a given spin-orbital
nl, the dynamical quantities determine the stationary

states and expectation values, such as the mean radius
of each orbital 〈rnl 〉. These concepts are introduced here
through the simplest atomic system, hydrogen. It is the
most abundant element in the Universe (90% by num-
ber and 70% by mass). The series of spectral lines due
to absorption or emission of photons by hydrogen lie
in the ultraviolet (UV), optical and infrared (IR) wave-
length ranges in the spectra of nearly all astrophysical
objects.

Subsequent sections discuss the atomic structure
for multi-electron atoms, beginning with the two elec-
trons atom, helium. For a multi-electron atomic system,
electron–electron correlation interactions are to be added,
introducing complexity in determining the energies and
wavefunctions. An approximate treatment of a multi-
electron atom, in analogy with the central potential field
in an H-atom, comprises the central-field approximation.
The most common and complete treatment is the general-
ization of the Schrödinger equation into the Hartree–Fock
equations.

In addition, if the velocity of the electrons in the atom
is significant compared with c, such as in heavy ele-
ments or highly charged ions, relativistic effects come
into play. The primary effect is the explicit consid-
eration of fine structure, in addition to the total L S
scheme, and consequent splitting of L S states or terms
into fine-structure levels J . The atomic levels are then
designated as L S J . The fully relativistic version of
the equation of motion of an electron is described by
the Dirac equation. However, relativistic effects may
be incorporated in successively complex approxima-
tions, depending on the nuclear charge or atomic num-
ber Z , to varying extent, that are intermediate between
the non-relativistic Schrödinger equation and the Dirac
equation. The intermediate methods form a class of
Breit–Pauli approximations appropriate for most atomic
systems of astrophysical importance up to the iron group
elements.
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Finally, the behaviour of energy levels along isoelec-
tronic sequences, that is, ions with the same number of
electrons but different number Z of protons in the nucleus,
illustrates a number of practical useful features of atomic
spectroscopy.

2.1 The hydrogen atom

The study of the hydrogen atom underpins the basic
concepts of atomic spectroscopy. Therefore the quantum
mechanical treatment for this atom is discussed in some
detail, leading up to the Rydberg series of levels that
define the series of spectral lines.

The classical equation of motion of an electron with
mass m moving in the central field of a heavy nucleus with
electric charge number Z is

p2

2m
− Ze2

r
= p2

r + p2⊥
2m

− Ze2

r
= E, (2.1)

with p split as indicated by subscripts. The quantum
mechanical analogue is obtained on replacing the mome-
tum and energy differential operators p →−i�∇ and
E → i�∂/∂t to obtain the Schrödinger form,[
− �

2

2m

(
∇2

)
+ V (r)

]
Ψ = E Ψ (2.2)

[
− �

2

2m

(
∇2

r + ∇2⊥
)
+ V (r)

]
Ψ = E Ψ, (2.3)

specifically V (r) = − Ze2

r
= − 2Z

r/a0
Ry. (2.4)

In standard notation for spherical coordinates we have

∇2
r =

1

r2

∂

∂r

(
r2 ∂

∂r

)
(2.5)

∇2⊥ =
1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)

+ 1

r2 sin2 ϑ

∂2

∂ϕ2
(2.6)

�(r, ϑ, ϕ) = R(r) Y(ϑ, ϕ),

as the wavefunction factorizes accordingly. Substitution
into the Schrödinger equation gives

1

R

d

dr

(
r2 dR

dr

)
+ 2mr2

�2
[E − V (r)] (2.7)

= − 1

Y

[
1

sinϑ

∂

∂ϑ

(
sinϑ

∂Y

∂ϑ

)
+ 1

sin2 ϑ

∂2Y

∂φ2

]
. (2.8)

Since the left-hand side depends only on r and the right
only on the two spherical angles, both sides must equal
some constant λ. Dealing with the angular equation first

conveniently leads to the radial problem, as in the follow-
ing subsections.

2.1.1 Angular equation

The expression 2.8 leads to the angular equation

1

sinϑ

∂

∂ϑ

(
sinϑ

∂Y

∂ϑ

)
+ 1

sin2 ϑ

∂2Y

∂φ2
+ λY = 0, (2.9)

with solutions Y(ϑ, ϕ), known as spherical harmonics.1

The equation can be expressed in the convenient form

L2Y(ϑ, ϕ) = λY(ϑ, ϕ), (2.10)

with an angular momentum operator L . Writing the solu-
tion as

Y(ϑ, ϕ) = �(ϑ) �(ϕ) (2.11)

and substituting in Eq. 2.9, the equation separates to the
form

d2Φ

dϕ2
+ νΦ = 0, (2.12)

1

sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+

(
λ− ν

sin2 ϑ

)
Θ = 0, (2.13)

where ν is another constant. If ν is the square of an integer,
i.e., ν = m2, Φ and its derivative dΦ/dϕ are finite and
continuous in the domain 0 to 2π :

Φ(ϕ) = (2π)−1/2eimϕ ; (2.14)

m is called the magnetic angular quantum number and
equals 0,±1, ±2, . . . On replacing ϑ by w = cosϑ the
equation for Θ reads

d

dw

[
(1− w2)

dΘ

dw

]
+

[
λ− m2

1− w2

]
Θ(w) = 0. (2.15)

A finite solution Θ requires

λ = l(l + 1), (2.16)

with positive integers l = 0, 1, 2. . . The solutions are
associated Legendre polynomials of order l and m,

Pm
l (w) = (1− w2)|m|/2 d|m|

dw|m| Pl (w), (2.17)

1 Like sin, exp and other standard mathematical functions, Y is set in

roman type since it is taken for a filter or operator that creates a value

from arguments or variables, which appear in italic type in scientific

notation. In this sense, non-standard functions are taken for variables as

a whole. Thus the Legendre polynomials P(cosϑ) appear in roman

type, so there is no notation clash with radial functions P(r) in the next

sections.
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where m = l, l−1, . . . ,−l. For m = 0 the function Pl (w)

is a Legendre polynomial of order l. The angular solution
of normalized spherical harmonic is (e.g. [4])

Ylm(ϑ, ϕ) = Nlm Pm
l (cosϑ) eimϕ, (2.18)

where

Nlm = ε
[

2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2
, (2.19)

with ε = (−1)m for m > 0 and ε = 1 for m ≤ 0. Spherical
harmonics satisfy the orthogonality condition,

∫ 2π

ϕ=0

∫ π

ϑ=0
Y∗l1m1

(ϑ, ϕ)Yl2m2(ϑ, ϕ) sinϑ dϑ dϕ

= δl1,l2 δm1,m2 . (2.20)

The equation with angular momentum operator can now
be written as

L2Ym
l (ϑ, ϕ) = l(l + 1) �

2 Ym
l (ϑ, ϕ) (2.21)

and

m = l, l − 1, . . . ,−l. (2.22)

With angular momentum L = mvr = mwr2 the angular
frequency w = L/mr2, the centripetal force is mw2r =
L2/mr3 and the corresponding potential energy is

1

2
mw2r2 = L2

2mr2
. (2.23)

This is similar to the second potential term of hydrogen,
provided

L2 = l(l + 1)�2. (2.24)

2.1.2 Radial equation

We now turn to the radial coordinate representing the
dynamical motion of the electron in the atom. Equa-
tion 2.7 leads to the radial equation

[
1

r2

d

dr

(
r2 d

dr

)
+ 2m

�2
(E − V (r))− λ

r2

]
R(r) = 0,

(2.25)

λ being established in Eq. 2.24. It simplifies on substitut-
ing R(r) = P(r)/r :[

�
2

2m

d2

dr2
− V (r)− l(l + 1)�2

2mr2
+ E

]
P(r) = 0. (2.26)

Using atomic units we write (e = me = a0 = � = 1)2[
d2

dr2
− V (r)− l(l + 1)

r2
+ E

]
P(r) = 0, (2.27)

2.1.3 Rydberg states and hydrogenic energy
levels

It may appear that it is easier to express the radial equa-
tion than its angular counterpart, but its solution is not
only more difficult: it is always approximate, with the
outstanding exception of the single electron. The angular
algebra embodied in the angular equation can be evaluated
exactly for an atomic transition matrix element, but the
solution of the radial equation entails the use of an effec-
tive potential, constructed in various approximations, as
described in Chapter 4. For hydrogenic systems this is the
well-known Coulomb potential Ze2/r, as discussed below.

Equation 2.27 can be solved on specifying boundary
conditions. The bound electron moves in the attrac-
tive potential of the nucleus, which behaves as
limr→∞ V (r) = 0. Let us look for solutions at two lim-
iting cases of the electron motion: (i) r at infinity and (ii)
r near r = 0.

For case (i) with r→∞ the radial number equation
reduces to[

d2

dr2
+ E

]
P(r) = 0, (2.28)

which has solutions

P(r) = e±ar , a = √−E . (2.29)

Taking E < 0, implying bound states, a runaway solu-
tion ear → ∞ for r→∞ is not acceptable. On the other
hand, limr→∞ e−ar = 0 is a possible solution, and is also
valid for E > 0 when a becomes imaginary, implying free
spherical waves. We concentrate on E < 0.

2 The radial motion displayed in this equation is reminiscent of the

one-dimensional motion of a particle in a potential, namely

V (r)+ l(l + 1)�2

2mr2
,

where the last term is a centrifugal potential. Moving away from

physics for a moment to computers, which know nothing about physics

but can deal superbly with mere numbers, we divide Eq. 2.26 with V (r)

from Eq. (1.23) by 1 Ry as expressed in Eq. 1.17:

[
d2

d(r/a0)
2
+ 2Z

r/a0
− l(l + 1)

(r/a0)
2
+ E/Ry

]
P(r) = 0

This is a pure number equation, having exploited a0 from Eq. 1.19.
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The asymptotic behaviour suggests that the solution
P(r) should have the form

P(r) = e−ar f (r) (2.30)

subject to the condition limr→0 f (r) = 0. On substitu-
tion, the radial number Eq. 2.27 leads to

d2 f

dr2
− 2a

d f

dr
+

[
2Z

r
− l(l + 1)

r2

]
f (r) = 0 (2.31)

for a hydrogen-like ion with one electron and a positively
charged nucleus with Z protons. If r � 1, the solution
f (r) may be expressed as a power series

f (r) = rs [A0 + A1r + A2r2 + . . . ]. (2.32)

For f to be finite as r→0, consistent with the behaviour
of an orbital nl ‘bound’ at the nucleus, requires s > 0 for
the exponent.

Exercise 2.1 Use a power series expansion in the radial
equation to show that

s = l + 1 > 0, (2.33)

i.e., limr→0 P(r) ∼ rl+1. Prove that the coefficients A
obey the recursion relation

Ak

Ak−1
= 2[(l + k)a − Z ]

k2 + (2l + 1)k
, (2.34)

lim
r→∞

Ak

Ak−1
= 2a

k
. (2.35)

We note that the exponential e2ar has the following
expansion:

e2ar = 1+ 2ar + (2ar)2

2! + · · · + (2ar)k

k! + · · · , (2.36)

(2a)k/k!
(2a)k−1/(k − 1)! =

2a

k
. (2.37)

Equation 2.32 indicates that the radial solution f behaves
as rse2ar for large k. Therefore,

P(r) = f (r)e−ar ≈ rl+1ear (2.38)

at large distances r .
The above solution diverges at infinity, i.e.,

P(r)→∞ for r→∞ unless the series terminates at some
finite values of k. Eq. 2.34, along with a from Eq. 2.29,
shows that the coefficient Ak vanishes if the following
condition is met:

(l + k)
√−E − Z = 0 (2.39)

or, reverting E to energies from shorthand for numbers
E /Ry,

E = − Z2

n2
× Ry; (2.40)

One may also replace Ry with ‘Hartrees/2’ or ‘au/2’ in
atomic units. The boundary conditions on the radial wave-
functions have forced the bound states to be discrete with
integer n. The equation gives an infinite number of dis-
crete energy levels −Z2/n2 asymptotically approaching
zero for any finite charge number Z . It also shows that
the energy is degenerate with respect to l and m. Degen-
eracy in energy or state is defined as the number of
eigenfunctions associated with a particular energy.

2.1.4 Hydrogenic wavefunctions

The full series solution for the hydrogen radial function
P(r) may be expressed in terms of Laguerre polynomials
(e.g., [4])

L2l+1
n+l (r) =C0 + C1r + C2r2 + · · ·

+ Cn−l−1 Eq.rn−l−1, (2.41)

where

Cn−l−1 = (−1)n−l (n + l)!
(n − l − 1)! . (2.42)

For Cn−l−1 to remain finite, n − l − 1 must be zero or
a positive integer (note that 0 ! = 1 and n! = ±∞ for a
negative integer value of n). Hence

n = l + 1, l + 2, . . . (2.43)

The radial function then becomes

Pnl (r) =
√
(n − l − 1)!Z

n2[(n + l)!]3a0

[
2Zr

na0

]l+1

× e−Zr/na0 L2l+1
n+l

(
2Zr

na0

)
, (2.44)

where the Laguerre polynomial is given by

L2l+1
n+l (ρ) =

n−l−1∑
k=0

(−1)k+2l+1

× [(n + l)!]2ρk

(n − l − 1− k)!(2l + 1+ k)!k! . (2.45)

The orthogonality condition of the radial function is∫ ∞
0

Pnl (r) Pn′l (r) dr = δnn′ , (2.46)
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√
1/a0 of Eq. 2.44 securing scale invariance. In bra-ket

notation, the complete solution for the bound states of
hydrogen may now be written as

〈r|nlm〉 ≡ ψnlm(r, ϑ, ϕ) = Rnl (r)Ylm(ϑ, ϕ)

= 1

r
Pnl (r)Ylm(ϑ, ϕ), (2.47)

which satisfies the orthogonality condition

〈nlm|n′l ′m′〉 =
∫
ψ∗nlm(r, ϑ, ϕ) ψn′l ′m′(r, ϑ, ϕ) dτ

= δnn′ δll ′ δmm′ . (2.48)

where dτ = r2dr sinϑdϑ dϕ.

2.1.5 Charge density and expectation values

R2
nl (r) is the radial charge density describing the distri-

bution of electrons of different symmetries (� values) at a
distance r from the nucleus. One can compute the charge
density, that is the probability of finding an electron in
volume element dτ as

ψ∗ψ dτ = 1

r2
P2

nl (r) Y∗lm(ϑ, ϕ) Ylm(ϑ, ϕ) dτ. (2.49)

One may obtain the expectation values 〈nl|rk |nl〉 to
moments of order k:

〈rk〉 =
∫ ∞

0
P2

nl (r) rkdr =
∫ ∞

0
R2

nl rk+2 dr, (2.50)

for example

〈r〉 = a0

2Z
[3n2 − l(l + 1)],

〈r2〉 = a2
0

Z2

n2

2
[5n2 + 1− 3l(l + 1)],〈

1

r

〉
nl
= Z

n2a0
, (2.51)

〈
1

r2

〉
nl
= Z2

n2
(

l + 1
2

)
a2

0

,

〈
1

r3

〉
nl
= Z3

n3l
(

l + 1
2

)
(l + 1)a3

0

.

These relations are useful in atomic structure calcula-
tions of matrix elements comprising radial integrals over
wavefunctions.

States with E > 0, in contrast to E < 0, form a con-
tinuum instead of a discrete spectrum, because their orbits
are not closed and thus not quantized. A continuum state
is a free state, except that it is designated with an angular
momentum (and either box or flux normalization).

Exercise 2.2 Obtain from the full expression for Pnl (r)
in terms of Laguerre polynomials, the radial functions for
the 1s and the 2p orbitals.

2.2 Quantum numbers and parity

Atomic structure depends on quantization of continu-
ous variables (r, E), ϑ , and ϕ. They are associated with
discrete quantum numbers as

r, E → n (principal quantum number)
= 1, 2, 3, . . .∞

ϑ→ l (orbital quantum number)
= 0, 1, 2, . . . (n − 1)

ϕ→m� (magnetic quantum number)
= 0, ±1, ±2, . . .± l,

(2.52)

where n represents a shell consisting of � number of sub-
shells, or n� orbitals, which further subdivide into m�
suborbitals.

The shells with n = 1, 2, 3, 4, 5, 6, . . . are referred to
as K, L, M, N, O, P, . . . — as values set in roman type.
Each shell can accommodate a maximum number of 2n2

electrons. A shell is closed when full, i.e., all n�m orbitals
are fully occupied, and open when there are vacancies. By
long-standing convention, angular momenta l are repre-
sented by alphabetic characters s, p, d, f, g, h, i, k, . . . for
l = 0, 1, 2, 3, 4, 5, 6, 7, . . . (note that there is no value
j; scientific notation aims to avoid confusion with vari-
ables like spin momentum s, linear momentum p, angular
momentum l or oscillator strength f ). Thus, an electron
in an orbital of nl = 1s is in the first or K-shell (n = 1)
and in an orbit with l = 0 (s orbital). The total angular
momentum L for more than one electron follows the same
alphabetic character notation, but in the upper case. For
example, L = 0 is denoted as S, and the higher values
are L = 1, 2, 3, 4, 5, 6, 7, etc., are P, D, F, G, H, I, K,
etc. (note again the absence of ‘J’). The orbital magnetic
quantum number m depends on l and is written as ml .
For ions with more than one electron, the total orbital
magnetic angular momentum can be obtained as ML =∑

i mli where L is the total orbital angular momentum.
There are 2L + 1 possible values of Ml for the same
L and this is called the angular momentum multiplicity
of L .

These quantum numbers reflect the shape and symme-
try of the density distribution through the angular func-
tion Pm

l (ϑ, ϕ) and the radial function Rnl (r). The latter
exhibits nodes (intersecting zeros along the radius vec-
tor), the former exhibits nodes at well-defined angles. The
higher the value of n, the looser the binding and the greater
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the number of nodes in Rnl for a given value of l. There
are n − l − 1 nodes in the wavefunction of an electron
labelled nl, counting the sloping one far out and the one at
the (pointlike) nucleus as one. Hence for a 2s orbital, the
number of nodes is 2 − 0 − 1 = 1; for a 3d orbital, it is
3− 2− 1 = 0, etc.

The intrinsic angular momentum s of the electron man-
ifests itself via the associated magnetic Bohr moment
μB: as orbitals l > 0 create a magnetic field, this
moment aligns in quantized positions of s, which leads
to term splitting and Pauli’s ad-hoc theory. It was over-
taken by the Dirac equation, where both s and μB rather
miraculously appear (it took a while to see why). The
spin is separately quantized in non-relativistic quantum
mechanics. The associated spin quantum number S is
defined such that S2 commutes with all dynamical vari-
ables and, similar to L2, the eigenvalue S2 is S(S+ 1)�2,
that is,

S2ψs = �
2S(S + 1)ψs . (2.53)

However, spin s can be an integer or half an odd integer.
For a single electron, s = 1/2. While s refers to spin angu-
lar momentum of a single electron, S refers to the total or
net spin angular momentum. As m is related to l, the spin
magnetic quantum number ms is related to S such that its
values vary from −S to +S, differing by unity. Hence for
a particle with S = 1/2, ms has two values, −1/2, 1/2,
describing spin down and spin up. The spin multiplicity
of an L S state is given by 2S + 1, and is labelled singlet,
doublet, triplet, quartet, quintet, sextet, septet, octet, etc.,
for 2S + 1 = 1, 2, 3, 4, 5, 6, 7, 8, etc.

We noted that non-relativistic hydrogenic energies
depend only on the principal quantum number n and are
degenerate with respect to both l and m�. For a given n
the value of l can vary from 0 to n − 1, and for each
l, m� between −l to l, the eigenfunctions are (2� +1)
degenerate in energy. The total degeneracy of the energy
level En is

n−1∑
l=0

(2l + 1) = n2. (2.54)

This degeneracy for a one-electron atom is said to be
‘accidental’, and is a consequence of the form Z/r of
the Coulomb potential. Because it depends only on radial
distance, the hydrogenic Hamiltonian is not affected by
angular factors, rendering it invariant under rotations.
Including the two-spin states that nature distinguishes
along some axis, the total number of degenerate levels for
a given n is 2n2.

Finally, we define the parity π of an atomic state. It
refers to the symmetry of the state in spatial coordinates. It
expresses the phase factor that describes the behaviour of
the wavefunction, either positive or negative, with respect
to its mirror image or flipping of the distance coordinate.
Considering the sum of the integer values l, one speaks of
‘even’ parity π is +1, of ‘odd’ parity otherwise:

π = (−1)
∑

i li =
{
+1, even
−1, odd,

(2.55)

where i is the index of (valence) electrons. Typically
odd parity is expressed as superscript ‘o’ (in roman
type since a value or label, not a variable), while
even parity is either not marked or denoted by a
superscript ‘e’. Parity change is a crucial criterion for
dipole allowed transitions between two atomic states
(Chapter 9).

2.3 Spectral lines and the Rydberg
formula

Photons are emitted or absorbed as electrons jump down
or up between two energy levels and produce spectral
lines. The energy difference between two levels is also
expressed in terms of frequencies or wavelengths of the
spectral lines. For a hydrogen atom, the wavenumber of
the spectral line is given by


En,n′ = RH

[
1

n′2 −
1

n2

]
(n′ > n), (2.56)

where RH is the Rydberg constant of Eq. 1.26; finite
atomic masses of elements often introduce very small but
spectroscopically significant corrections in wavenumbers
and lengths.

The Rydberg formula (Eq. 2.56) yields series of spec-
tral lines, each corresponding to a fixed initial n and
final n < n′ ≤ ∞, as seen in Fig. 2.1. The first five
series are

(i) 
En,n′ =RH

[
1− 1

n′2
]
, n′ = 2, 3, 4, . . . Lyman

(Ly),

(ii) 
En,n′ =RH

[
1

22
− 1

n′2
]
, n′ = 3, 4, 5, . . . Balmer

(Ba),

(iii) 
En,n′ =RH

[
1

32
− 1

n′2
]
, n′ = 4, 5, 6, . . . Paschen

(Pa),

(iv) 
En,n′ =RH

[
1

42
− 1

n′2
]
, n′ = 5, 6, 7, . . . Brackett

(Br),
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(v) 
En,n′ =RH

[
1

52
− 1

n′2
]
, n′ = 6, 7, 8, . . . Pfund

(Pf).

The computer delivers numbers for energies, typically in
Rydberg units, whereas an observer measures (Fabry–
Perot) wavenumbers E = E/(� c), in particular Eq. 1.26
for ionizing hydrogen out of its ground state, i.e.,

RH = 109, 677.576 cm−1 = 1

911.76 Å
,

or its inverse, namely wavelengths in angstroms:

λ = 911.76 Å


E/Ry
. (2.57)

The Lyman, Balmer, Paschen, and other series of
H-lines are found to lie in distinct bands of the electro-
magnetic spectrum, as shown in Fig. 2.1. In particular, the
Lyman series from 1215–912 Å lies in the far ultraviolet
(FUV), the Balmer series from 6564–3646 Å in the optical
and near ultraviolet regions, and the Paschen series from
18 751–8204 Å in the infrared (IR). The sequence of tran-
sitions in each series is denoted as α, β, γ , δ, etc., such
that the first transition (
n = 1) is α, the second (
n =
2) is β, and so on. The wavelengths in the Lyman series
are (Fig. 2.1): Ly α (1215.67 Å), Ly β (1025.72 Å), Ly γ
(972.537 Å), . . . , Ly∞ (911.76 Å). The Lyα line is the res-
onance line in hydrogen, i.e., it corresponds to a (2p–1s)
transition, that is, from the first excited level to the ground
level. Historically, the Balmer series in the visible (opti-
cal) range, readily accessible to ground-based telescopes,
has been associated explicitly with hydrogen, and labelled
as Hα (6562.8 Å), Hβ (4861.33 Å), Hγ (4340.48 Å), Hδ
(4101.73 Å), and so on, towards shorter wavelengths.

Spectral lines of H and other elements had been iden-
tified in astronomical objects long before their quantum
mechanical interpretation, such as the Fraunhofer absorp-
tion lines from the Sun, which have been observed since
1814.

Exercise 2.3 (a) Use the formulae above to show for
which series the hydrogen spectral lines overlap. (b) Cal-
culate the Ly α transitions in H-like ions of all elements
from C to Fe. [Hint: all wavelengths should lie in the X-
ray range λ < 40 Å.] (c) Give examples of transitions in
H-like ions that may lie in the extreme ultraviolet (EUV)
wavelength range 100 Å< λ < 600 Å.

2.4 Spectroscopic designation

Before we describe the details of atomic calculations to
determine the energy levels of a multi-electron atom, it

is useful to describe its angular momenta as a guide to
multi-electron structures.

A multi-electron system is described by its configu-
ration and a defined spectroscopic state. The electronic
configuration of an atomic system describes the arrange-
ment of electrons in shells and orbitals, and is expressed as
nlq . In the case of a helium atom, the ground configuration
is 1s2, where the superscript gives the occupancy number
or the number of electrons in orbital 1s. For carbon with
six electrons the configuration is 1s22s22p2, that is, two
electrons in the 1s shell, two in 2s and two in 2p orbitals
(when both s shells are full). The angular momenta of an
atom depend on its electronic configuration.

The spectroscopic state of the atom is described by the
total orbital angular momentum L , which is the vector
sum of the individual angular momenta of all electrons.
Likewise, the total spin angular momentum S is the vector
sum over spin quantum numbers of all electrons. How-
ever, the state is not unique, and depends on physical
factors, such as the number of electrons in the atom and its
nuclear charge. The spectroscopic identification is based
on the coupling of angular and spin quantum numbers
of all electrons in the atom. The basic scheme is known
as L S coupling or Russell–Saunders coupling, mentioned
earlier. The main point is that in L S coupling the orbital
motion of the electron is not strongly coupled to the spin
momentum. Therefore, the orbital momenta of all elec-
trons can be added together separately to yield a total L
for the whole atom, and the spin momenta can likewise be
added together to give total S. More precisely, both L and
S are treated as separate constants of motion. The Hamil-
tonian is then diagonal in L2 and S2 operators, as both
angular quantities commute with H :

[H, L2] = 0 = [H, S2]. (2.58)

This secures simultaneous eigenfunctions |L SML MS〉 of
the operators L2 and S2, and of the component Lz and Sz .

Vector addition of angular momenta means that the
total is a set of all possible positive numbers with a dif-
ference of unity ranging from the simple addition and
subtraction of the component momenta. Hence, vector
addition of L1 and L2 is the set of positive values from
|L2 − L1|, |L2 − L1 + 1|, . . . , |L2 + L1|. Similar addi-
tion holds for spin S. These can be added for the total
angular momentum, J = L + S. These sums, along with
the Bohr atomic model and the Pauli exclusion principle,
which states that no two electrons in an atom can be in the
same level, determine the total final number of possible
states of the atomic system.

The total symmetry of an atomic state is specified
by L , S and the parity. The L S coupling designation of
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FIGURE 2.1 The hydrogen spectrum and energy levels. The Lyman series lies in the UV, the Balmer series in the optical, the
Paschen series in the near IR, and the Brackett series in the far IR.

an atomic state is conventionally expressed as (2S+1)Lπ

and is called L S term. For a single-electron system, i.e.,
hydrogen, total L = � and total S = s = 1/2. Since the
spin multiplicity (2S + 1) = 2, the 1s ground state term
with L = 0 and even parity is designated as 2S. Similarly
the excited state of 2p electron with its odd parity [(−1)1]
is 2Po, of 3d is 2D, and so on. Thus, all L S terms of hydro-
gen have doublet spin multiplicity and are denoted 2Lπ .

Now consider two electrons with l1 = 1 and l2 = 2. Vec-
tor addition of these two gives three total L; 1, 2, 3, from
|l2 − l1| to l1 + l2. The spin quantum number s is always
1/2. So the vector addition gives two possible total spin
S; s1 − s2 = 0 and s1 + s2 = 1. Therefore, all two-
electron states, such as of helium, are either singlets or
triplets since (2S + 1) = 1 and 3, respectively. Generally,
the L S coupling designation of an atomic state is referred
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to as an L S term. To emphasize: L S coupling is appli-
cable when relativistic effects are not important enough
to couple individual orbital and spin angular momenta
together (this is discussed later).

2.5 The ground state of multi-electron
systems

As mentioned above, the Bohr atomic model and the Pauli
exclusion principle play crucial roles in structuring elec-
trons in multi-electron systems. The n = 1 or K-shell has
two levels, since ml = 0 (l = 0) and ms = ±1/2 (spin
up and down). Hence, with occupancy number 2 of the
K-shell, we can write

K-shell : n = 1, � = 0 m� = 0, ms = ±1

2
.

The ground configuration of the two electrons in helium
is 1s2 with opposite spins, that is total sum S = 0, and
the spin multiplicity is (2S + 1) = 1. Since both are
s-electrons with � = 0, therefore L = 0 and parity is even.
Hence, the helium ground state is 1S. With both L = 0 = S
for the filled K-shell 1s2 (1S), the helium ‘core’ will not
add to the total L and S of the electronic configurations of
elements with more than two electrons.

The situation gets a bit complicated with the next
L-shell for which

L-shell : n = 2, � = 0, 1, m� = 0,±1, ms = ±1

2
.

(2.59)

The electrons can fill up the orbitals, giving electronic
configurations of various elements as

[� = 0, m� = 0] → 1s22s1 (Li), 1s22s2 (Be),
[� = 1, m� = 0,±1]→ (1s22s2) +2p1 (B),

+2p2 (C), +2p3 (N),
+2p4 (O), +2p5 (F),
+2p6 (Ne).

The lithium ground state L S depends only on the single
2s-electron, i.e., in analogy with hydrogen, the Li ground
terms must be 1s22s (2S). With core 1s2 all other excited
terms of helium must be of the form 2L , where L = �, the
orbital angular momentum of the outer valence electron.
The beryllium ground state is 1s22s2 (1S) since the 2s sub-
shell is also filled (paired spins and orbital momenta), in
analogy with helium.

Moving on to the � = 1 open subshell, the ground
L S term for boron is simple: 1s22s22p1 (2Po); again, the
analogy with hydrogen may be invoked since the closed
Be-like electronic core 1s22s2 does not contribute to total
L or S. But the L S assignment by inspection breaks down

for carbon, and all other open L-shell elements, since we
now have more than one electron in the p-shell and it is no
longer obvious how the exclusion principle allows the L S
designation of possible atomic states. Furthermore, if we
consider not just the ground configuration but also excited
configurations then we have (with the exception of hydro-
gen) a myriad of couplings of spin and orbital angular
momenta of two or more electrons.

The general question then is: what are the spectro-
scopic L S terms for a given electronic configuration with
open-shell non-equivalent electrons (single electron in
outer orbit), e.g., n � n′ �′ (n �= n′), and equivalent elec-
trons n�q with the same n and � in a configuration with
occupancy number q? We need not consider the closed
shells or subshells, since their total L = 0 = S, do not affect
the L S states of open-shells.

The exclusion principle states that no two electrons
in an atom may have the same four quantum numbers
(n, �, m�i , msi ). At first sight, it appears straightforward
to apply this rule to construct a list of allowed L S terms.
However, it turns out to be rather involved in terms of
bookkeeping, related to combinations of total ML , MS ,
consistent with the four quantum numbers of all electrons
in a configuration. They are illustrated next.

2.5.1 Non-equivalent electron states

The L S coupling is simple for non-equivalent electrons
since the n are different and the exclusion principle is not
invoked; that is, terms of all possible L and S values are
allowed. The possible values are simply vectorial sums
of the individual � and s values. The easiest example is
that of two s-electrons, i.e., ns n′s of an excited configura-
tion of helium. The total L = 0, since both electrons have
� = 0. But the spins± 1

2 can now add up to S = 1 or 0, i.e.,
the multiplicity (2S+1) can be 3 or 1, respectively. There-
fore, we have two ns n′s (1S, 3S) L S terms, e.g., the first
two excited terms in helium; similarly the next two higher
terms are 1s2p (3P, 1P). We ignore the parity for the time
being, since it is easy to determine even or odd parity from
summed l (Eq. 2.55). For more than two electrons we can
couple L and S in a straightforward manner; say for three
electrons,

ns n′p (1P) n′′d→ 2P, 2D, 2F,
ns n′p (3P) n′′d→ (2,4)(P, D, F).

The couplings are the same for any three electrons spd.
The first two electrons s and p give sp (1P, 3P) terms,
which couple to the d electron as above. The singlet 1P
parent term (S = 0) yields only the doublet (S=1/2) terms,
but the triplet 3P term (S = 1) gives both doublets (S=1/2)
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TABLE 2.1 Six possible combinations for a p-electron.

ml ms 1 1/2 0 1/2 −1 1/2 1 − 1/2 0 − 1/2 −1 − 1/2
Notation 1+ 0+ −1+ 1− 0− −1−

TABLE 2.2 Twenty possible distributions for the np3-electrons.

ML 2 1 0 −1 −2
MS

3/2 1+ 0+ − 1+
1/2 1+ 0+1− 1+ 0+ 0− 1+ 0+ − 1− 1+ − 1+ − 1− 0+ − 1+ − 1−
1/2 1+ − 1+ 1− 1+ − 1+ 0− 0+ − 1+ 0−
1/2 0+ − 1+1−
−1/2 1+ 1− 0− 1+ − 1− 1− 1+ − 1− 0− 0+ 0− − 1− −1+ 0− − 1−
−1/2 0+ 1− 0− 0+ 1− − 1− −1+ 1− − 1−
−1/2 −1+ 1−0−
−3/2 1− 0− − 1−

and quartets (S=3/2) when coupled to the third d-electron.
It is clear that one obtains the same coupled L S terms
regardless of the order in which the terms are coupled,
i.e., same for pds, dsp, etc.

Similarly, for three non-equivalent p-electrons we can
write down the L S terms as follows. Dropping the n pre-
fix, assuming that n �= n′ �= n′′, we have pp′ (1S, 1P, 1D,
3S, 3P, 3D) as the parent terms, which yield

(1S) p′′ → 2P,
(1P) p′′ → 2(S, P, D),
(1D) p′′ → 2(P, D, F),
(3S) p′′ → (2,4)P,
(3P) p′′ → (2,4)(S, P, D),
(3D) p′′ → (2,4)(P, D, F).

2.5.2 Equivalent electron states

For equivalent electron configurations nlq , both the vector
addition of angular and spin momenta and the Pauli exclu-
sion principle are to be considered. The exclusion princi-
ple disallows certain L S terms, and requires an explicit
evaluation of all possible combinations of (mli ,msi ) for
the q equivalent electrons to form the allowed values of
total (ML ,MS).

Consider the equivalent electron configuration np3. As
seen above for non-equivalent electrons not subject to the
exclusion principle, the six possible L S states are: 2,4S,
2,4P, 2,4D and 2,4F. But many of these states are elim-
inated by the exclusion principle. To wit: no L = 3 or
F terms can be allowed since two of the three electrons

will have the same (mli ,msi ). But we must do the book-
keeping systematically as follows. The p subshell can
have

ml = 1, 0, −1; ms = 1/2,−1/2, (2.60)

Hence, with common values of n and l(=1) but differing
in ml and ms , there are six possible combinations of ml
and ms , or cells, as given in Table 2.1.

Now the combination of three 2p electrons can
be expressed as all possible distributions of the type
(1+0+1+), (1+1−1+), etc. (Do we detect a problem
with these combinations?) A distribution in the cell
(1+ 0+ 1−) is associated with values ML = 2 and
MS = 1

2 . Since electrons are indistinguishable, they may
be permuted without affecting the distribution; thus
(1+ 0+ 1−), (0+ 1+ 1−) are the same. These electrons
are grouped according to their respective values of ML
and MS . Since

ML =
∑

i

ml ; MS =
∑

i

ms , (2.61)

each L S term must have a cell with the highest ML = L
or MS = S. The rule is that the highest ML or MS
must have a cell with ML − 1, ML − 2, . . . , −ML and
MS − 1,MS − 2, . . . , −MS . The number of indepen-
dent distributions of three indistinguishable electrons in
six orbitals is (6× 5× 4)/3! = 20. The combined elec-
tronic cells are now grouped according to ML and MS
in Table 2.2. A distribution of (1+ 0+ 1−) has the values
ML = 2 and MS = 1/2. Table 2.2 shows all 20 possible dis-
tributions of (ml , ms ), following the exclusion principle.
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TABLE 2.3 Summary of electron distribution.

ML MS (ml ,ms) cells Term
(2S+1L)

2, 1, 0− 1,−2 ± 1
2 10 2 D

1, 0,−1 ± 1
2 6 2 P

0 ± 3
2 ,± 1

2 4 4S

With reference to Table 2.3, starting with highest value
of ML , it is apparent that the entries for ML = ±2 and
MS = ±1/2, belong to the 2D term, which also includes
entries ML = ±1, 0. We remove all these entries (ten in
total) for 2D. From the remaining entries, the highest ML
is 1 with MS = 1/2 belonging to 2P. 2P will also include
ML = 0, −1 and MS = −1/2, and hence will take six
entries out. The remaining four entries, with ML = 0 and
MS = ±(3/2,1/2), give 4S.

An important fact is that the number of allowed L S
terms from an open shell configuration nlq , with q elec-
trons or occupancy, is the same as with q electron vacan-
cies. For example, the ground configuration of oxygen,
2p4, has two vacancies in the 2p shell, and gives the same
three L S terms as 2p2. A simpler example is that of con-
figuration np or np5, both of which give a single L S
term 2 P .

Exercise 2.4 (a) Show by direct evaluation that the con-
figurations np2 and np4 give rise to the same L S terms.
(b) List all possible combinations of (m�i ,msi ) for three
equivalent electrons in a ‘d’ open subshell, i.e., nd3. Note
that the available number of combinations give two 2 D
LS terms.

While we have determined the physical L S states
using the Pauli exclusion principle, we still do not know
their energies and the order in which they exist and are
measured in the laboratory. But before we describe the
theoretical framework, the Hartree–Fock method, it is use-
ful to note an empirical rule: the lowest state of a given
configuration is the L S term with the highest spin multi-
plicity (2S+1). Further discussion is given in the section
on Hund’s rules.

2.6 Empirical rules for electronic
configurations

Multi-electron elements may be divided into two groups,
‘light’ and ‘heavy’, depending on their Z numbers. How-
ever, this division is imprecise. Two particular criteria play

for the elements, (i) nuclear charge and (ii) the number of
electrons. The former, causing Coulomb force, determines
whether relativistic effects are important or not. The lat-
ter criterion is related to electron correlation or interaction
that comes into play in establishing multiplet structure and
levels. We will consider relativistic effects later.

On the basis of the electronic structure we may some-
what arbitrarily categorize elements as ‘light’ for Z ≤ 18
and ‘heavy’ for Z > 18. This division rests partially on
a complexity in the ground configuration electronic shell
structure that occurs in argon (Z = 18). The subshell
structure of elements up to argon is filled up in a natu-
rally straightforward manner, first according to n and then
according to �. For example, the outermost open elec-
tronic configuration of chlorine (Z = 17) is 3p5 with
one vacancy in the 3p subshell (chlorine is designated as a
halogen in the periodic table in Appendix A). The 3p sub-
shell is all occupied in argon (a noble gas) with a closed
subshell 3p6. However, the next element with Z = 19,
potassium (K), begins by filling in the 4s subshell, instead
of 3d, with the outermost subshells of the ground con-
figuration as 3p64s; i.e., the 19th electron goes into the
4s subshell. Furthermore, the ground configuration of cal-
cium (Ca) with Z = 20 is 3p64s2; again the 4s, not the
3d, subshell is occupied. This is a manifestation of a more
general rule that subshells with lower (n + �) are filled in
first. For both K and Ca (n + �) = 4 for the 4s subshell,
and 5 for the 3d; hence the former fills up first. More-
over, if (n + �) is the same, then the higher � is filled up
first. For instance, in the iron group elements from Ca to
Zn (Z = 20–30), we have the 3d subshell filling in after
the 4s rather than the 4p, although both have (n + �) = 5.
But the picture becomes further complicated, since for ele-
ments heavier than nickel (Z = 28) there are deviations
from the (n + �)-first rule.

2.7 Intermediate coupling and j j
coupling

In heavier (large Z ) atoms the electron–nuclear force
becomes strong enough to cause the breakdown of the
L S coupling scheme. The velocity of an electron increases
to relativistic level, its electrostatic interaction with other
electrons weakens, and the total angular momentum of
individual electrons needs to be considered. Hence, for
high-Z atoms this leads to jj coupling where j is sum of
the individual total electron angular and spin momenta,
that is,

ji = li + si , J =
∑

i

ji , (2.62)
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where J is the total angular momentum of all electrons
in the atom with multiplicity or degeneracy 2J + 1. The
total J follows the vector sum: for two electrons, the val-
ues of J range from | j1 + j2| to | j1 − j2|. The states are
denoted as ( ji j2)J . For example, for a (pd) configuration
j1(1 ± 1/2) = 1/2, 3/2, and j2(2 ± 1/2) = 3/2, 5/2;
the states are designated as (1/2 3/2)2,1, (1/2 5/2)3,2,
(3/2 3/2)3,2,1,0, (3/2 5/2)4,3,2,1 (note that the total dis-
crete J = 0 – 4). The J -state also includes the parity
and is expressed as Jπ or, more completely, as (2S+1)LπJ .
The latter designation relates the fine-structure level to the
parent L S term. For each L S term there can be several
fine-structure levels. The total angular magnetic quantum
number Jm runs from −J to J .

Fine-structure levels can be further split into hyperfine
structure when nuclear spin I is added vectorially to J to
yield the quantum state J + I = F. Figure 2.2 shows
the schematics of energy levels beginning with a given
electronic configuration.

For cases where L S coupling is increasingly invalid
because of the importance of relativistic effects, but the
departure from pure L S coupling is not too severe and
full consideration of relativistic effects is not necessary,
an intermediate coupling scheme designated as L S J is
employed. (We discuss later the physical approximations
associated with relativistic effects and appropriate cou-
pling schemes.) In intermediate coupling notation, the
angular momenta l and s of an interacting electron are
added to the total orbital and spin angular momenta, J1
of all other electrons in the following manner,

J1 =
∑

i

l i +
∑

i

si , K = J1 + l, J = K + s,

(2.63)

where s = 1/2. The multiplicity is again 2J + 1, and the
total angular magnetic quantum number Jm runs from−J
to J .

L = I1 + I2
S = s1 + s2

{ni Ii}

J = L + S

F = J + I

LS terms LSJ levels

Configuration Term structure Fine structure Hyperfine
structure

FIGURE 2.2 Electronic configuration and energy level splittings.

An important point to note is that the physical exis-
tence of atomic energy states, as given by the number
of total J -states, must remain the same, regardless of
the coupling schemes. Therefore, the total number of J -
levels

(∑
i ji = J or L + S = J

)
is the same in

intermediate coupling or j j-coupling. A general discus-
sion of the relativistic effects and fine structure is given in
Section 2.13

2.8 Hund’s rules

The physical reason for the variations in subshell structure
of the ground configuration of an atom is the electron–
electron interaction. It determines the energies of the
ground and excited states. We need to consider both the
direct and the exchange potentials in calculating these
energies. Before we describe the atomic theory to ascer-
tain these energies, it is useful to state some empirical
rules. The most common is the Hund’s rules that governs
the spin multiplicity (2S + 1), and orbital L and total J
angular momenta, in that order.

The S-rule states that an L S term with the high-
est spin multiplicity (2S + 1) is the lowest in energy.
This rule is related to the exchange effect, whereby
electrons with like spin spatially avoid one another,
and therefore see less electron–electron repulsion (the
exchange potential, like the attractive nuclear potential,
has a negative sign in the Hamiltonian relative to the
direct electron–electron potential, which is positive). For
example, atoms and ions with open subshell np3 ground
configuration (N I, O II, P I, S II) have the ground state
4So, lower than the other terms 2Do, 2Po of the ground
configuration.

The L-rule states that for states of the same spin mul-
tiplicity the one with the larger total L lies lower, again
owing to less electron repulsion for higher orbital angu-
lar momentum electrons that are farther away from the
nucleus. Hence, in the example of np3 above, the 2Do

term lies lower than the 2Po. Another example is the
ground configuration of O III, which is C-like 2p2 with
the three L S terms 3P, 1D, 1S in that energy order. A more
complex example is Fe II, with the ground 3p63d64s and
the first excited 3p63d7 configurations. The L S terms in
energy order within each configuration are 3d64s (6D, 4D)
and 3d7 (4F, 4P). But the two configurations overlap and
the actual observed energies of these four terms lie in the
order 6D, 4F, 4D, 4P.

The J-rule refers to fine-structure levels L + S = J .
For less than half-filled subshells, the lowest J -level lies
lowest, but for more than half-filled subshells it is the
reverse, that is, the highest J -level lies lowest in energy.
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For example, both O III (C-like) and Ne III (O-like) have
the ground state 3P, but the ground configuration open
subshells are 2p2 and 2p4, respectively (recall that both
configurations have the same L S term structure). Hence,
the fine-structure energy levels are J = 0, 1, 2 for O III

(and C I), and J = 2, 1, 0 for Ne III (and O I). Again, a
more interesting application of the J -rule is the Fe ions
with ground configurations containing the 3d open shell:
Fe I (3d64s2), Fe II (3d64s) and Fe III (3d6) have more
than half of the 3d subshell occupied, and the resulting
fine-structure energy levels are in descending order of J -
values. On the other hand, Fe V (3d4), Fe VI (3d3), Fe VII

(3d2) and Fe VIII (3d) have less than half of the 3d sub-
shell unoccupied and the levels are in ascending order
of J -values. For example, the fine-structure levels of the
ground term of Fe II are 3d64s 6D9 2/,7 2,5 2,3 2,1 2, and for
Fe VII, 3d2 3F2,3,4.

Hund’s rules are useful but show increasing deviations
with higher nuclear charge. They may apply to excited
configurations of an ion, albeit with exceptions, owing to
configuration interaction and the fact that more than one
subshell is open. These empirical rules are particularly
useful in large-scale theoretical calculations of energy lev-
els of complex atomic systems where only small number
of energy levels have been experimentally observed.

Exercise 2.5 From the observed energy levels of Fe ions
with the 3d open shell, available from the NIST website
www.nist.gov/physlab/data/asd.cfm, construct a table for
the L S J levels of the ground and the first few excited con-
figurations. Plot the energy levels on a Grotrian diagram
sorted out by symmetry L S J . Show the transitions respon-
sible for some prominent IR and optical forbidden lines.
For what excited configurations is the J-rule violated?

We emphasize that while these empirical rules illus-
trate both the simplicity and the complexity of the atomic
energy level structure, a complete understanding is based
on actual computations and observations. This is partic-
ularly so for neutral elements beyond argon, where two
valence subshells are open. Appendix A lists the ground
state and configuration of all natural elements, and their
ionization energies obtained from the National Institute of
Standards and Technology (NIST), www.nist.gov.

Before we describe the basic theory that underpins
atomic structure calculations, it is helpful to consider
approximate (and partly semi-empirical) determination of
level energies of outermost electrons in the valence sub-
shell. The basic idea is to treat that electron separately
from the ‘core’ with all other inner electrons, as described
in the next section.

2.9 Rydberg formula with quantum
defect

Based on empirical work before the advent of quantum
mechanics, Rydberg obtained an expression for the energy
levels not only of H-like ions, as described earlier, but also
of atoms with one valence electron outside a closed shell,
such as the alkali elements Li, Na, K. The general Rydberg
formula is modified from that for H-like ions (Eq. 2.40),
to account for the screening effect on the valence electron
by the core electrons of the closed shell. The outer elec-
tron sees an effective charge z = Z − N + 1, where N
is the number of electrons. The effective Coulomb poten-
tial is similar to that of H, but screening modifies it. This
departure from a pure Coulomb form effectively reduces
the principal quantum numbers n by an amount called
the quantum defect μ ≥ 0, which modifies the Rydberg
formula to

E(n�) = z2

(n − μ)2 . (2.64)

Excited energy levels described by the Rydberg formula
are often labelled as ‘Rydberg levels’. This is generally
true for all atoms and ions, provided the outer electron is
in sufficiently high-n state, i.e., sufficiently far away from
all the inner electrons so as to experience only the residual
charge z. However, the amount of screening depends on
the orbital symmetry via the orbital angular momentum �.
Assuming that there are no other potentials involved, μ is
a unique positive constant for each �. We can write,

E(n�) = z2

(n − μ�)2
. (2.65)

This relation is very useful in estimating the energies of
successively higher n levels, where the quantum defect μ�
may be obtained empirically from fits to observed spectra.
The above equation may then be used to obtain energy
levels of an arbitrarily large number of levels up to the
series limit at n = ∞ for any given �. It should be noted
that the formula may not be accurate at all for low-n levels,
but is progressively more so with increasing n of the outer
electron. Also, it does not take account of relativistic fine
structure.

We can now define an effective quantum number ν for
a given bound level as

ν ≡ n − μ; En = − z2

ν2
. (2.66)

As n→∞, E→0; the bound electron reaches the series
limit or threshold where it becomes free at En=∞ = 0.
Effective quantum numbers are similar to n and become n
when the quantum defect of a higher orbital becomes zero;
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TABLE 2.4 Binding energies, effective quantum numbers and quantum defects of C I.

Configuration L S E∞ − E(L S) ν μ

2s22p2 3P 0.8277 Ry 1.0992 0.9008

2s22p3s 1Po 0.2631 Ry 1.9493 1.0507
2s22p4s 1Po 0.1141 Ry 2.9603 1.0397
2s22p5s 1Po 0.0637 Ry 3.9635 1.0365

2s22p3p 1P 0.2005 Ry 2.2331 0.7669
2s22p4p 1P 0.0939 Ry 3.2641 0.7359
2s22p5p 1P 0.0548 Ry 4.2727 0.7273

2s22p3d 1Do 0.1201 Ry 2.8855 0.1145
2s22p4d 1Do 0.0671 Ry 3.8605 0.1395
2s22p5d 1Do 0.0426 Ry 4.8450 0.1550

ν increases approximately by unity. However, it is often a
decimal number, especially for s, p, and d orbitals where
μ is relatively large. A Rydberg series of states is usually
represented by νl. It may be proved that the nature of the
Rydberg series arises from the property of an attractive
Coulomb potential to support (bind) an infinite number of
atomic states.

We shall employ the simple quantum defect formula in
a variety of ways to analyze the spectrum of bound states,
and states known as quasi-bound or resonant states. In
Chapter 3 we will describe quantum defect theory that
will enable an approximate analysis of both bound and
continuum states of atomic systems. For the present we
illustrate various properties of the quantum defect, and
demonstrate the utility of the Rybderg formula for a
non-hydrogenic ion.

Table 2.4 gives the observed energy levels, effective
quantum numbers and quantum defects for neutral car-
bon. The values given correspond to the first few members
of Rydberg series n� for a given � and n = 2 – 5. For
consistency, we consider the same L S term for each series.

Several properties of the quantum defect are evident
from Table 2.4: (i) μ�(n) is a slowly varying quantity
nearly independent of n, (ii) it approaches a constant value
with increasing n, μ�(n)→ constant as n →∞, and (iii)
μs > μp > μd > μf > . . . For light elements, such
as carbon, μ� ≈ 0 for � > 3 (f-electron). This is a conse-
quence of the fact that with increasing angular momentum
the valence (Rydberg) electron sees a constant Coulomb
potential; there is practically no departure from it from an
f-electron onwards. For heavy elements, where f-orbitals
may be occupied, the same trend continues but for still
higher � values.

Since the Rydberg formula was initially derived from
fits to alkali spectra, it describes the energy levels of

the valence electron quite accurately. Consider a valence
electron ns in sodium (Na):

ns : 3s 4s 5s 6s 7s
ν : 1.626 2.643 3.647 4.649 5.650
μ : 1.374 1.357 1.353 1.351 1.350

Whereas the change in effective quantum number
ν(ns) is nearly unity, the quantum defect μns in Na
approaches the limiting value of 1.35 for high n. Addi-
tional properties of the quantum defect may be obtained
readily by an investigation of the energy levels, as in the
following examples [5].

Exercise 2.6 (a) Show that the series limits in Na for
� > 0 are: μp ≈ 0.86, μd ≈ 0.01, μ f ≈ 0.00.
The progression of μl demonstrates a decrease in elec-
tron screening with �. (b) The νn and μn for alkalis vary
systematically with Z along the periodic table. For the
simple alkali-like atomic structure, νn changes little, as
also reflected in the ionization potential EI P = −1/ν2.
On the other hand, the quantum defect μns increases
by roughly unity for each additional inner s-shell, which
results in enhanced screening of s-electrons (similar con-
sideration applies to other �-series). Using experimental
values of ionization energies of the ns-electron in Li, Na,
K, Rb and Cs, show that the νn ≈ 1.6 − 1.9, and μns

increases by ≈ 1 for each successive element from Li
onwards. (c) The μl decreases with z along an isoelec-
tronic sequence, as the perturbing effect of the core on the
outer electron decreases and the pure Coulomb potential
dominates. The variation of μ� vs. z may be seen by con-
sidering the Na isoelectronic sequence, Na I, Mg II, Al III,
Si IV, P V, Si VI, etc. Show that the μ3s decreases from
∼1.4 for neutral Na to ∼0.6 for S VI and so on (compute
precise values using experimental ionization energies).
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To see how useful the simple Rydberg formula with
non-vanishing quantum defect can be, let us apply
some of the points described above in the following
example. Suppose a C IV line is observed at 64555.6
cm−1. What spectral parameters can be determined
quantitatively? The ionization energy EIP of C IV is
64.476 eV = 64.476 eV / (13.6 eV/Ry) = 4.74 Ry. C V is
a Li-like ion of carbon with three electrons; therefore,
the ion charge seen by an electron in a Rydberg level is
z= Z − N + 1= 4. The effective quantum number of the
ground state 1s22s (2S) is

EIP(1s22s)/Ry = z2

ν2
, (2.67)

ν = z√
EIP/Ry

= 4√
4.74

= 1.837, (2.68)

hence, μs = n − ν = 2− 1.837 = 0.163 (2.69)

is the quantum defect of a 1s2ns Rydberg series of states
in C IV. (In general, the quantum defect derived from the
ground state energy is not good enough since the valence
electron penetrates the core too deeply.) Assuming the
observed line to be from the first spectral transition above
the ground state, 1s22s← 1s22p, with transition energy

E(2s− 2p) = 64 555.6 cm−1/

(
109 737.3 cm−1 Ry−1 =

0.5882 Ry and wavelength λ= 1/(64555.6 cm−1)=
1549 Å, the ionization energy EIP(1s22p) of the first
excited state 1s22p is 4.74 Ry−0.5882 Ry = 4.15 Ry.
Since

ν2p = 4√
4.15

= 1.964, (2.70)

the quantum defect of the 1s2np series is then

μp = 2− 1.964 = 0.036. (2.71)

Now let us see how accurately we can determine the
transition wavelengths from the ground state to the excited
levels of the 1s2np series. Taking μp to be constant for all
levels, we have

ν(1s23p) = 3− 0.036 = 2.964, (2.72)

E(1s23p)/Ry = 16

(2.964)2
= 1.82, (2.73)


E(2s− 3p)/Ry = 4.74− 1.82 = 2.92, (2.74)

λ(1s22s–1s23p) = 912Å

2.92
= 312.3 Å. (2.75)

The actual observed value for this second excited transi-
tion in C IV is 312.43 Å. Thus the quantum defect analysis
yields an accurate estimate. However, let us remind our-
selves that C IV is a Li-like ion with H-like configurations,
with a closed He-like core and an outer valence electron,

where the Rydberg formula is expected to be accurate.
This is generally not so for low-lying levels of more
complex atoms. We can similarly estimate the remaining
transitions in the ns−np Rydberg series, up to the series
limit at 912 Å/4.74 = 192.4 Å. C IV lines are prominent
UV features in the spectra of AGN, quasars, Lyα clouds
and other sources.

Rydberg series of levels play a crucial role in atomic
processes. They also determine the positions for autoion-
izations and resonances, as will be discussed later. How-
ever, we define the states of an electron in or with an atom
to be bound when the ground or excited discrete energies
are negative, that is, lie below the first ionization threshold
or energy of the ground state of the ionized core.

Exercise 2.7 Suppose the following absorption lines are
observed in the spectrum of a neutral gas, with wavenum-
bers 1.301, 2.471, 2.900, 3.107 in units of 104cm−1. Fit
the wavenumbers to the Rydberg formula to determine (a)
the quantum defect, (b) the Rydberg series, (c) the ioniza-
tion energy with respect to the ground state and (d) the
atomic species.

As mentioned before, semi-empirical studies of atomic
structure described above can be useful and illustrative.
But now we must turn to proper theoretical methods that
deal with the full quantum mechanical complexity of
multi-electron atoms.

2.10 Multi-electron atomic systems

Treatment of a multi-electron atomic system is much more
complex than of hydrogen. The one-electron Hamilto-
nian has only one potential term, the electron–nucleus
Coulomb attraction potential V (r). Extension to a many-
electron system requires one (i) to sum over all one-
electron operators, that is the kinetic energy and the
attractive electron–nucleus potential, and (ii) to sum over
two-electron Coulomb repulsion operators. Helium, for
example, or helium-like ions, lead us to the two-electron
Hamiltonian

H = p2
1

2m
+ p2

2
2m

− e2 Z

r1
− e2 Z

r2
+ e2

|r1 − r2| , (2.76)

with the two electrons in positions r1 and r̂2.
The multi-electron Hamiltonian, reduced to number

equations with atomic units (Ry), and H = H0 + H1,

H0 =
N∑

i=1

[
−∇2

i −
2Z

ri

]
, (2.77)
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H1 =
∑
j<i

2

ri j
, (2.78)

which accounts for the two-electron Coulomb interaction.
Beyond the single electron case, a solution Ψ from the
Schrödinger equation no longer exists. One has to start
with a trial function Ψ t in some parametric form. The
best-known example in single-particle expansions is the
Slater-type orbital, PSTO

nl (r). A trial function would be of
no use without conditions for the parameters to satisfy.
That prescription is known as a variational principle. The
standard Rayleigh–Ritz variational principle places an
upper bound on the eigenvalue obtained from a trial func-
tion in the Schrödinger equation. Particularizing it to the
many-electron Hamiltonian discussed above, as embodied
in the Hartree–Fock scheme discussed in the next section,
yields the Hartree–Fock variational principle:

δ 〈Ψ |H |Ψ 〉 = 0 (2.79)

with solution E = Emin,

because the spectrum of the non-relativistic Hamiltonian
is bounded from below.3

2.11 The Hartree–Fock method

There is no analytical solution to the non-relativistic
Hamiltonian once it deals with more than one elec-
tron, and the variational equation (Eq. 2.79) replacing
the Schrödinger equation. The most widely employed
basic approach, which underlies most treatments, is the
Hartree–Fock method. Starting with a complete set of
integro-differential equations, its trial functions iterate
very closely towards the ‘true’ solution, albeit within
the constraints given by the finite number of configura-
tions specified for the functions. The numerical approach
follows the prescription first laid down by Hartree for con-
structing a self-consistent iterative procedure for the inter-
electron potentials and the electronic wavefunctions [6].
However, the Hartree method did not account for elec-
tron exchange. That was accomplished by Fock [7], who
extended the treatment by introducing antisymmetrization
of wavefunctions, which includes exchange in an ab-initio

3 For states Ψ L S one will safely obtain the one with lowest energy – and

higher ones must be orthogonal. A well-known application is the

Hartree–Fock method with its specific type of trial function, to be dealt

with in some detail in Section 2.11. In between, we will unravel the

coupling to L S and to other schemes from spectroscopy. Technically,

two particles can be dealt with on the elementary level of

Clebsch–Gordan coefficients. Equivalent electrons have, in principle,

been addressed in the classic book by Condon and Shortley [3] as

reflected in the following sections.

manner. It is an iterative scheme [6] referred to as the
self-consistent Hartree–Fock method.

We begin with the exact Hamiltonian as a Rydberg–
Bohr scaled number equation (Eqs 2.77 and 2.78):

H =
N∑

i=1

[
−∇2

i −
2Z

ri

]
+

∑
j �=i

2

ri j
. (2.80)

For future use, we also define the short-hand notation for
the one-electron operator,

fi ≡ −∇2
i −

2Z

ri
, (2.81)

representing the kinetic energy p2/2m and the nuclear
potential, and the two-electron operator,

gi j ≡ 2

ri j
. (2.82)

Then the Rydberg–Bohr scaled Hamiltonian reads

H =
∑

i

fi +
∑
j �=i

gi j ≡ F + G, (2.83)

where F and G are interaction operators for all electrons
in the atom. It is the electron–electron interaction that,
together with the electron–nuclear interaction, makes the
non-hydrogenic atom a many-body problem not amenable
to exact solutions. The Coulomb potential 2Z/r in the
Schrödinger equation for hydrogen needs to be replaced
by a potential V (r) that yields the individual electron
wavefunctions ψ(r, ϑ, ϕ,ms). The wavefunction ψ is
written as a spin-orbital, the product of a function of spa-
tial coordinates φ(r) and spin function ζms with binary
components ±1/2.

ψn,l,ml ,ms (r, ϑ, ϕ,ms) = ϕ(r)ζms (2.84)

We can also denote the spin-orbital by replacing the
spatial coordinates with quantum numbers (Eq. 2.52) as
ψn,l,ml ,ms = φ(nlm�)ζ(ms). Since each electron moves
in a potential created by all other electrons, the crucial
problem is to construct the potential from the set of all
ψi , where i refers to all atomic electrons. In other words,
the potential V (ri ) for the i th electron is obtained self-
consistently. That is the aim of the self-consistent iterative
scheme employed to solve the Hartree–Fock equations.
Moreover, the individual electronic states ψi are used to
construct the total atomic wavefunction for a given state
of the multi-electron atom. Assuming the atom to be an
N -electron system, the total atomic wavefunction is a
product of the one-electron spin-orbitals



2.11 The Hartree–Fock method 31

ψn,l,ml ,ms (r, θ, φ,ms) =
N∏

i=1

ψni ,�i ,m�i ,msi

= (ψn1,l1,ml1 ,ms1
)(ψn2,l2,ml2 ,ms2

) . . . (ψnN ,�N ,m�N ,msN
).

(2.85)

But a simple product form of the total wavefunction does
not incorporate electron exchange, which requires inter-
change of electronic coordinates to satisfy the general
antisymmetry postulate. The wavefunction must change
sign upon interchange of the coordinates of any two
electrons, i.e., the interchange of any of their spatial or
spin coordinates. The Hartree–Fock representation of the
multi-electron system incorporates the antisymmetriza-
tion in the wavefuction representation. For illustration,
consider the helium atom. The mathematical form of
a two-particle antisymmetric wavefunction can be writ-
ten as

�(1, 2) = 1√
2

[
ψ1(1)ψ2(2)− ψ1(2)ψ2(1)

]
. (2.86)

This is, in fact, the usual expansion of the determinant of
a 2 × 2 matrix with elements that correspond to the two
electrons and their coordinates, i.e.,

� = 1√
2

∣∣∣∣∣ ψ1(1) ψ1(2)
ψ2(1) ψ2(2)

∣∣∣∣∣ . (2.87)

The antisymmetry is now clear. Interchange of coor-
dinates 1 and 2 changes the sign of the determinant
(Eq. 2.87). But if both coordinates of the two electrons
are the same, then the state cannot exist, since the anti-
symmetric wavefunction (Eq. 2.87) would have two iden-
tical rows or columns; ergo, the determinant would be
zero.

For helium-like two-electron systems, the average
potential energy of electron 1 in the field of electron 2 is

U1(r1) =
∫
ψ∗(r2)

2

r12
ψ(r2) dr2. (2.88)

Similarly, we have the potential energy of electron 2 in
the field of electron 1. We may now define an effective
one-electron Hamiltonian operator as

Hi =
p2

i
2m

− e2 Z

ri
+Ui (ri ). (2.89)

Analogous to the Schrödinger equation for each electron,
we have

H1(r1)ψ(r1) = ε1ψ(r1)

H2(r2)ψ(r2) = ε2ψ(r2).
(2.90)

These are the Hartree–Fock equations for the two elec-
trons. They are coupled through r -dependence (as well as
spin dependence related to the exchange effect, but not
explicitly expressed above). H1(r1) depends on ψ(r2),
implying that ψ(r2) must be known before solving
H1(r1). Hence a trial ψ(r2) is adopted and used to obtain
ψ(r1), according to the variational criterion (Eq. 2.79).
Since the forms of ψ(r1) and ψ(r2) are identical, the
new ψ(r2) is used again to obtain ψ(r1). This contin-
ues until the desired accuracy is attained. The scheme is
often referred to as the Hartree–Fock self-consistent field
method (HF-SCF).

In analogy with helium, we can write the N -electron
wavefunction in the determinantal representation as

� = 1√
N

∣∣∣∣∣∣∣∣∣

ψ1(1) ψ1(2) . . . ψ1(N )
ψ2(1) ψ2(2) . . . ψ2(N )
. . . . . . . . . . . .

ψN (1) ψN (2) . . . ψN (N )

∣∣∣∣∣∣∣∣∣
. (2.91)

Equation (2.91) is called the Slater determinant. Like
the two-electron determinant (Eq. 2.87), if all coordi-
nates of any two electrons are the same, then two rows
or two columns would be identical and the determinant
vanishes. The Pauli exclusion principle immediately fol-
lows: no two electrons can have all spatial and spin
quantum numbers the same. Each subscript in ψa rep-
resents a set of four quantum numbers (n, l,ml ,ms ),
and each variable i represents spatial coordinates r and
spin-coordinates in position i of electron a. Since a
spin-orbital has a parity (−1)l , the Slater determinant
has the well-defined parity (−1)

∑
i li and can there-

fore be even or odd under the inversion transformation
r i → −r i depending on whether the sum

∑
i li is even

or odd.
Calculations of atomic structure follow the pre-

scription first laid down by Hartree for constructing a
self-consistent iterative procedure for the inter-electron
potentials and the electronic wavefunctions [6]. How-
ever, the Hartree method did not account for electron
exchange effect. The self-consistent Hartree–Fock method
also relies on an iterative scheme [6–8]. Given an elec-
tronic configuration characterized by a set of (nl), the
atomic wavefunction is composed of individual spin-
orbital wavefunctions, that is, ψnl = φ(n�m�)ζ(ms).
The ψa( j) are subject to the orthonormality
condition

〈ψa( j)ψb( j)〉 = δab. (2.92)
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We note that the Hartree–Fock variational principle
implies for the chosen wavefunction that the ground state
energy

E0 ≤ E[�] = 〈�|H |�〉. (2.93)

In the Hartree–Fock method the first trial wavefunction
is a Slater determinant. Substitution of the wavefunc-
tion determinant introduces one-operator (involving one-
electron function) and two-operator integrals, as in the
helium case. The expectation value of the one-electron or
one-body term is readily evaluated as

〈�|H0|�〉 =
∑

k

〈ψk(i)|H0|ψk(i)〉 =
∑

k

Ik . (2.94)

H1 is the sum of two-electron or two-body operators, for
which we can write

〈�|H1|�〉 =
∑

k,l �=k

[〈
ψk(i)ψl ( j)

∣∣∣∣ 2

ri j

∣∣∣∣ψk(i)ψl ( j)

〉

−
〈
ψk(i)ψl ( j)

∣∣∣∣ 1

ri j

∣∣∣∣ψl (i)ψk( j)

〉]
,

(2.95)

summing over all N (N − 1)/2 pairs of orbitals. We can
also write it as

〈�|H1|�〉 =1

2

∑
k

∑
l

[〈
ψk(i)ψl ( j)

∣∣∣∣ 2

ri j

∣∣∣∣ψk(i)ψl ( j)

〉

−
〈
ψk(i)ψl ( j)

∣∣∣∣ 1

ri j

∣∣∣∣ψl (i)ψk( j)

〉]
.

(2.96)

The first term is called the direct term,

Jkl =
〈
ψk(i)ψl ( j)

∣∣∣∣ 1

ri j

∣∣∣∣ψk(i)ψl ( j)

〉
, (2.97)

which is the average value of the interaction 1/ri j rela-
tive toψk(i)ψl ( j). The second term is called the exchange
term,

Kkl =
〈
ψk(i)ψl ( j)

∣∣∣∣ 1

ri j

∣∣∣∣ψl (i)ψk( j)

〉
, (2.98)

which is the matrix element of the interaction 1/ri j
between two states ψk(i)ψl ( j) and ψl (i)ψk( j), obtained
by interchange of the electrons. Hence, the total energy is
given by

E[�] =
∑

i

Ii + 1

2

∑
i

∑
j

[Ji j − Ki j ]. (2.99)

E should be stationary with respect to the variations
of the spin-orbitals; ψi subject to N 2 orthonor-
mality conditions. Hence the variational principle
introduces N 2 Lagrange multipliers (or variational param-
eters) λkl , such that (incorporating the orthonormal
conditions)

δE −
∑

k

∑
l

λkl δ〈ψk |ψl 〉 = 0. (2.100)

From the above equation it is seen that λkl = λ∗kl and
hence N 2 Lagrange multipliers may be considered as the
elements of a Hermitian matrix. Any Hermitian matrix can
be diagonalized by a unitary transformation. Hence, we
can assume that the matrix of Lagrange multipler λkl is
diagonal with elements Ekδkl , that is,

δE −
∑

k

Ekδ〈ψk |ψk〉 = 0. (2.101)

Varying the Schrödinger equation with respect to spin-
orbitals ψi and using the above relations, we can find,
for the N spin-orbitals, the set of integro-differential
equations

[
−∇2

i −
2Z

ri

]
ψk(i)

+
⎡
⎣∑

l

∫
ψ∗l ( j)

2

ri j
ψl ( j)d j

⎤
⎦ψk(i) (2.102)

−
∑

l

[∫
ψ∗l ( j)

2

ri j
ψk( j)d j

]
ψl (i) = Ekψk(i),

where the summation over k extends over the N occupied
spin-orbitals, and the integral

∫
. . . d j implies an integra-

tion over the spatial coordinates r and a summation over
the spin-coordinate of electron j . These equations are the
Hartree–Fock equations of a multi-electron system. We
can separate the spin functions from the spin-orbital by
writing ψk(i) = uk(r i )χ1/2,mk

l
and using the orthonor-

mality condition 〈χ1/2,mk
l
χ

1/2,m j
l
〉 = δ

mk
L ,m

j
L

. Then the

Hartree–Fock equations are in a form that involves only
the spatial part,

[
−∇2

i −
2Z

ri

]
uk(r i )

+
⎡
⎣∑

l

∫
u∗l (r j )

2

ri j
ul (r j )dr j

⎤
⎦ uk(r i ) (2.103)

−
∑

l

δmk
L ,m

l
L

[∫
u∗l (r j )

2

ri j
uk(r j )dr j

]
ul (r i )

= Ekuk(r i ).
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The integrals are commonly expressed as direct and
exchange operators. The direct operator V d

l is

V d
l (r i ) =

∫
u∗l (r j )

1

ri j
ul (r j )dr j , (2.104)

which is the electrostatic repulsion potential due to elec-
tron j when averaged over the orbital ul . The non-local
exchange operator is defined as

V ex
l (r i )ψ(i) = δmk

L ,m
l
L

[∫
u∗l (r j )

1

ri j
uk(r j )d r j

]
× ul (r i )χ1/2,ml

L

= δmk
L ,m

l
L

V ex
l (r i )χ1/2,ml

L
; (2.105)

V ex
l (r i ) acts on the spatial coordinates only.

The Hartree-Fock equation (Eq. 2.104) for a given
spin-orbital for electron i may be written in terms of the
one- and two-electron operators fi and gi j defined in
Eqs 2.81 and 2.82.

fiψi (1)+
⎡
⎣∑

j �=i

∫
ψ∗j (2) g12 ψ j (2) dV

⎤
⎦ψi (1)

−
∑
j �=i

[∫
ψ∗j (2) g12 ψi (2) dV

]
ψ j (1) = εiψi (1).

(2.106)

Several physical aspects of these equations are impor-
tant to note. First, the two-electron integration variable
dV refers to all space and spin coordinates written sim-
ply as (1) and (2). Second, the summation for each
electron i necessarily involves interaction with all other
electrons (except itself of course). Third, whereas the sec-
ond term on the left is simply the repulsive Coulomb
interaction between electron i and j , the third term on
the left is the so-called exchange term, which has no
classical analogue. But the exchange effect is quite phys-
ical and related to the spin of the electron: two elec-
trons with the same spin quantum number ζ(ms) may
not occupy the same spatial position r . The two inte-
grals on the left are the direct integral J (Eq. 2.97) and
the exchange integral K (Eq. 2.98), which may also be
expressed as

J j (1)ψi (1) =
[∫

ψ∗j (2) g12 ψ j (2) dV

]
ψi (1) (2.107)

and K j (1)ψ j (1) =
[∫

ψ∗j (2) g12 ψi (2) dV

]
ψ j (1).

(2.108)

Note the interchange of i and j in the K -integral with
respect to the J -integral. In the next chapter, we shall
make use of these integrals to express the matrix elements

for energies of atomic states and radiative transitions
among them.

We shall now need to evaluate matrix elements with
interaction operators and the one-electron orbitals. Using
a Legendre expansion in Eq. 2.78,

1/ri j =
∞∑

Pk(r i · r j ) rk
</r

k+1
> (2.109)

r̂ i · r̂ j = cos ϑ,

where r< and r> refer to the lesser or greater of ri , r j .
one could then exploit the addition theorem for spherical
harmonics defined in Section 2.1.1:

1

r12
=

∞∑
l=0

rl
<

rl+1
>

⎡
⎣ 4π

2l − 1

l∑
m=−l

Y∗lm(ϑ1, ϕ1)

Ylm(ϑ2, ϕ2)

⎤
⎦ (2.110)

in H matrix elements. The radial part of the matrix
elements is evaluated in terms of the so-called Slater
integrals (see Eq. 2.26),

Rk(abcd) =
∫ ∞

0
dr

∫ ∞
0

ds Pa(r)Pb(s)
rk
<

rk+1
>

Pc(r)Pd (s).

(2.111)

The four-orbital Slater integrals Rk display a high degree
of symmetry; for a start one may swap (a, c) and (b, d).
The evaluation of interaction matrix elements is discussed
in more detail in Chapter 4.

2.11.1 Configuration mixing

The topic of this section is crucial to practical atomic
structure calculations. The N -electron wavefunction for
different states of the atom within a given configuration
(nl)q may be represented by a linear combination of
Slater determinants (Eq. 2.91). But in general all states
of the same angular and spin symmetry interact with
one another. They are eigenvectors of the same Hamil-
tonian, specified by the total angular and spin quantum
numbers and parity. Therefore, an accurate representa-
tion of the wavefunction of a given state must gen-
erally consider CI in atomic structure calculations. A
single configuration often does not represent the atomic
state accurately, as other configurations can give rise to
the same L S state (assuming LS coupling to be valid,
for simplicity). For example, the ground state of S IV

is [1s22s22p6]3s23p (2Po). However, the 2Po state can
also be formed from 3p3 (4So, 2Do, 2Po), 3s24p (2Po)

3s3p3d (. . . ,2Po) and so on. Let us say that these four
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configurations contribute with different amplitudes to
form the four state vectors 2Po of a 4 × 4 Hamiltonian
matrix. Hence, to obtain the optimized energy and wave-
function for each 2Po state, all four configurations should
be included;

�(2Po) =
4∑

i=1

aiψ[Ci (
2Po)]

=
[
a1ψ(3s23p)+ a2ψ(3p3)

+a3ψ(3s24p)+ a3ψ(3s3p4p)
]
, (2.112)

where the mixing coefficients ai are amplitudes to differ-
ent configurations Ci for each 2Po state.

It is often useful to consider isoelectronic sequences as
a whole between the neutral atom and ions with the same
number of electrons but different Z . In a geminal paper
of 1959, D. Layzer [9] demonstrated that along with the
configuration that usually labels a spectroscopic term, for
example the ground term [1s2]2s2 1S in the Be-sequence,
one must allow for a contribution from the two electrons
of [closed shell]2p2, which is easily understood, as it
accounts at a low level for mutual ‘polarization’. Layzer’s
theory puts configuration interaction (or CI, although it is
Coulomb interaction all the same) on an analytic footing
based on scaling laws. Along with [ ]2s2 all other orbital
combinations within a principal shell denoted by n (and
the same parity) make up a complete wavefunction; such
a set, comprising two elements in this example of Be-like
ions, is called a complex of configurations associated with
a given n-value.

While the concept of a configuration C serves as a
suitable label in designating spectroscopic terms of ions
of astrophysical interest up to and somewhat beyond the
iron group, a closer look at an isoelectronic sequence
reveals a more subtle picture. Layzer [9] unravelled the
erratic trends in L S-term separation along sequences. The
radial coordinate scales as 1/Z ; it follows straight from
the Schrödinger equation (Eq. 2.27) on dividing by Z2

that,[
d2

dρ2
+ 2

ρ
− l(l + 1)

ρ2

]
= 1

n2
, (2.113)

as ρ= Z · r no longer depends upon Z . This
Z -invariant length appeared earlier in the rigorous formu-
lation (Eq. 2.44) for the hydrogenic radial solution.

As Z goes up, the radial functions of a many-electron
system increasingly resemble hydogenlike orbitals, whose
energy eigenvalues are degenerate in their orbital quan-
tum number l. As a function of Z the non-relativistic

Hamiltonian yields eigenvalues4

H ′
�SL = W2 Z2 + W1 Z + W0 +O(1/Z) (2.114)

W2 =
N∑

i=1

− 1

n2
i

Ry

W1 =
〈
�

∣∣∣C〉 〈
C SL

∣∣∣∣∣∣
∑
j<i

e2

ri j

∣∣∣∣∣∣C ′SL

〉 〈
C ′

∣∣∣�〉 (2.115)

for a given value SL (� refers to a set of ni ), say the
ground state C1

3P = 1s22s22p2(3P) of the carbon iso-
electronic sequence with its N = 6 electrons (and W2 =
−3 Ry). What is less obvious from Eq. 2.80 is the structure
of W1 required for a non-relativistic answer (Eq. 2.114)
that exhibits the correct quadratic and linear dependence
in Z : to be an eigenvalue �SL of the 2/ri j -matrix com-
prising all configurations C, C ′ associated with the same
set of principal quantum numbers n; this adds C3= 1s22p4

in the carbon-like case (the configuration C2 = 1s22s2p3

in between is of opposite parity). If the Slater integrals
(Eq. 2.111) for the matrix elements C SL − C ′SL are to
be evaluated with hydrogenic (Z = 1) wavefunctions,
then diagonalizing this matrix, which ensures stationary
solutions H ′, is our first application of the Hartree–Fock
principle.

Table 2.5 summarizes results for the ground configu-
ration. Ratios like 0.105 : 0.994 or even 0.200 : 0.980 from
the components of eigenvectors — as a measure of admix-
ture – do not look dramatic until one compares the conse-
quences in applications such as dipole oscillator strengths
(see Chapter 4) or collision strengths (Chapter 5).

If the concept of a single configuration has been sup-
planted by the complex of configurations quasi-degenerate
in the high-Z limit, it still plays a role of its own near the
neutral end of sequences, notably for ‘heavy’ elements,
whose subshells may not be built up in hydrogenic order,

4 The full explanation is as follows: single orbital functions approach

(scaled) hydrogenic form and thus l-degeneracy in energy, and the

associated configurations mix strongly, with coefficients at the high Z

limit equal to the result with Z -scaled hydrogenic radial functions.

Omitting the other members of a complex leads to poor results near the

neutral end of a sequence for such quantities as term energies, radiative

transition probabilities or electron excitation rates, and the answer may

be outright wrong towards high z limits, notably when plotting an

oscillator strength f (see next chapter) vs. 1/Z . Layzer’s scaling laws

are readily read off the hydrogenic equation of motion in its Z -scaled

form on absorbing Z into r . The length r scales as 1/Z , since ρ = Zr

is invariant, so energies due to the potential Z/r scale as Z2, as

confirmed by the Rydberg formula. And energies of a term L S within a

complex follow a linear plot along the Z axis, as they arise from 1/ri j

and length scales as Z . We shall come across all these applications

throughout the book, especially when discussing radiative transition

quantities and their thresholds and high-Z limits.
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TABLE 2.5 [Layzer-coefficients W1 for the ground complex of the C-sequence] Coefficients W1/Ry as in Eq. 2.115 (n.b. 1.23:
e2 = 2 a0 Ry), and eigenvectors

〈
�SL

∣∣C’SL
〉
of the ground complex in the carbon isoelectronic sequence computed with hydrogenic

wavefunctions (‘i ’ refers to LS term indices also including configuration other than C1 and C3).

C1 = 1s22s22p2 C3 = 1s22p4

3P 1D 1S 3P 1D 1S

No CI 6.5239 6.5661 6.6294 7.0724 7.1146 7.1779
Full W1 6.5177 6.5599 6.6054 7.0786 7.1208 7.2019

i 1 2 3 10 11 12
〈i |C1〉 0.9945 0.9945 0.9797 0.1050 0.1050 0.2005
〈i |C3〉 −0.1050 −0.1050 −0.2005 0.9945 0.9945 0.9797

1s-2s-2p-3s-3p-3d, and so on. Up to argon (Z = 18), the
subshells of elements are filled in a straightforward man-
ner: first according to n and then according to l, and then
as explained in Section 2.6.

Within the context of Hartree–Fock formulation, the
consideration of more than one configuration or CI is
known as the multi configuration Hartree–Fock (MCHF)
approximation. The accuracy of energies and wavefunc-
tions naturally increases with inclusion of more con-
figurations, as the wavefunction expansion converges.
However, this can lead to very large numerical calcula-
tions. Although a limited number of configurations can
provide sufficiently accurate results for practical appli-
cations, very extensive CI calculations are necessary for
high precision. Powerful methods and computer codes
have been developed for computational treatment for
fully self-consistent MCHF of CI calculations, including
relativistic effects in varying approximations (discussed
later), e.g., CIV3, SUPERSTRUCTURE [10], MCDF [8],
GRASP [11].

2.12 Central-field approximation

The simplest treatment for complex atoms is in analogy
with hydrogen. The many-electron Hamiltonian would
be much easier to handle without the repulsive electron–
electron Coulomb term, which is too large to be treated
as a perturbation. H1 in Eq. 2.78 consists of non-central
forces between electrons due to non-radial motions. How-
ever, the inter-electron repulsion contains a large spheri-
cally symmetric component. This entails the construction
of an effective potential that simulates a central force
under the assumption of spherical symmetry, as included
in H0 in Eq. 2.77.

We assume that each electron is acted on by the aver-
aged charge distribution of all the other electrons and

construct a potential energy function V (ri ) with a one-
electron operator, and is a good approximation to the
actual potential of the i th electron in the field of the
nucleus and the other N − 1 electrons. When summed
over all electrons in the atom this charge distribution is
spherically symmetric.

The effective potential experienced by each electron
due to electron–nuclear attraction and electron–electron
repulsion, in H0 and H1 respectively, consists of a radial
and a non-radial part. The central-field approximation
involves neglecting the non-radial part, while retain-
ing the radial part assumed to be dominant. Unlike the
Hartree–Fock method, where we explicitly account for the
electron–electron interaction, we now seek an effective
potential U (r), which combines the radial electron–
nuclear term Ze2/ri with an averaged radial compo-
nent of the electron–electron term. The approximate
N -electron Hamiltonian then becomes

H = −
N∑

i=1

�
2

2m
∇2

i +U (r), (2.116)

where

U (r) = −
N∑

i=1

e2 Z

ri
+

〈 N∑
i �= j

e2

ri j

〉
(2.117)

is designated as the central-field potential, and does not
have any explicit dependence on the two-electron opera-
tor. While this may appear to be a drastic approximation
at first sight, it should be noticed that U (r) contains
the electron–nuclear potential term Z/r , which increases
in magnitude with Z . Therefore, for a given number of
electrons N the central-field approximation improves in
accuracy with increasing charge z ≡ (Z − N + 1) of an
ion, or along an isoelectronic sequence. The wavefunction
of each electron may now be computed using the radial
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equation Eq. 2.27, provided U (r) is known. First, we note
that the boundary conditions on U (r) are

U (r)/(2Ry) =

⎧⎪⎨
⎪⎩
− Z

r
if r→0

− z

r
if r→∞

(2.118)

in atomic units (Hartrees or 2Ry).

2.12.1 Thomas–Fermi–Dirac approximation

Consistent with the limits in Eq. 2.118 there are sev-
eral ways to choose the central potential U (r). A par-
ticularly useful procedure is the Thomas–Fermi–Dirac–
Amaldi (TFDA) model [12], where the charge distribution
is assumed to be spherically symmetric. Its precursor,
the Thomas–Fermi model, treated the atomic electrons as
a degenerate Fermion gas obeying the relation between
electron density and the maximum momentum, the Fermi
momentum pF. Electrons are said to occupy cells in phase
space of volume h3 with two electrons in each cell, one
with spin up and the other with spin down. These cells
are all occupied up to a maximum Fermi momentum pF.5

The spatial density of electrons is then

ρ = (4/3)πp3
F

h3/2
. (2.119)

An improvement over the Thomas–Fermi model is to
take account of the exchange effect in a simplified manner.
With electron–electron exchange effect, any two electrons
with the same spin spatially avoid each other – a neces-
sary condition from the antisymmetry postulate for the
system to exist. Based on quantum statistics, the TFDA
model gives a continuous function φ(x) such that

U (r) = Zeff(λnl , r)

r
= − Z

r
φ(x), (2.120)

where

φ(x) = e−Zr/2 + λnl (1− e−Zr/2), x = r

μ
, (2.121)

and μ is a constant:

μ = 0.8853

(
N

N − 1

)2/3
Z−1/3. (2.122)

5 The concept of Fermi momentum may be utilized to understand

extremely high density objects such as the white dwarf stars

(Chapter 9). An arrangement of electrons constrained by the Pauli

exclusion principle is called the ‘Fermi sea’, with electrons filling in

cells up to a highest Fermi level at zero temperature. As the temperature

rises, energies of electrons excited out of the Fermi sea close to the

‘surface’ levels at p = pF approach a Maxwellian distribution

(Chapter 1). Owing to very high densities and temperatures in white

dwarfs, the electron energies and velocities are in the relativistic range.

The function φ(x) is a solution of the potential equation

d2φ(x)

dx2
= 1√

x
φ(x)

3
2 . (2.123)

From Eq. 2.118 the boundary conditions on φ(x) are

φ(0) = 1, φ(∞) = − Z − N + 1

Z
. (2.124)

Having determined a central potential U (r), for exam-
ple as in the TFDA approximation above, we compute the
one-electron orbitals Pnl (r) by solving the wave equation[

d2

dr2
− l(l + 1)

r2
+ 2U (r)+ εnl

]
Pnl (r) = 0. (2.125)

This is similar to the radial equation (2.27) for the hydro-
genic case, with the same boundary conditions on Pnl (r)
as r→0 and r→∞, and (n − l + 1) nodes. The second-
order radial differential equation is solved numerically
since, unlike the hydrogenic case, there is no general ana-
lytic solution. Equation 2.125 may be solved by both
inward and outward integration, matching the two solu-
tions at a suitable point. As r→0, the outward solution is
given by the first few points of a power series expansion.
The inward solution begins from the asymptotic region
r→∞, using an exponentially decaying function appro-
priate for a bound state, such as the normalized Whittaker
function,

W (r) = e−zr/ν
(

2zr

ν

)⎛
⎝1+

∞∑
k=1

ak

rk

⎞
⎠ N , (2.126)

where ν = z/
√
ε is the effective quantum number (and as

such not necessarily an integer) and ε is the eigenvalue.
The coefficients are

a1 = ν {l(l + 1)− ν(ν − 1)} 1

2z
, (2.127)

ak = ak−1 ν {l(l + 1)− (ν − k)(ν − k + 1)} 1

2kz
(2.128)

and the normalization factor is

N =
{
ν2

z
�(ν + l + 1) �(ν − 1)

}−1/2

. (2.129)

The one-electron spin-orbital functions then assume the
familiar hydrogenic form

ψn,�,m�,ms (r, θ, φ,ms)=φ(r, θ, φ)ζms

= Rn�(r)Y�,m� (θ, φ)ζms

= Pn�(r)

r
Y�,m� ζms . (2.130)
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Once the set of Pnl (r) has been obtained numeri-
cally, the eigenfunctions and eigenenergies for the spec-
troscopic states can be obtained. However, we do note
the distinction between the strict Hartree–Fock orbitals
as solutions of Eq. 2.104, as opposed to orbitals com-
puted in the TFDA potential, or any central-field potential
generally. The one-electron TFDA orbitals are derived
using a statistical treatment of the free-electron gas, which
therefore neglects the shell-structure that is inherent in
the Hartree–Fock method. To wit: a TFDA 1s orbital
remains invariant whether in the 1s2 configuration or
a 1s2p configuration. But the Hartree–Fock 1s orbitals
are different for each configuration. Although in princi-
ple this seems rather a serious limitation of the TFDA
potential, in practice configuration interaction accounts
for much of the discrepancy that might otherwise result.
Taking account of configuration interaction, as well as the
flexibility afforded by scaling the TFDA orbitals, yields
results that are comparable in accuracy to the full MCHF
treatment.

2.13 Relativistic fine structure

In earlier sections we had considered the non-relativistic
Hamiltonian, Eq. 2.80. But fine structure and the depen-
dent coupling schemes were introduced algebraically
in Eqs. 2.62 and 2.63 without consideration of rela-
tivistic effects. Physically, however, magnetic coupling
between the orbital angular momentum and spin angu-
lar momentum splits L S term energies into a number of
components or fine structure levels. Relativistically, the
electron and the nuclear motion each represents a mov-
ing charge observed at the position of the other: ergo,
a magnetic field and resulting magnetic moment, as fol-
lows from Ampère’s law. This magnetic moment due
to orbital motion, in turn, interacts with the intrinsic
spin.

The observed energy splitting of a state could not be
explained by the Schrödinger equation until the idea of
electron spin or intrinsic angular momentum was intro-
duced by Goudsmit and Uhlenbeck in 1925. Pauli imple-
mented the idea in the equations of motion. But it was
Dirac whose equation not merely satisfied special rela-
tivity requirements, but could account for spin and mag-
netic moment.6 Before we delve into the basics of the
Dirac equation, we attempt to understand the spin–orbit
interaction at an elementary level.

6 The Klein–Gordon equation, a straightforward relativistic extension of

the Schrödinger equation, could not.

2.13.1 Spin–orbit interaction

Since magnetic monopoles are not known to exist like the
electric charge e, we consider the Bohr magneton

μB = e�

2m
(2.131)

of an electron, postulated empirically before it emerged
from the Dirac equation. The magnetic dipole moment
is vectorially associated with the spin: �μ = −gs μB �s/�,
gs = 2. If the electron orbits in angular momentum state
l around a nucleus with charge number Z , such a steady
electric current e�l creates a magnetic field according to the
Biot–Savart law, the magnetic counterpart of Coulomb’s
law. The potential energy of the magnetic moment in this
field reads

H so = α2 Z
s · l

�2 (r/a0)
3

Ry, (2.132)

if one exploits identities as in the Coulomb case. Most
remarkable is the numerical remainder once one has
extracted the values for H , r and angular momenta: in this
equation, the dimensionless quantity e2/(�c) = α makes
its debut in the history of physics, then called the ‘fine-
structure constant’ – long before quantum electrodynam-
ics. The laws of quantum mechanics for angular momenta
lead to discrete eigenvalues of H so, two for a single elec-
tron with l > 0; there are a minimum of (2S + 1, 2L + 1)
in the multi-electron case (see Section 2.8), hence the
name multiplicity for 2S + 1.

It is instructive to state a few expressions, which we
describe later in this section. The energy difference due to
the spin–orbit interaction in a one-electron atom of charge
Z is

Eso = μ · Hso = Ze2
�

2

2m2c2r3
l · s, (2.133)

where μ is the magnetic moment and l · s is the spin–orbit
operator in the Hamiltonian

l · s = 1

2
[ j ( j + 1)− l(l + 1)− s(s + 1)]. (2.134)

Therefore, the spin–orbit energy shift is

Eso = Z4α2

n3

⎡
⎣ j ( j + 1)− l(l + 1)− 3

4

1
(

l + 1
2

)
(l + 1)

⎤
⎦ Ry. (2.135)

Scaling with such a high power in Z quickly over-
comes Coulombic term separation, which scales as Z for
terms within a complex and Z2 if n changes. A relativistic
approach accounts for the particle velocities involved. As
the atomic number Z increases along the periodic table,
the velocity of the inner-shell electrons (particularly the
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1s subshell closest to the nucleus) also increases, since the
energy balance of the electron in an orbit is expressed as
mv2

e /2 ∼ Z/re. For elements Z > 10 the velocity of an
electron in the first Bohr orbit is already a good fraction of
the the speed of light c. Balancing Coulombic attraction
with the inertial centrifugal force yields proportionality
ve ≈

√
Z , while for Z = 1 we have ve = α · c. A rigorous

inclusion of relativistic effects entails the transition from
the Schrödinger to the Dirac equation (Section 2.13.2).
The relativistic Hamiltonian includes ‘correction’ terms
that shift a L S term energy into a number of fine-structure
levels, as formulated below. Consequently, the angular
momenta coupling L S changes to j j or intermediate L S J
coupling.

The hydrogen energy levels at extremely high res-
olution show evidence of some other small effects on
the energy, collectively treated in quantum electrodynam-
ics (QED). The 2p level splits into a pair of level by
the spin–orbit effect. The level 2p1/2 is degenerate with
2s1/2, but drops below it by a small amount in what
is called the Lamb shift, caused by the emission and
re-absorption of a virtual photon by the same electron.
Even the 1s ground state splits by the interaction between
the magnetic moments of electron and proton in what
is called hyperfine structure. Quantum electrodynamics
effects break the j-degeneracy of H-like levels, weaken-
ing the binding energy mainly of low-n states ns as a
result of the emission and re-absorption of a virtual pho-
ton by the same electron. Using microwave techniques,
Lamb and Retherford measured the excitation energy of
the dipole transition from 2p1/2 to 2s1/2 in H as E/h ≈
11.06 GHz.

For non-hydrogenic systems, in the first instance,
alkali atoms, we may write (Bohr–Rydberg scaled)

H so = S · L ζ (2.136)

ζnl,n′l = α2
∫ ∞

0
dr Pnl (r)

1

r3
Pn′l (r) (2.137)

with a spin–orbit parameter ζ , which at this stage is
definite only for hydrogen-like ions as Eq. 2.137; yet
if a valence shell with a single type nl of electrons is
involved, the value ζnl can be obtained from observation.
Computing it involves magnetic interaction with the other
N − 1 electrons. In Eq. 2.132, retardation in particular is
ignored and will have to wait for the discussion on Dirac
formulation.

A striking feature that emanates from Eq. 2.132 is
that H so breaks the L S symmetry of the non-relativistic
Hamiltonian, which separately preserves orbital and
spin angular momentum, having eigenstates |SMS〉 and

|L ML 〉 (and thus of total angular momentum |J MJ 〉 as
well). Because both vectors making up the scalar product

S · L =
+1∑
κ=−1

(−1)κ S−κ Lκ (2.138)

act as stepping operators, it preserves only the total mag-
netic quantum number m j = ms+ml or MJ = MS+ML ,
and eigenstates

|SL J MJ 〉 = |SMS L ML 〉 〈SMS L ML |SL J MJ 〉 (2.139)

of intermediate coupling SL J are readily built with
plain Clebsch–Gordan coefficients (Appendix C). A semi-
relativistic multi-electron tretment of intermediate cou-
pling is based on the Breit–Pauli approximation, which
is discussed following the fully relativistic one-electron
Dirac theory.

2.13.2 The Dirac equation

The Lorentz-invariant single-particle Dirac equation is
the relativistic equation of motion for a fermion without
restrictions on v/c, and weak magnetic fields are readily
included. In its time-independent form for a free particle
it reads 7

(α · p c + βmc2)ψ = Eψ, (2.140)

where α and β are four elements of a non-commutative
algebra over the field of complex numbers that can be
represented by 4 × 4 matrices; then the wavefunction ψ
becomes a four-component ‘spinor’:

αx =

⎛
⎜⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ , αy =

⎛
⎜⎜⎜⎝

0 0 0 −i
0 0 i 0
0 i 0 0
i 0 0 0

⎞
⎟⎟⎟⎠ ,

αz =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎠ ,

β =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟⎠ , ψ =

⎛
⎜⎜⎜⎝
ψ1
ψ2
ψ3
ψ4

⎞
⎟⎟⎟⎠ .

7 The discussion in this section is based in part on the treatment by

M. Weissbluth in Atoms and Molecules [13].
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The four coupled equations reduce to two separate sets of
two coupled equations each, owing to the matrix choice
for β:

c σ · p ψv + (mc2 − E)ψu = 0,

c σ · p ψu − (mc2 + E)ψv = 0, (2.141)

where the 2 × 2 Pauli spin matrices (σx,y,z) and the
identity matrix I are

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =
(

1 0
0 −1

)
, I =

(
1 0
0 1

)
.

Writing σ = (σx , σy, σz), we get

α =
(

0 σ

σ 0

)
, β =

(
I 0
0 −I

)
,

when

ψu =
(
ψ1
ψ2

)
, ψv =

(
ψ3
ψ4

)
.

From the free particle Dirac equation,

ψu = c σ · p

E − mc2
ψv. (2.142)

Approximating σ · p ≈ mv I, E − mc2 ≈ (1/2)mv2,

ψu/ψv ≈ 2c/v. (2.143)

Hence, for v/c � 1, the component ψu is known as the
‘large’ component and ψv as the ‘small’ component. For a
central-field potential, the Dirac equation can be reduced
to the form similar to the Schrödinger equation, as will be
seen later.

The free-particle Dirac equation may be modified to
include the effects of external fields. In the presence of an
external electromagnetic field the Hamiltonian can be

H = 1

2
mv2 + q

c
v · A− qφ, (2.144)

where vector and scalar potential A and φ relate to the
Lorentz force,

F = q

(
E + 1

c

∂A
∂t

−∇φ
)
, (2.145)

and to the field B = ∇ × A. The Dirac equation can be
written as[
α·(c p− q A)+ βmc2 + qφ

]
ψ = Eψ. (2.146)

The Dirac equation of a particle in an electromagnetic
field can be reduced to the coupled equations of large and

small components of the spinor. By replacing q by −e, it
can be written as [13]

(E + eφ)ψ =
[

1

2m

(
p+ e

c
A
)2 + e�

2mc
σ · ∇×A

− p4

8m3c2
− e�

2

8m2c2
∇ · ∇φ − e�

4m2c2
σ · (∇φ × p)

]
ψ.

(2.147)

The terms in the above equation can be interpreted as
follows. The first term on the right-hand side,

1

2m

(
p+ e

c
A
)2
, (2.148)

contains the kinetic energy and interaction terms with a
vector potential field. The interaction terms contribute to
numerous physical processes, such as absorption, emis-
sion, scattering of electromagnetic waves, diamagnetism
and the Zeeman effect. The second term,

e�

2mc
σ · ∇×A,

represents the interaction of the spin magnetic moment σ

with a magnetic field B. The third term,

Hmass = − p4

8m3c2
(2.149)

= −α
2

4

( p a0

�

)4
Ry = −α

2

4

(
d2

d(r/a0)
2

)2

Ry,

(2.150)

expressed in Rydberg energy units and Bohr radii on
exploiting Eqs 1.17 and 1.19, is the relativistic mass–
velocity correction, and we see that it scales as α2 Z4 Ry.
It can be derived from

E ′ = E − mc2 = (c2 p2 + m2c4)1/2 − mc2

= p2

2m
− p4

8m3c2
. (2.151)

The fourth term,

HDar = e�
2

8m2c2
∇ · ∇φ, (2.152)

is known as the Darwin term. If φ depends only on r , as
φ(r) = Ze2/r , then

HDar = − Ze2
�

2

8m2c2
∇2

(
1

r

)
. (2.153)

Using ∇2 (1/r) = −4πδ(r), and assuming that only
the radial part of the wavefunction will be in the matrix
element of the HDar,

〈HDar〉 = Zπe2
�

2

2m2c2
|ψ(0)|2 = EDar. (2.154)
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The matrix elements are non-zero only for s-states. Using
|ψ(0)|2 = Z3/(πn3)a3

0,

〈HDar〉 = Z4e2
�

2

2m2c2n3a3
0

= Z4α2

n3
Ry (l = 0 only).

(2.155)

The fifth term,

H so = e�

4m2c2
σ · (∇φ × p), (2.156)

describes spin–orbit coupling of σ = 2s with the mag-
netic field generated by r × p = � l . With φ(r) =
Ze2/r ,

H so = − e�
2

2m2c2
s·
(

1

r

dφ

dr
r × p

)

= Ze2
�

2

2m2c2 r3
l · s (2.157)

= Zα2 l · s

(r/a0)
3

Ry. (2.158)

The spin–orbit interaction term was first included by
Pauli on empirical grounds, but it follows directly from
Dirac’s linearization of the relativistic equation of motion.
Substituting the terms in the Dirac equation, one gets

(E + eφ)ψ =
[

1

2m

(
p+ e

c
A
)2

+ e�

2mc
σ ·∇ × A− α

2

4

∑
i

p4
i

− Zα2

4

∑
i

∇2
(

1

ri

)

+ Zα2
∑

i

1

r3
i

l i · si

⎤
⎦ψ. (2.159)

The total angular momentum J = L + S can be
defined as

2L · S = J2 − L2 − S2. (2.160)

Since J2, L2, S2 and Jz commute with each other, there
are stationary states, which are simultaneous eigenstates
of these operators and of L · S. For such a stationary state,
we can replace the angular momentum operator by their
eigenvalues:

L2 → l(l + 1), J2 → j ( j + 1),

S2 → s(s + 1), s = 1/2,

2L · S → j ( j + 1)− l(l + 1)− s(s + 1). (2.161)

It can be shown that j = l + 1/2 or j = l − 1/2 and the
possible values of j are (−l+1/2,−l+3/2, . . . , l−1/2).

If we consider a hydrogenic system of a single electron,
then〈

1

r3

〉
nl = Z3

n3l
(

l + 1
2

)
(l + 1)a3

0

.

Using this expression, we can determine the shift of an
energy level (Eq. 2.135) due to spin–orbit interaction as

H so
nl = α2 j ( j + 1)− l(l + 1)− s(s + 1)Z4

2l
(

l + 1
2

)
(l + 1)

Z4

n3
,

in Rydberg units.

2.13.3 Pauli approximation for a central field

The Pauli approximation can be made at non-relativistic
energies when v/c � 1, and the wavefunction is replaced
by the large component. Assuming an electron in a central
electric field and that the vector potential A and the mag-
netic field B = ∇ × A are zero and the electric field φ is
a function of radial distance only, E = −(r/r)dφ/dr , the
Dirac equation reduces to

(E + eφ)ψ =
[

p2

2m
− p4

8m3c2
− e�

2

8m2c2
∇ · ∇φ

− e�

4m2c2
σ · ( ∇φ× p)

]
ψ, (2.162)

which includes mass correction and Darwin and spin–
orbit terms. This is known as the approximate Pauli
equation.

2.13.4 Dirac equation in a central field

Consider a projectile of rest mass m0 traveling with a
velocity v in a central field V (r), which can be real or
complex. Defining γ = 1/

√
1− v2/c2, the total energy

E = mc2 = m0γ c2 can be expressed in terms of
momentum p = mv = m0γ v as

E =
√

m2
0c4

1− v2/c2
=

√
m2

0v
2c2 + m2

0c4 − m2
0v

2c2

1− v2/c2

=
(

p2c2 + m2
0c4

)1/2 = E ′ + m0c2, (2.163)

where E ′ is the kinetic energy. The Dirac equation8

[
α · p+ βm0c + V (r)

]
ψ = Eψ,

or
[
α · p+ β(m0c − p0)

]
ψ = 0, (2.164)

8 The discussion in this section is based on C. G. Darwin [14], H. A.

Bethe and E. E. Salpeter [15], and S. N. Nahar and J. M. Wadehra [16].
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on defining p0 = (E − V )/c, (2.165)

can be written as a set of coupled equations for the four
spinor components:

− i

�
(p0 − m0c)ψ1 +

[
∂

∂x
− i

∂

∂y

]
ψ4 + ∂

∂z
ψ3 = 0,

(2.166)

− i

�
(p0 − m0c)ψ2 +

[
∂

∂x
+ i

∂

∂y

]
ψ3 − ∂

∂z
ψ4 = 0,

(2.167)

− i

�
(p0 − m0c)ψ3 +

[
∂

∂x
− i

∂

∂y

]
ψ2 + ∂

∂z
ψ1 = 0,

(2.168)

− i

�
(p0 − m0c)ψ4 +

[
∂

∂x
+ i

∂

∂y

]
ψ1 + ∂

∂z
ψ2 = 0.

(2.169)

Since the potential V (r) is a function of r only, each
component ψi (i = 1, 2, 3, 4) of ψ can be expressed as
a product of a spherical harmonic Ylm and some radial
function R(r), as R(r)Ylm(ϑ, ϕ).

Using the standard recursion relation and properties of
the spherical harmonics, one can choose:

ψ1 = a1 G(r) Ylm , ψ2 = a2 G(r) Yl,m+1,

(2.170)

ψ3 = −ia3 F(r) Yl+1,m , ψ4 = −ia4 F(r) Yl+1,m+1.

(2.171)

The factor−i inψ3 andψ4 makes the radial function F(r)
real. The values of the coefficients a are adjusted such that
all four simultaneous equations are satisfied. Substituting
these into the first and third equations and using angular
properties, the spinors can be written as

ψ1 =
√

l + m + 1 Gl (r) Ylm(r̂),

ψ2 = −√l − m Gl (r) Yl,m+1, (2.172)

ψ3 = −i
√

l − m + 1 Fl (r) Yl+1,m ,

ψ4 = −i
√

l + m + 2 Fl (r) Yl+1,m+1, (2.173)

where F and G, the radial parts of the small and the large
components of ψ , have been subscripted with l. The set
of coupled equations is now reduced to two equations
satisfied by Fl and Gl :

1

�
(p0 − m0c)Gl +

[
2l + 3

2l + 1

]1/2 [
dFl

dr
+ l + 2

r
Fl

]
= 0,

(2.174)

− 1

�
(p0 + m0c)Fl +

[
2l + 1

2l + 3

]1/2 [
dGl

dr
− l

r
Gl

]
= 0.

(2.175)

These two equations can be combined for the large com-
ponent Gl as

G′′l +
[

2

r
− η

′
η

]
Gl +

[
ηδ + lη′

rη
− l(l + 1)

r2

]
Gl = 0,

(2.176)

where prime and double prime stand for the first- and
second-order spatial derivatives, and

η = p0 + m0c

�
, δ = p0 − m0c

�
,

ηδ = K 2 − 2EV − V 2

�2c2
, K 2 = E2 − m2

0c4

�2c2
.

(2.177)

For an electrostatic potential V (r) = Ze2/r =
2Z

(r/a0)
×Ry, and thus V (r)=α2 V ×m0c2/2=α2 Z/

(r/a0)×m0c2 (see Eqs 1.17 and 2.4), the Compton-like

reciprocal length η reads η= (m0c/�)
(

1+ γ − α2V
)

;

and γ from the identity E = γm0c2 may be written with
the quantity K , contributing the factor α2 over the Comp-
ton cross section when expressed as an inverse square

of a0: γ =
(

1+ α2 K 2 a4
0

)1/2
. This paves the way to

pure number equations along the lines that lead to Eq.
2.27. Taking Gl = √

ηgl (r)/r , the equation for the large
component can be rewritten as

g′′l (r)+
[

K 2 − l(l + 1)

r2
−U+

l (r)

]
gl (r) = 0, (2.178)

where

−U+
l (r) = −2γ V + α2V 2 − 3

4

η′2
η2

+ 1

2

η′′
η
+ l + 1

r

η′
η
.

(2.179)

On the other, hand a choice of

ψ1 = a1 G(r) Ylm , ψ2 = a2 G(r) Yl,m+1 (2.180)

ψ3 = −ia3 F(r) Yl−1,m ,ψ4 = −ia4 F(r) Yl−1,m+1

(2.181)

will show that the simultaneous equations are satisfied for

a1
√

l + m + 1 = a2
√

l − m,

a4
√

l + m = −a3
√

l − m − 1,
(2.182)

and the corresponding spinor components are

ψ1 =
√

l − m Gl (r) Ylm ,

ψ2 = −√l + m + 1 Gl (r) Yl,m+1, (2.183)
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ψ3 = −i
√

l + m Fl (r) Yl−1,m ,

ψ4 = i
√

l − m − 1 Fl (r) Yl−1,m+1. (2.184)

A similar procedure will give, for the larger component,

g′′l (r)+
[

K 2 − l(l + 1)

r2
−U−

l (r)

]
gl (r) = 0, (2.185)

where

−U−
l (r) = −2γ V + α2V 2 − 3

4

η′2
η2

+ 1

2

η′′
η
− l

r

η′
η
.

(2.186)

Combining the two equation for gl (r),

g±l
′′
(r)+

[
K 2 − l(l + 1)

r2
−U±

l (r)

]
g±l (r) = 0.

(2.187)

This is the Schrödinger equivalent of the Dirac equation,
where the potentials U±

l are the effective Dirac potentials
due to spin up and spin down, respectively, eigenvalues of
the well-known spin–orbit interaction,

H so = 1

4m2
0c2

1

r

dV (r)

d r
σ · L, (2.188)

where σ is related to spin S as σ = 2S and the value of
(σ ·L) equals l for j = l+1/2 and−(l+1) for j = l−1/2.

2.13.5 Multi-electron systems and the Breit
equation

In three classic papers [17], G. Breit introduced the two-
electron effects not included in the Dirac equation. The
terms were written ad hoc, to order α2Ry. Bethe and
Salpeter [15] showed that the interaction can be derived by
making simplifications in the photon exchange between
the electrons. A Lorentz-invariant theory for a multi-
electron system cannot be written in closed form. Yet
relativistic effects can be treated as perturbative cor-
rection terms.9 We may ‘add’ a relativistic term H2
to the non-relativistic Hamiltonian and treat it as a
perturbation:

H = H0 + H1 + H2, (2.189)

where H0 represents the one-electron terms and H1 is the
electron–electron interaction. The relative magnitudes of
Coulombic H1 terms and H2 of order α2 Ry depend on
Z and the residual or ion charge z = Z − N . For an
isoelectronic sequence, i.e., a given value z, H1 domi-

9 The references on the Breit equation used in this section are: Bethe and

Salpeter [15] and Sakurai [18].

nates H2 at low Z but H2 typically scales Z2-fold. Energy
eigenvalues can be obtained accurately in powers of the
electromagnetic coupling parameter α. For small charge
numbers Z , the energy can also be obtained in powers of
Zα. For large values of Z the energy can be expanded in
powers of 1/Z or of α.

The generalized perturbation theory treatment to
include relativistic effects is accomplished using the
Breit–Pauli approximation, which incorporates both the
electron correlation and relativistic effects via the so-
called Breit interaction. Consider scattering of two identi-
cal fermions. The Møller interaction between them rep-
resents current and dipole terms. The Møller term in
the Fourier transform of the potential gives the repulsive
Coulomb potential e2/(4πr). It also gives rise to current–
current, current–dipole, and dipole–dipole interactions.
The dipole–dipole term is identified as the energy between
the magnetic moments of two electrons. The current–
dipole interaction leads to spin–orbit coupling between
the two electrons. However, prior to Møller, Breit derived
these corrections in a Coulomb potential using classical
arguments and applied them to the He atom. Hence, they
are collectively known as the Breit interaction between
two electrons.

The Breit equation is a differential equation, similar
to the Dirac equation but for a relativistic wavefunction
involving a second electron. Hence, it includes additional
terms for two electrons interacting with each other and
with an external electromagnetic field. But unlike the
Dirac equation it is not fully Lorentz invariant and thus an
approximation. The stationary equation for two electrons
reads⎡
⎣E −

2∑
i=1

{
αi ·

(
c pi − q A(r i )

)+ βi mc2 + qφ(r i )
}

+ e2

r12

⎤
⎦ψ = e2

r12

[
α1 · α2 + (α1 · r12)α2 · r12)

r2
12

]
ψ,

(2.190)

where the wavefunction ψ now depends on the positions
r1 and r2 of two electrons and has 16 spinor compo-
nents, four for each electron, 1 and 2. The two terms on
the right-hand side, the Gaunt term and the retarded inter-
action terms, are together known as the Breit interaction
or Breit operator. It gives the leading contribution for the
relativistic corrections of the interaction between the two
electrons and is also of order α(Zα)(Z2)Ry.

The Breit equation is conveniently converted to
momentum space and expressed in terms of the two-
component Pauli spinors. This reduces the 16-component
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two-particle wavefunction to a four-component wavefunc-
tion. For a weak external field the Breit equation can
be expressed in terms of spin-up spinors (Bethe and
Salpeter). Then for a weak external electromagnetic field,
such that the total energy of the two electrons is close to
2mc2, the Breit equation can be solved.

Keeping terms in the lowest order of the coupling
parameter α and assuming an external field that is
weak compared to the binding energy, the Breit equation
reduces to

HBPψ = [HNR + Hmass + HDar + Hso

+ 1

2

N∑
i �= j

[
gi j (so+ so′) + gi j (ss′)

+gi j (css′)+ gi j (d)+ gi j (oo′)
]]
ψ ;

(2.191)

the advantage of the formulation
1

2

∑
j �=i

over
∑
j<i

will

become clear when discussing gi j (so + so′). Writ-
ten as number equations, HNR is the non-relativistic
Hamiltonian

HNR =
N∑

i=1

⎧⎨
⎩−∇2

i −
2Z

ri
+

N∑
j>i

2

ri j

⎫⎬
⎭ , (2.192)

and

Hmass = −α
2

4

∑
i

p4
i , HDar = −α

2

4

∑
i

∇2
(

Z

ri

)
,

Hso = α2
∑
i=1

Z

r3
i

l(i) · s(i) (2.193)

are the relativistic mass-velocity correction, Darwin and
spin–orbit terms. The rest are two-body terms with nota-
tion c for contraction, Dar or d for Darwin, o for orbit, s
for spin and a prime indicating ‘other’.

The full Breit interaction term includes all magnetic
effects among the electrons, i.e., mutual spin–orbit cum
spin–other-orbit coupling gi j (so + so′) and spin–spin
coupling (ss′) as

HB =
∑
i> j

[gi j (so+ so′)+ gi j (ss′)], (2.194)

where

gi j (so+ so′) = −α2

[(
r i j

r3
i j

× pi

)
· (si + 2s j )

+
(

r i j

r3
i j

× p j

)
· (s j + 2si )

]
,

gi j (ss′) = 2α2

[
si · s j

r3
i j

− 3
(si · r i j )(s j · r i j )

r5
i j

]
.

(2.195)

The two-body non-fine-structure terms are

gi j (d) = α2

2
∇2

i

(
1

ri j

)
,

gi j (css′) = −16πα2

3
si · s j δ

3(ri j ),

gi j (oo′) = −α
2

ri j

(
pi · p j +

(r i j · pi )(r i j · p j )

r3
i j

)
;

(2.196)

gi j (d) is similar to the Darwin term of the nuclear
Coulomb field in the Dirac equation and represents a
single electron in an electric field of another electron;
gi j (ss′) and the contact term gi j (css′) contribute to the
ordinary interaction between two Bohr magnetons (cf.
Section 2.13), while gi j (oo′) is the classical relativistic
correction to electron–electron interaction due to the retar-
dation of the electromagnetic field produced by an elec-
tron. There can be additional terms caused by magnetic
fields.

There are good reasons for keeping mutual spin–orbit
and spin–other-orbit combined in the shape of gi j (so +
so′), i.e., symmetric in the two-particle indices. The kine-
matics of the first coupling term in Eq. 2.195, that is,
before ‘+2s j ’, are clear enough: particle i with momen-
tum pi is orbiting electron j . In a discussion, one would
continue with what one calls ‘spin–other-orbit’ coupling,
namely that j is itself orbiting unlike an infinitely heavy
nucleus in ordinary spin–orbit coupling, say in Hso of
Eq. 2.193 (or more to the point: if its orbital quantum
number l j > 0). Strangely enough for classical mechan-
ics, such a term appears in the fourth or last position in
gi j (so + so′), unmistakable since the s-index must be
i . But this is not classical mechanics as testified by the
Thomas-factor of 2! Thus all arrangements in gi j (so+so′)
are falling into place.

The electron–electron correlations contribute domi-
nantly through 1/Z dependence, while the relativistic
corrections play an important role in the distribution
of fine-structure components for weaker transitions. The
one-body terms with weight α2 Z4Ry contribute, in gen-
eral, more than the two-body terms, which scale only with
the third power of Z .

2.13.6 Dirac–Fock approximation

Next in importance to Breit–Pauli terms, which stop
at order α2 Z4 Ry = (αZ)4 mc2/2, follow QED effects:
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self-energy (corrected for finite size of a structured
nucleus) scales with another factor α, screened self-energy
as α(Zα)3 mc2 and vacuum polarization. The self-energy
behaves as 1/n3 in an interacting outer electron nl. Vac-
uum polarization is usually appreciable for s orbitals at
large Z .

When the Breit–Pauli approximation or inclusion of
other higher-order contributions are not valid, a fully rela-
tivistic (not perturbative) treatment based on the Dirac the-
ory must be employed. This relativistic approach is known
as the Dirac–Fock approximation. The Dirac–Coulomb
Hamiltonian in this approximation reads as

HDC =
N∑

i=1

HD(i)+
N−1∑
i=1

N∑
j=i+1

e2

|r i − r j | (2.197)

=
N∑

i=1

⎛
⎝HD(i)+ α2mc2

∑
j<i

a0

|r i − r j |

⎞
⎠ ,

where the first term is the one-body contribution for an
electron due to kinetic energy and interaction with the
electric charge of the nucleus, as

HD = c α · p+ (β − 1)mc2 − Ze2/r (2.198)

= c α · p+
(
β − 1− α2 Za0

r

)
mc2,

employing the identity (Eq. 1.23) for e2 (along with the
definition, (Eq. 1.17)). This can be seen as the relativistic
version of the Hartree–Fock equations. They are solved
in a similar manner for more accurate energies and wave-
functions. Numerical difficulties, though, limit the amount
of configurations one can include.

2.13.7 Z-scaling of fine structure

We end by returning to a more heuristic description of
the fine-structure effects by noting another striking fea-
ture of Eq. 2.132: scaling with α2 Z4 Ry. As long as
α2 Z4 � 1 it looks all set for perturbation theory to
obtain hydrogen-like doublet levels nl j ≡ nl j : find eigen-
values Enl j of matrices HNR + H so with Hamiltonian
constituents (Eqs. 2.80 plus 2.132) in the representation
(Eq. 2.139), using ordinary hydrogen-like radial wave-
functions. The result is disappointing: j-degeneracy of(

nll+1 2, n(l+1)l−1 2

)
, observed as well as predicted for

a Dirac electron, is missed by a wide margin. Dirac
theory by itself delivers the remedy for perturbative treat-
ment: there are two more terms of order α2 Z4 Ry in
Section 2.13.2, though not breaking L S symmetry. The
first arises when applying Einstein’s m/

√
(1− v2/c2) ≈

m+ 1
2 mv2/c2+O(v4/c4) to the kinetic energy in the non-

relativistic Hamiltonian. With v4 ≈ (p/m)4 (if v � c)
one arrives at the purely mechanical mass–velocity oper-
ator Hmass of Eq. 2.150, the electromagnetic coupling
parameter α entering by plain arithmetic via the quan-
tities Ry and a0, see Eqs. 1.17 and 1.19. If Hmass is
carried alongside H so, everything falls into place except
s-levels, which coincide with p1/2 only when includ-
ing the non-classical Darwin term (Eq. 2.152), the third
and last of order α2 Z4 Ry in what is called the ‘low-Z
Breit–Pauli Hamiltonian’. Following Eq. 2.113, electron
velocities behave as v ≈ αZc, which should be kept small
compared with the speed of light, say not exceeding a
fifth. This translates into stopping at iron ions in isoelec-
tronic sequences. Within principal shells n of H-like ions,
the following splitting pattern emerges for successive
levels Enj :

En,l+1/2 − En,l−1/2 = α2 Z4 1

n3

1

l(l + 1)
Ry. (2.199)

As we move along a multi-electron sequence, let us
focus on the Coulombic term separation, which goes lin-
ear as Z Ry within a complex (otherwise as Z2 Ry). Level
splitting is tiny at the neutral end, but begins to out-
strip separation once the effective Z reaches Z ≈ α2 Z4:
again soon after ions of iron. Thus a perturbative approach
serves most ions of astrophysical interest, as outlined for
the H-sequence. Now with more than one electron par-
ticipating we can choose how to combine the angular
momenta. In line with the low-Z approach is intermedi-
ate coupling SL J , where the assignment 2S+1L J points
towards a dominant term �SL . This ceases to be true
once Z has increased enough for the various multiplets
to overlap.

Because the nucleus is ‘replaced’ by one electron in
two-body terms, they scale with a relative factor −1/Z .
The kinematics for fine structure will be discussed in
Section 2.13.5, Eqs. 2.195, are transparent enough, but
less so their shape in reduced tensorial form, a topic out-
side the scope of this text – unlike the simple Coulombic
(Eq. 2.109), which involves merely two Racah tensors
C[λ]) (a limited discussion of the algebra involved is given
in Chapters 3 and 4). This makes one wonder how it shows
up in the simplest multi-electron case, He-like ions, neu-
tral He in particular, when the effective charge is small,
somewhere between 1 and 2. And indeed, observation
yields triplet energies in J -order 1s 2p, 3Po

2,1,0 at split-
ting distances of 0.0675 cm and 0.0879 cm, and similar
but even smaller for the M-shell triplets of 1s3p and 1s3d:
thus effects among the two electrons are winning over the
ordinary spin–orbit coupling in the field of the nucleus.
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The ‘−1/Z -effect’ in 1snl triplets weakens immediately
past Li II. Yet full J = l−1; l; l+1 order prevails only
past C V, because J = l is pushed down by multiplet mix-
ing with the associated singlet due to ordinary spin–orbit
coupling. Naturally, Hund’s criteria of Section 2.8 are not
quite valid for this sequence, and show their limitations
even for a simple case.

Two-body magnetic interaction comes decisively into
play when evaluating spin–orbit parameters ζ . In a key
paper of 1962, M. Blume and R. E. Watson [19] broke the
deadlock about magnetic closed shell effects on valence
electrons. Here one cannot construct a potential that mim-
icks the effects of exchange, while it proved so successful
in the Coulomb case outlined in Section 4.6. It has to
be done explicitly with properly antisymmetrized wave-
functions. But the effects can be absorbed in a relatively
simple procedure into ζ as effective spin–orbit parame-
ters, employing the two types of magnetic integral, the
magnetic counterpart of the four-orbital Slater integrals
(Eq. 2.111). Moreover, angular factors, based on Racah
or 6 j-coefficients (cf. Appendix C) in the general case
(Eq. 2.195), simplify to square roots over simple ratios of
angular quantum numbers. Thus the two parameters ζ3p
and ζ3d of valence electrons in an M-shell will be reduced
by the closed shell electrons 1s, 2s and 2p, and by a sizable
fraction by 1s2 alone. An interesting aside concerns the
exchange portion, which unlike the Coulomb case (e.g., in
Section 2.11) has the same sign as the direct contribution,

making ζ even smaller. At high Z , two-body magnetic
interaction among valence electrons is often dominated by
second-order ordinary spin–orbit coupling, an effect auto-
matically included through matrix diagonalizations in the
course of the calculation.

Significant for radiative probabilities and, because of
flux redistribution, in collision rates is multiplet mixing,
where terms interact in first order magnetically, because
S′ �= S precludes Coulomb interaction. To start with He-
like ions: it is spin–orbit interaction (cf. Eq. 2.132) within
1snl between triplet and singlet J = l that moves the
former level down and the latter up, in the triplet case
closer to the unchanged J = l − 1 below. For instance,
level 1s2p 3Po

1 of Fe-like He lies 0.1484 Ry above 3Po
0

(1.0847 Ry below 3Po
2 from observation), whereas sta-

tistical weights without admixture from 1s2p 1Po would
place it 0.4111 Ry above 3Po

0. A close look reveals a ratio
0.283 : 0.959 for the term coupling coefficients (cf. Ch. 4)〈
1,3Po

∣∣∣3Po
1

〉
, and there is 8% of 1Po in 1s2p 3Po

1.
We mention in passing that the nucleus of isotopes

with odd atomic weight number always has, and oth-
ers can have, non-vanishing spin I and an associated
magnetic moment (and an electric quadrupole moment if
I ≥ 1). Conservation of the vectorial sum F with J marks
the background of hyperfine structure, in magnitude three
orders smaller than fine structure following Eq. 2.131:
see Fig. 2.2, which schematically shows successive term
splitting for a given electronic configuration.
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Spectral formation depends on a variety of intrinsic
atom–photon interactions. In addition, external physi-
cal conditions, such as temperature, density and abun-
dances of elements determine the observed spectrum. As
described in later chapters, spectral analysis is therefore
often complicated and it is difficult to ascertain physical
effects individually (and even more so collectively). The
main aim of this chapter is to provide a unified picture of
basic atomic processes that are naturally inter-related, and
may be so considered using state-of-the-art methods in
atomic physics. A quantum mechanical treatment needs to
take the relevant factors into account. An understanding of
these is essential, in order to decide the range and validity
of various theoretical approximations employed, and the
interpretation of astrophysical observations. From a prac-
tical standpoint, it is necessary to determine when and to
what extent a given effect or process will affect spectral
lines under expected or specified physical conditions.

For example, at low temperatures and densities we
may expect only the low-lying atomic levels to be excited,
which often give rise to infrared (IR) and optical forbidden
emission lines. But the presence of a background ultra-
violet (UV) radiation field from massive young stars in
star-forming regions of molecular clouds (e.g., the Orion
Nebula discussed in Chapter 12), may excite low-lying
levels via UV absorption to higher levels and subsequent
radiative cascade of emission lines that would appear
not only in the UV but also contribute to the intensi-
ties of the IR/optical lines. Therefore, the intensities of
observed forbidden lines may involve a contribution from
allowed transitions via muliple-level cascades. That, in
turn, requires a more extensive atomic model with all
relevant excited levels.

Fundamental atomic parameters associated with
atomic processes are mostly computed theoretically and,
to a much lesser extent, measured experimentally. Our
treatment is aimed at a theoretical description of atomic
processes. That basically requires a knowledge of the

wavefunctions of quantum mechanical states of the atom,
and electron–atom–photon interactions with an appropri-
ate Hamiltonian in a generalized Schrödinger formulation.
The task is to compute fundamental quantities, such as
cross sections for ionization, recombination and scatter-
ing, and transition probabilities for radiative transitions.

The atomic parameters are obtained from transition
matrix elements whose general form is

〈ψ f |Hint|ψi 〉 . (3.1)

The ψi and ψ f are the initial and final quantum mechani-
cal wavefunctions representing the system, and Hint is the
interaction operator associated with a given process. The
processes with a free electron involve continuum states
of the (e + ion) system. If there are several initial and
final states then a transition matrix can also be obtained
from appropriate wavefunctions. Once the cross sections
are calculated as functions of energy, we can obtain the
rate coefficient at a given temperature by convolving over
a characteristic temperature distribution in the source, as
described in a later chapters on emission and absorption
lines (Chapters 6 and 7, respectively). As we empha-
size in this chapter and throughout the text, resonances
in cross sections play an important role in most atomic
processes. But delineation of detailed resonance structures
often requires the calculation of cross sections at a large
number of energies.

While we will study individual atomic processes in
detail in the following chapters, we can understand their
overall nature and role in astrophysical plasmas in an ele-
mentary manner, introducing the basic concepts that we
shall use later in a more advanced description of scat-
tering and radiative theory. In this chapter we describe
the general quantum mechanical considerations of the
atomic processes and methods: multi-electron variants of
the Schrödinger equation, wavefunction expansions for
a multi-level formulation of a given process, and the
Hamiltonian terms including (or excluding) important
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atomic interactions. Subsequent chapters deal with spe-
cific processes and the properties of atomic parameters for
each process, such as cross sections and rate coefficients.
We begin with the physical description of the states of an
atom.

3.1 Bound, continuum and resonance
states

Excited bound states decay via spontaneous or stimu-
lated emission according the Einstein relations (Eq. 4.18).
Discrete bound state energies are given by the Rydberg
formula En = (−z2/ν2

n ) Ry< 0, and the series of excited
states or levels converge on to the series limit E = 0
as n→∞. We may denote the ground state ionization
energy as Eg, equal to the energy difference between the
ground state and the series limit. Excited state ionization
energies Ei are also measured relative to the ionization
threshold E = 0 when the electron has zero energy and
becomes free. Ionization energies of the outermost elec-
tron(s) in excited states are lower than those of the ground
state. On the other hand, ionization energies of inner
electronic shells are higher, in increasing order from the
outside inwards up to the most tightly bound electrons
in the K-shell, and consequently the highest binding or
ionization energy.

Excitation of a bound state to another bound state
may occur due to impact by other particles or photons.
Figure 3.1 shows free electrons and the energy levels of
an ion. The bound electron(s) in the ion may be excited,
or ionized, by the free electrons. Since the ionized elec-
tron may have any energy, there is an infinite continuum
of positive (kinetic) energies E > 0 above the ion-
ization threshold at E = 0, where no ‘pure’ bound
states can exist. Here, the meaning of the term ‘contin-
uum state’ of an (e + ion) system, with a free electron
and an ion, needs to be understood. The state refers to
a continuum of kinetic energies, which the free elec-
tron may have, but the total (e + ion) energy is relative

Free
electrons

Ionization
energy

Ionization Excitation

E < 0 Discrete levels

E > 0 Continuum

E = 0

Bound electrons

Ei

FIGURE 3.1 Excitation of bound states and ionization into the
continuum.

to a specific bound state of the ion, usually the ground
state.

Figure 3.2 is an illustration of a bound electron exci-
tation by impact of a free or continuum electron. The
excited electron decays radiatively, emitting a photon hν
in an emission line. Electron impact excitation (EIE), and
(e + ion) recombination into an excited level, are both fol-
lowed by the emission of a photon and are the two most
important processes in the formation of emission spectra
in astrophysical sources.

While that seems relatively straightforward, there are
also quasi-bound states formed by two (or more) excited
electrons in an atomic system that play an important role.
A free electron with sufficiently low kinetic energy and
in close proximity to an ion can form quasi-bound states.
If the total energy is below the ionization threshold, that
is, less than the ionization energy, the (e + ion) system is
a pure bound state. However, if the total (e + ion) energy
lies above the ionization threshold, it could be in an unsta-
ble autoionization state, which ionizes spontaneously, i.e.,
breaks up into an ion and a free electron. While in an
autoionizing state, an electron is in excited state loosely
bound to the ion, which is also in excited state. Hence,
these are also referred to as doubly excited states. The
‘active’ electrons are thus both in excited states in an
electronic configuration whereby they repel each other;
the combined state is thus unstable and breaks up after
a lifetime that is orders of magnitude shorter than that of
singly excited bound states. For instance, the lifetime of
an autoionizing state is about 10−14 s compared with the
typical lifetime of about 10−9 s for the low-lying excited
bound states of neutral atoms.

An autoionizing state generally decays into the con-
tinuum, with the outermost electron going free, while the
excited ion core electron drops back to the ground state.
Figure 3.3 illustrates the autoionization process. In con-
trast to radiative decay, which involves the emission of a
photon, autoionization is a radiation-less decay of a com-
pound unstable system, where the ejected electron carries
away the energy released when the inner electron makes
a downward transition, say to the ground state. While in
a doubly excited state, we have two or more electrons
in excited states, and therefore electron–electron repul-
sion drives its break-up or autoionization. It is of great
importance since the process of formation and break-up
gives rise to resonances that manfiest themselves in the
cross sections of atomic processes.1 Resonances, in turn,

1 All three expressions are equivalent, and interchangeably used, to

describe autoionizing, quasi-bound, or resonance states of an (e + ion)

system with two or more electrons.



48 Atomic processes

Excitation Emission

e–e–

e–

X+nX+n

hν FIGURE 3.2 Electron impact excitation of an
electron from a lower bound level to an upper
bound level, followed by downward radiative
transition of the excited electron.

Autoionization

Radiation-less
decay

e–

e–

X+n

FIGURE 3.3 Autoionization or radiation-less break-up of a
resonant state. The inner electron undergoes a downward
transition and releases energy, which ionizes the outer electron,
carrying away the energy that could otherwise be emitted as a
photon.

Ionization
energy EIP

Free
electrons

E*(X+)
E**(X+nl ) = E*(X+) – z2/ν2

nl

Eg(X+)

Eg(X)

FIGURE 3.4 Excitation and autoionization of a doubly excited
resonance state.

generally enhance the cross section of a given process,
such as collisional excitation or photoionization, by large
factors, as we shall see in later chapters.

Figure 3.4 shows an energy diagram of bound states
and autoionizing resonance states of an (e + ion) sys-
tem. We have an atom X with ground state at energy
Eg(X). A continuum of states then exists with the ion
X+ with ground-state energy Eg(X+), and a free elec-
tron with positive energy. An excited state of the ion is

denoted with energy E∗(X+). Now a series of doubly
excited states (dashed lines) could form with energy
E∗∗(X+)n�, where both the ion and the Rydberg elec-
tron are in excited states. Owing to the infinite range of
the attractive Coulomb potential, V (r) ∼ −2z/(r/a0)Ry,
it can support an infinite number of discrete bound states.
Furthermore, each excited bound state of the ion can, in
principle, serve as a core for an entire Rydberg series of
infinite resonances given by the Rydberg formula with
energies converging on to the core level energy E∗(X+)

E∗∗(X+n�) = E∗(X+)− z2

ν2
nl

Ry, (3.2)

where νnl is the effective quantum number relative to
the excited core level. In general, resonances can also
be formed by ionization (viewed as excitation into the
continuum) of any inner-shell electron. The resulting
(e + ion) system stabilizes by decay to the ground state,
releasing energy either as photons or ejected electrons.
This is referred to as the Auger process and is discussed in
Section 5.9.

To account for resonances in atomic processes, the
wavefunction must include not only the bound state com-
ponents but also the (e + ion) continuum. It is the quantum
mechanical interference between the two that gives rise
to resonances. While a rigorous theory of resonance phe-
nomena is quite involved (and will be discussed later in
this chapter and in other chapters), we can obtain a physi-
cal understanding by writing the wavefunction as a sum of
two independent components, referring to the continuum
and the bound state nature of the resonance,

�res = �cont +�bbd. (3.3)

Since the amplitude is the square of the wavefunction, the
cross term would reflect the coupling or the interference
between the continuum and the bound state compo-
nents. This interaction between the bound state and the
continuum results in a characterstic energy width of a
resonance, in contrast to a bound state, which, in prin-
ciple, has an infinitesimally small width. The width of a
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resonance is related to the lifetime in accordance with the
uncertainty principle 
E 
t ≥ �: a larger energy width
implies a shorter lifetime of the resonance, compared with
a bound state.

If we neglect the interference term then we may carry
out a purely atomic structure calculation to determine
the position and the strength of the resonance, treating
it (albeit unphysically) as a bound state of the atom X
with no associated width. But a proper description of the
resonance, including all terms in the wavefunction expan-
sion above, should entail not only the position but also the
shape of the resonance in the cross section.

In the following sections, we will describe the the-
oretical approximations usually employed, including or
excluding resonance phenomena. But first, we give an
overview of the primary physical processes leading to
spectral formation.

3.2 Collisional and radiative atomic
processes

The electromagnetic spectrum is formed as a result of the
interaction of matter with light. In addition, characteris-
tics of a spectrum depend on the physical and chemical
conditions in the source. For example, at low temper-
atures and densities only low-lying levels are excited,
leading to emission of IR and optial lines. The atomic
processes in astrophysical and laboratory plasmas involve
electron–ion–photon interactions. While we describe var-
ious aspects of the basic atomic processes in this and
later chapters, it is useful to introduce their definition in
a heuristic manner at this stage. The dominant atomic
processes involving electrons, ions and photons in astro-
nomical plasmas are schematically described in Fig. 3.5.

e + Xi
+n

PI

EIE

AI

DR

RR

(X k
+(n–1))**

X +(n–1) + hν

e + Xj
+n

FIGURE 3.5 Unified picture of dominant atomic processes in
plasmas: electron impact excitation (EIE), photoionzation (PI),
autoionization (AI), dielectronic recombination (DR) and
radiative recombination (RR). Note the often important role of
resonance states in the centre, mediating atomic processes.

These atomic processes dominate spectral formation in
most plasma sources, and form the bulk of the discussion
in this text. However, there are other processes, which are
important in many special circumstances and need to be
considered accordingly. We mention a few of these addi-
tional atomic processes. One common theme among these
less dominant processes is that they are heavy-particle
collisions and are often treated as ‘molecular’ problems.

3.2.1 Detailed balance

As evident from the unified picture of atomic processes
in Fig. 3.5, the principle of detailed balance plays a fun-
damental role in the determination of atomic rates for
inverse processes. We apply it later to a variety of colli-
sional and radiative processes in subsequent chapters on
electron impact excitation (Chapter 5), photoionization
(Chapter 6), and recombination (Chapter 7).

Consider a collision process where ki and k f are the
incident and scattered wave vectors and mi and m f are the
masses in the initial and final states or ‘channels’ (readers
should refer to Figs. 3.7 and 5.2 for illustrations). We
choose the incident beam along z-axis, i.e., ki = kiz .
Let �i and � f be the incident and final wavefunctions.
Then the total scattered wavefunction (Chapter 5) can be
expressed as

� = �i +� f = A

[
eiki . r + f (ϑ)

√
m f

mi

eik f r

r

]
, (3.4)

where A is a normalization constant and f (ϑ) is the
amplitude of the scattered wave. The current density of
a beam is defined as

J = �

2im
[�∗∇� −�∇�∗], (3.5)

with a nabla operator er
∂
∂r + eϑ

1
r
∂
∂ϑ

+ eϕ 1
r sinϑ

∂
∂ϕ

in
spherical coordinates. Then the current density of the
incident beam of wavefunction �i reads

Ji = A
�ki

mi
= Avi ; (3.6)

similarly,

J f = A
m f

mi

| f (ϑ)|2
r2

v f (3.7)

for the scattered beam � f , neglecting terms of the order
of 1/r3.

The number dn/dt of particles detected per unit time,
in solid angle element d is related to both J i and J f
separately. We can write

dn

dt
∝ Ji d , i.e.,

dn

dt
= σ(ϑ)Ji d , (3.8)
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where σ is the proportionality constant, here called the
cross section. Writing d = d S/r2, where d S is the area
subtended by the solid angle d at radius r , we have

dn

dt
= σ(ϑ)Avi

dS

r2
(3.9)

Since J f = (dn/dt)/dS, we have

σ(ϑ)Avi

r2
= A

m f

mi

| f (ϑ)|2
r2

v f , i.e.,

σD(ϑ) =
p f

pi
| f (ϑ)|2 (3.10)

where the subscript D has been introduced to denote the
direct process. If we reverse the process to go to state i
from state f , we obtain

σR(ϑ) = pi

p f
| f (ϑ)|2. (3.11)

The two relations of the direct and reverse processes
can be combined to obtain

σD

p2
f

= σR

p2
i

. (3.12)

If the initial state is degenerate with gi states correspond-
ing to the initial energy for the direct process, and g f
states to the reverse process, then the cross sections are
obtained as averages over all processes, that is, σD ≡
(1/gi )

∑
i σD and σR ≡ (1/g f )

∑
f σR . Thus we have

giσD

p2
f

= g f σR

p2
i

(3.13)

This relation is a formal statement of the principle
of detailed balance for collisional processes (see also
Chapters 5, 6 and 7).

3.2.2 Radiative transitions – photo-excitation

An ion with positive charge+n may be excited radiatively
from an initial state i to another state j by absorption of
an incident photon energy hνi j characteristic to the ion:

X+n
i + hνi j � X+n

j . (3.14)

Excited states have finite lifetimes relative to the ground
state (which supposedly has ‘infinite’ lifetime). The
reverse arrow refers to spontaneous radiative decay after
a characterstic lifetime by emission of the same photon.
The radiative decay may also take place with the emission
of several photons, i.e., fluorescence, consistent with con-
servation of energy. The computed parameters for these
atomic processes are the physically equivalent quantities:
the oscillator strength f for photo-excitation, the radiative

decay rate or transition probability A, and the line
strength S, which is symmetric with respect to degenera-
cies of the initial and final states. The oscillator strength f ,
known from damped and enforced oscillations in classical
physics, is dimensionless, S is usually given in units of a2

0
for electric dipole transitions, and A as decays per second.

3.2.3 Electron impact excitation

Electron–ion collision in a plasma with free electrons and
positive ions could excite the ion in initial state i to a
higher state j

e(ε)+ X+n
i → e(ε′)+ X+n

j . (3.15)

The excited state j decays by emission of a photon hνi j
producing an emission line. This mechanism is the domi-
nant contributor to emission of forbidden lines (Chapter 4)
due to transitions among low-lying energy levels with
small energy differences (in contrast, (e + ion) recombi-
nation lines seen in emission spectra generally occur via
allowed transitions).

Shown at the top of Fig. 3.5, the first reaction, elec-
tron impact excitation (EIE), occurs with transfer of
kinetic energy 1

2 mv2 =
Ei j from a free electron to
the bound electron(s) in the ion X+. Suppose the inci-
dent free electron has kinetic energy 1

2 mv2= (ka0)
2 Ry

when measured in wavenumbers k at distance r→ −∞
from the ion X+. As it approaches the ion, the free
electron gains kinetic energy from ‘falling’ into the attrac-
tive positive Coulomb potential. Similarly, it loses kinetic
energy when receding from the ion back to r→ +∞.
But if the incident electron loses energy in exciting the
ion, it must have sufficient residual kinetic energy to
‘climb’ out of the attractive potential well. This energy
must be at least equal to that gained while falling towards
the ion, in order for the electron to escape after having
lost energy 
Ei j in exciting X+ to state j . Therefore,
excitation of the ion to state i , and escape of the free elec-
tron, cannot take place unless the incident kinetic energy
E = 1

2 mv2 ≥ Ei j .
As shown in Fig. 3.5, EIE can also proceed indirectly

via resonances. For simplicity let us take the initial state
to be the ground state, i.e., Ei ≡ Eg= 0, and 
Ei j = E j .
Consider the case where initially at r → −∞ the elec-
tron has insufficient energy to excite level j , i.e., E < E j .
However, the electron may gain sufficient energy to do
so while approaching the ion. If the distance of closest
approach is up to an impact parameter r = b from the ion,
then the electron kinetic energy on impact is

1

2
mv2

b =
1

2
mv2∞ + 2z

b/a0
Ry, (3.16)
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where z is the charge on the ion (the effective constant
charge number outside the radius b). Let us assume z = 1
for ion X+. If 1

2 mv2
b > E j then the electron may excite

the ion to level j from the ground state on impact, but
then would lack the energy 2za0/b Rydbergs required to
escape back to r→ + ∞. As in Fig. 3.4, the electron
could therefore become ‘bound’ to the ion in a doubly
excited resonance state whose energy Er is given by the

Rydberg formula Er = E j −
(

z2/ν2
j

)
Ry. Resonances,

denoted as X+(n−1)∗∗, are centrally located in Fig. 3.5 to
emphasize their role in all the inter-related processes, and
the fact that the same resonances manifest themselves in
the cross sections for all processes – (e + ion) scattering,
photoionization and (e + ion) recombination (DR).

The atomic parameter to compute is the cross section
σEIE(E) as a function of continuum electron energy E ,
an area expressed in cm2 or πa2

0, as discussed further in
Chapter 5.

3.2.4 Photoionization and radiative
recombination

If the incident photon energy exceeds the binding energy
of an electron in the target ion, then the bound elec-
tron may be knocked out leaving an ion with one charge
higher; this photoionization (PI) process is

X + hν � X+ + e(ε). (3.17)

The free electron, often termed a photoelectron, is said to
be in the continuum with positive energy ε that is equal to
the difference between the incident photon energy hν and
the electron binding energy or the ionization potential IP,
that is hν− IP = 1

2 mv2. The inverse process occurs when
a free electron combines with an ion, followed by the
emission of a photon hν. This is called radiative recom-
bination (RR). Beginning at the diagonally opposite end
from EIE in Fig. 3.5, we have the ionization of an ion
X+(n−1) by an incident photon hν leading back to the
free electron and the ion.

The parameters needed for these atomic processes are
the cross section for photoionization (σPI) and the recom-
bination cross section (σRC), described in Chapter 6.

3.2.5 Autoionization and dielectronic
recombination

Photoionization and elelctron–ion recombination can also
proceed through autoionizing resonances. The resonance
states may be formed provided that hν corresponds

exactly to the energies of the compound (e + ion) sys-
tem given by the Rydberg formula (Eq. 3.2). The PI cross
section thus has the same resonances as the cross section
for EIE, and the energy of a free electron is such that
an autoionizing state of the (e + ion) system is formed,
followed by break-up, as follows

e+X+n ↔ (X+n−1)∗∗ ↔
{

e+ X+n AI
X+n−1+ hν DR.

(3.18)

There are two pathways for the autoionizing or resonant
state, as shown in Fig. 3.6. The first branch is autoion-
ization (AI) or radiation-less break-up of the intermediate
resonance back to a free electron and the ion X+. The
second, the radiative branch, is dielectronic recombination
(DR) that leads to recombination and radiative stablization
into an (e + ion) bound state and an emitted photon. The
DR process, i.e., electron recombination via resonances, is
also referred to as ‘inverse autoionization’, but note that it
is accompanied by the emission of a photon, which carries
away the excess energy from the doubly excited resonant
state, leading to radiative stabilisation of the (e + ion) sys-
tem into a bound state of the recombined ion (X+(n−1)

in Fig. 3.5). Since the DR process is essentially electron
impact excitation of an ion and capture into a doubly
excited autoionizing state, followed by radiative decay,
the DR probability is coupled to that of the primary EIE
process. In fact, in many situations the resonant DR pro-
cess dominates RR, since the EIE rate is generally much
higher than the rate for direct RR. Therefore, the total
(e + ion) recombination rate may be enhanced by orders of
magnitude when DR is also considered in addition to RR.2

Now if we consider the inverse of the photoioniza-
tion process including resonances, then both the non-
resonant RR and the resonant DR processes may be
treated together. Whereas the RR and the DR recombi-
nation processes may be considered individually, there is
no such separation in nature between the two. All obser-
vations or experiments of the (e + ion) recombination
always measure both processes together. It is therefore
desirable to treat (RR⊕DR) in a unified manner. The uni-
fied treatment of electron–ion recombination is discussed
in Chapter 7.

3.2.6 Electron impact ionization

In addition to photoionization, ionization can also occur
by impact of a free electron and an ion, producing another
ion with one higher charge and the release of another

2 In Chapter 7 we shall see that the RR rate, in turn, is related to the PI

rate which is much smaller than EIE rates.
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FIGURE 3.6 Autoionization and radiative decay – dielectronic recombination.

bound electron. This is referred to as electron impact
ionization (EII):

e(ε)+ X+n ↔ e(ε′)+ e(ε′′)+ X+n+1. (3.19)

It is a three-body process, and rather more involved theo-
retically since the final state has two free electrons moving
with different energies ε′ and ε′′ in the potential of the
residual ion. Provided the energies ε, ε′ are sufficiently
low, the two post-collision electrons move in a corre-
lated manner. Such two-electron correlations are difficult
to treat theoretically. Experimentally, however, the situa-
tion is more tractable and a large number of measurements
have been carried out for most of the astrophysically
abundant atoms and ions. The EII process also has dif-
ferent dynamics and resonant behaviour from EIE or
photoionization and (e + ion) recombination, as described
in Chapter 5.

The inverse of the EII process is the collision and
recombination of two free electrons and an ion, referred
to as three-body recombination. It has a low rate, except
at high plasma densities, where it scales as n2

e .

3.2.7 Charge exchange recombination
and ionization

In circumstances where free charged particles in a plasma
source come into contact with neutral gas, ions and neu-
tral atoms (or molecules) may undergo a charge exchange
(CEX) process through the transfer of an electron. The
most common CEX reaction is with neutral hydrogen:

X+n + H I −→ Xn−1 + p+. (3.20)

An extremely important example is CEX of neutral oxy-
gen and charged particles in the ionosphere of the Earth,
the atmospheric layer that lies above the ozone layer.
Above the ozone layer, the atmosphere is subject to solar
UV radiation, which ionizes the otherwise neutral con-
stituents into ions and electrons. Since oxygen is a prime
constituent of Earth’s atmosphere, the CEX reaction

O+ + H I ↔ O I + p+ (3.21)

proceeds with a fast rate both ways, i.e., recombination
and ionization via charge exchange between oxygen ions
and hydrogen, and vice versa. In fact the O–H CEX
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reaction is referred to as resonant charge exchange, since
both the O I and the H I ionization potentials are nearly the
same, 13.6 eV. This implies that each ion reacts with the
neutral atom of the other at that resonant energy. The rates
of non-resonant CEX reactions are naturally lower. In
general, CEX reactions can considerably affect ionization
balance (Chapter 7), i.e., the distribution of elements in
different ionic states in the plasma. A variety of methods,
including elaborate molecular close coupling calculations,
has been carried out to compute CEX cross sections (see
[20] and references therein).

Charge exchange recombination can sometimes be
level-specific, and affect level populations. This is because
electron transfer into excited states could subsequently
decay to lower states, resulting in specific emission lines.
Examples of such reactions are found in laboratory fusion
plasmas, where highly charged ions recombine with neu-
tral atoms in the colder peripheral regions of an inertial or
magnetic confinement device (such as a tokamak). Since
recombination usually occurs into excited states, and
spectral formation due to recombination is always seen
as emission lines, CEX reactions lead to specific emission
spectra, characteristic of the plasma conditions in the lab-
oratory device. A prominent example is the observation
of lines of helium-like ions from excited states, caused
by CEX between hydrogen-like ions and neutral hydrogen
[21, 22].

3.2.8 Proton impact excitation

At first sight, it may appear that positively charged pro-
tons are not likely to impact and excite positive ions
in the plasma. That is, in fact, generally true, owing to
Coulomb repulsion. Also the proton is 1836 times more
massive than the electron, and the proton velocity at a
given plasma temperature is about 43 times slower than
that of the electron. So protons do not effectively com-
pete with electrons in exciting ions. But at sufficiently
high temperatures, and consequently high proton veloci-
ties, the proton thermal energy kTp may not only exceed
the Coulomb repulsion potential but may also be able to
excite low-lying atomic levels with small energy sepa-
ration 
E . Such a situation occurs with closely spaced
fine-structure levels. In plasmas with kTp � 
E , pro-
ton impact excitation needs to be considered. There are
two other points to bear in mind. First, the density of pro-
tons in astrophysical plasmas is usually not much less than
that of electrons, i.e., np ≈ 0.8ne, and second, the pro-
ton’s much heavier mass ensures that a large number of
orbital angular momenta (�) or partial waves contribute to

the scattering cross section (Chapter 5). For these reasons
proton impact rates at appropriate temperatures may be
comparable to, or even exceed, electron impact excitation
rates under certain conditions ([23, 24]; see also reviews
[25, 26] and recommended data [27]).

3.2.9 Ion–atom collisions

More generally, ions or atoms can collide with another
ion or atom and excite low-lying levels, albeit in uncom-
mon circumstances. For instance, excitation of fine struc-
ture levels due to hydrogen atom impact is observed in
mostly neutral sources, such as cooler regions of neb-
ulae and stars. The resulting spectra are usually in the
infrared. An example is the excitation of low-lying C or
O atomic energy levels by H I in partially ionized or neu-
tral regions of nebulae with low H I densities comparable
to or exceeding electron densities.3

One common theme among the last three processes –
proton impact excitation, charge exchange, and ion–atom
collisions – is that they are generally treated as molecular
collision problems, which we do not consider in this text.

3.3 Theoretical approximations

In the past few decades, considerable progress has been
made in precise theoretical calculations that may be
carried out using sophisticated computational programs.
However, large-scale calculations involving many atomic
states need extensive computing resources and effort.
In this section we describe some of the main theoret-
ical methods that enable the calculation of parameters
for atomic processes needed to model atomic spectra in
plasma sources. Quantum mechanically, the basic prob-
lem is to describe the electron–ion–photon system with
(i) a wavefunction expansion and (ii) a Hamiltonian
that includes the dominant interactions. The wavefunc-
tion expansion is a quantum superpostion of the possible
pathways or channels for a given process or reaction. In
general, the wavefunction expansion in theoretical cal-
culations is not exact and far from complete. Practical
calculations aim at limited though sufficient completness
and convergence according to specified criteria. The most
powerful methods were developed from atomic collision
theory and have been widely employed in a number of
computer codes used to generate vast quantities of atomic
data. However, the quality of the parameters is not of

3 Recommended data for many atomic and molecular processes are

available from the Research Report Series from the National Institute

for Fusion Science of Japan [27].
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uniform accuracy. It is important to understand the lim-
itations and validity of different methods theoretically as
well as in practice.

Atomic calculations are typically named after the
approximation used in obtaining the wavefunction repre-
sentation of the atomic system. The theoretical methods
are described in decreasing order of complexity as fol-
lows. First, we elaborate the general form of the wave-
function expansion in atomic collision theory that forms
the basis of the so-called coupled-channel approximation,
usually referred to as the close coupling (CC) approxi-
mation. That is followed by a detailed description of the
powerful R-matrix method [28], which is highly efficient
in implementing the CC approximation. We also discuss
the distorted wave approximation, which does not include
channel coupling but is otherwise of considerable util-
ity. Other approximations of more limited validity are the
Coulomb–Born and the Coulomb–Bethe approximations
used in (e + ion) scattering.

We also outline in some detail an extremely useful
theoretical tool, the quantum defect theory, used for the
analysis of computed energy levels and cross sections and
extension to energies not directly calculated. In addition,
the central-field model (cf. Chapters 2 and 4) entails a
radial potential without channel coupling in the (e + ion)
continuum. But it is often used owing to its simplicity,
compared with the Hartree–Fock or the coupled-channel
approximations.

3.3.1 Channels in atomic processes

The processes outlined previously show how atomic colli-
sions and radiation are responsible for spectral formation.
Before describing some of the methods that deal with
these processes, we discuss an essential concept in scat-
tering theory: channels that refer to possible pathways in
which an atomic process can occur. A particular chan-
nel specifies the quantum mechanical states of interacting
particles. For example, (e + ion) channels specify a tar-
get (or core) ion in some state and an interacting electron
with a given energy and angular momentum. Figure 3.7 is
a schematic illustration of incoming and outgoing chan-
nels into and from an interaction region.4 For instance, an
electron incident on the ion in the channels on the left-
hand side may exit via channels on the right-hand side.

4 In this text we confine ourselves to electron–ion and electron–photon

processes. But multi-channel scattering refers to all collision processes.

A general treatment of scattering theory is given in several excellent

textbooks, such as J. R. Taylor [29], R. G. Newton [30], U. Fano and

A. R. P. Rau [31] and, of course, Mott and Massey [32].

Interaction
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1 1

2 2

3 3
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Incident
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FIGURE 3.7 Collision channels and the interaction region
(modelled after [29]).

However, the energy of the incident electron is the factor
that determines whether it will scatter from the ion elas-
tically without exchange of energy, or inelastically with
transfer of energy to the ion, (de-)exciting it from one state
to the other.

For (e + ion) processes, each channel corresponds to
the total spin and angular symmetry of the reactants, the
electron and the ion. A channel satisfies conservation of
(i) energy and (ii) total angular momentum and parity.
Consider an atomic process with the channel symmetry
SLπ , representing the vector sum of the spin and angular
momemtum of the incident electron s, � and the state of
the ‘target’ ion Si Li . In L S coupling:

S = Si + s, L = Li + l, π = (−1)πi+�. (3.22)

The parity π of the (e + ion) system is the scalar sum of
the parity of the ion state (πi =−1 for odd, and +1 or 0
for even) and the incident electron angular momentum �.
Hence, we label a channel i by Si Li (Ji )πi ki�i (SL(J )π).
We may specify another qunatum number K in the alge-
braic pair coupling; representation as: Li + l = K and
K + s = J. Conservation of total energy E requires, for all
channels,

E = Ei + k2
i , (3.23)

loosely writing k2
i for channel energies (ki a0)

2 Ry. In
L S coupling, the Hamiltonian is invariant with respect to
the total (e + ion) symmetry SLπ . Calculations are car-
ried out for all SL(J )π symmetries that might contribute
to the problem at hand, such as excitation, photoioniza-
tion or reccombination (discussed in Chapters 5, 6 and 7,
respectively).

While the angular and spin quantum numbers specify
the symmetry, the channel wavefunction is the product of
the two independent wavefunctions:�i for the core or tar-
get ion in state i , and θi for a free electron interacting with
the target ion. The total (e + ion) wavefunction expansion
is a sum over all channels contributing to any particular
symmetry. Given an N -electron target ion, the total wave-
function for the (N + 1) electron (e + ion) system in the
coupled channel approximation is
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�E (e+ ion) = A
n f∑
i

�i (ion)θi , (3.24)

for nf channels. A is the antisymmetrization operator for
the (N + 1)-electron system, explicitly accounted for
as in the Hartree–Fock approximation (Chapter 2). All
wavefunction components, each defining a channel, are
coupled because the square of the wavefunction includes
not only the probabilities associated with individual chan-
nels but also the quantum mechanical interference among
them.

We illustrate these concepts for electron scattering
with the simplest ion, He+ or He II. Let us assume that
we are interested in only the first three states of the
hydrogen-like He II: 1s (2S), 2s (2S) and 2p (2Po). This
problem could refer to excitation of 2s or the 2p level from
the ground state 1s. The target ion angular momenta are
then Li = 0 and 1. Let us also restrict the orbital angu-
lar momentum of the free electron to only three values;
�= 0, 1, 2 (s, p, d orbitals continuum waves). The total
(e + ion) spin quantum numbers are S = 0 and 1, or
(2S + 1) = 1 and 3 (singlet and triplet), and total angu-
lar momenta L = 0, 1, 2, 3. Each total SLπ symmetry
for the (e + He+) system has a set of associated channels.
For example, the channel wavefunction expansion for 3S
(triplet S even) symmetry is

�(3S, k2)=�(1s)θ(k1s)+�(2s)θ(k2s)+�(2p)θ(k3p).

(3.25)

So we have a three-channel expansion for (e + He II) with
3S symmetry. Note the last term on the right where both
the target ion and the free electron have odd parities, and
hence even (e + ion) symmetry. The total energy is related
to the ion energy in each state and the relative kinetic
energy of the electron as

E = k2 = k2
1 + E1 = k2

2 + E2 = k2
3 + E3, (3.26)

where the subscripts 1, 2, 3 refer to the three target states
1s (2S), 2s (2S) and 2p (2Po). In general, there is a much
larger number of target states, many more orbital angular
momenta of the free electron (partial waves), and all pos-
sible total SLπ symmetries. In calculations, it is common
practice to specify k2

1 (which is a measure for the ‘far-
away’ kinetic energy of the electron relative to the ground
state) rather than E .

The simple example above refers to the three free
channels (nf = 3). Levels 2 and 3 are degenerate in L S
coupling: E(2s) = E(2p). Now consider the case k2

1 <

E2= E3: the incident electron has insufficient energy to
excite levels 2 and 3. In that case, channel 1 said to be
‘open’ if k2

1 > 0= E1, whereas the other two are ‘closed’,

since k2
1 < E2= E3, and the electron cannot excite the

ion to levels 2 or 3 and still escape the attractive Coulomb
field of the ion. In other words, a channel is open if the
incident electron kinetic energy is equal to or higher than
the target level associated with the channel; otherwise it
is closed. As discussed above, there are infinite Rydberg
series of resonances with levels 2 and 3 as series limits
(Fig. 3.4).

3.3.2 Scattering phase shift

Before proceeding into details of theoretical formulations,
we introduce the concept of phase shift in the asymptotic
form of a wavefunction by an interacting potential. Phase
shift will later be generalized to the scattering matrix for
the many-particle system when we discuss electron–ion
scattering.

The radial wave equation for an electron moving freely
with angular momentum l and wavenumber k,[

d2

dr2
− l(l + 1)

r2
+ k2

]
f (r) = 0 , (3.27)

is scale-invariant in the absence of any interacting poten-
tial. The solutions of this second-order linear ordinary dif-
ferential equation are the Riccati–Bessel functions jl (kr):

jl (kr) =
[
πkr

2

]1/2
Jl+1/2(kr), (3.28)

lim
kr→∞ jl (kr) = C sin

(
kr − 1

2
�π

)

= C

(
e
−i

(
kr− 1

2 �π
)
+ e

+i
(

kr− 1
2 �π

))
, (3.29)

where Jl+1/2 are the ordinary Bessel functions. They
have the desired behaviour limr→0 jl (kr) ∼ rl , and
asymptotically they are harmonic functions as the cen-
trifugal potential goes to zero, neglecting terms of the
order O(1/kr). The spherical Bessel functions are part
and parcel of the plane-wave expansion (with current or
flux normalization C),

C ei kz = C
∞∑

l=0

il jl (kr)Pl (cos(ϑ),

z = r cos(ϑ), C = √
1/(ka0) ,

(3.30)

which is the starting point when scattering a particle on a
target with spherical symmetry. Thus a partial wave phase
shift π� between incoming wave exp(−ikr) and outgoing
spherical wave indicates no interaction.
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3.3.3 Coulomb phase shift

The presence of an interaction potential alters the wave-
function of the free particle by a ‘shift’ in its phase after,
and due to, the interaction. The phase shift is introduced
with orbital angular momentum l, as the wave moves away
towards infinity from the interaction region. In general for
any potential that decays faster than the Coulomb poten-
tial V (r) ∼ 1/r , as r →∞, the asymptotic behaviour of
the radial function is

f (r) ∼ sin

(
kr − 1

2
lπ + δl

)
, (3.31)

where δl is the phase shift associated with angular
momemtum l.

The radial wave equation for a free electron in a
scaled Coulomb potential V (r) = 2z/r , and hence itself
Ryberg–Bohr-scaled, reads[

d2

dr2
− l(l + 1)

r2
+ 2z

r
+ k2

]
f (r) = 0 , (3.32)

and k2 must now be read as the (asymptotic) energy in
Rydbergs, following Section 2.1.2, in particular Eq. 2.27.
The asymptotic form of the solutions f (r) involves a
phase shift, owing to its long-range behaviour and a
logarithmic term as

lim
r→∞ f (r) = sin

(
kr − 1

2
lπ − z

k
ln(2kr)+ σl

)
, (3.33)

where the Coulomb phase shift is

σl = arg�
(

l + 1− i
z

k

)
. (3.34)

The functional form of Eq. 3.33 can be represented by
a cosine function as well. Considering both ingoing and
outgoing spherical waves in the total wavefunction, the
Coulomb functions are defined by

φ± = c ± i s , (3.35)

where the functions si (r) and ci (r) have the asymptotic
form [33]

s(ε, l; r) ∼ (πk)−1/2 sin(ζ ),

c(ε, l; r) ∼ (πk)−1/2 cos(ζ ),
(3.36)

and the Coulomb phase in Eq. 3.33 reads

ζ = kr − 1

2
lπ − z

k
ln(2kr)+ arg�

(
l + 1− i

z

k

)
.

(3.37)

Hence asymptotically the Coulomb functions are writ-
ten as

φ± ∼ (πk)−1/2 exp(±iζ ) . (3.38)

3.4 The close coupling approximation

In the close coupling (CC) approximation, the (e + ion)
atomic system is described by a system of (N + 1) elec-
trons. The ion core, also termed as the target or the core,
consists of N -electron states as in Chapter 2: frozen-
cores approximation; the (N + 1)th electron is the ‘free’
electron.5 The (N + 1)-electron system may also repre-
sent a bound state, either the ground or an excited state, as
well as the (e + ion) continuum, such as in the scattering
process or after photoionization. We write the continuum
solutions in a general form with the formal notation of
the CC method as implemented in atomic collision theory.
For simplicity, we restrict ourselves to the L S coupling
approximation. With full quantum number designations,
the target states of the N -electron ion are denoted as

�
(

Si , Li ,MSi MLi

∣∣∣r−1
N+1

)
, (3.39)

dependent on all coordinates except rN+1. The target state
is specified in terms of the angular momenta, spin and par-
ity as Si , Li ,MSi MLi and πi . The target functions�i are
vector-coupled products of the angular and spin variables.
For the (N + 1)-electron system, the quantum numbers

SL MS MLπ (3.40)

are the total angular, spin and parity of the (e + ion)
system; these are conserved during the collision process.
The channel index i refers collectively to the quantum
numbers

Si Li�i si −→ SLπ, (3.41)

where �i is the orbital angular quantum number of the free
electron (also referred to as a partial wave). The complete
CC wavefunction expansion for the (N + 1) electrons is

� = A
⎡
⎣ n f∑

i

�i (x1, . . . xN )
1

r
Fi (r)

⎤
⎦

+
nb∑
j

χ j (x1, . . . xN+1)c j , , (3.42)

where the target function �i involves all spatial and
spin coordinates xi of the N target electrons, and Fi (r)
is the radial wavefunction θi of the colliding electron
in Eq. 3.24. The first term on the right-hand side is
similar to the one we have already discussed, but where
we have introduced the radial variables for the target
ion and radial functions Fi (r) for the free electron in

5 The ‘free’ refers to freely varying wavefunction according to the Kohn

variational principle (Eq. 3.119 and Section 5.1.3). The collisional

electron may be in a physical continuum or bound (e + ion) state

depending upon the energy boundary condition we impose.
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channel i ; n f is the number of free electron channels
included in the CC wavefunction expansion. The sec-
ond term refers to nb bound electron channel functions
that compensate for the restrictions on the total (e + ion)
bound state wavefunction. These (N + 1)-electron bound
channel functions may be composed of the same one-
electron bound orbitals as used to construct the target
ion wavefunction �. However, in general the χ j may be
any square-integrable functions. Therefore, the χ j may
also be utilized for representing short-range interactions
that are always important for the accuracy of the total
wavefunction in the inner strong interaction region.

The energies and wavefunctions are obtained from
variational solutions

HN+1�E = E�E (3.43)

of the (N + 1)-electron Hamiltonian

HN+1 =
N+1∑
i=1

⎧⎨
⎩−∇2

i −
2Z

ri
+

N+1∑
j>i

2

ri j

⎫⎬
⎭ ; (3.44)

E is the total energy, with Ei the target energy in state i
and εi the energy of the added electron, E = Ei + εi . The
energy E = 〈�|H |�〉 and, as part of the trial function
�E , the coefficients c j and free-electron radial functions
Fi (r) are variationally determined (as discussed for the
distorted wave case with Eq. 3.119). In the R-matrix
method implementing the CC approximation, Eq. 3.42
(also Eq. 3.45), Fi (r) is composed of basis functions
ui, j (r) (Section 3.5). At positive energies εi = k2

i > 0 the

channel is open, and at negative energies εi =−z2/ν2
i < 0

it is closed. In the latter case, the radial functions Fi (r)
must decay exponentially in the limit r → ∞. Bound-
state solutions �B are normalized to unity. A continuun
wavefunction �F, which is flux-normalized, describes the
collisional process with the free electron interacting with
the target at positive values of ε.

Substituting the expansion (Eq. 3.42) into the (N + 1)-
election trial function Eq. 3.43 yields a set of coupled
equations for the radial components Fi (r):[

d2

dr2
− l(l + 1)

r2
+ 2Z

r
+ k2

i

]
Fi (r) (3.45)

= 2
∑

j

[
Vi j (r)Fj (r)+

∫ ∞
0

dr ′Wi j (r, r
′)Fj (r

′)
]

+
∑
nl

λi,nl Pnl (r)δl,li ,

where Vi j is the direct potential representing multi-
pole potentials and Wi j is the exchange potential. The
Lagrange multipliers λi,nl are a result of the orthogo-
nality condition imposed on the continuum functions Fi ,

such that they are orthogonal to the spectroscopic bound
orbitals Pnl (r) of the target ion

〈Fi (r)|Pi (nl)〉 = 0 . (3.46)

Each channel i is coupled to all other channels j summed
over on the right. Note that the integral in the exchange
potentials Wi j implies that the CC equations are coupled
integro-differential equations [34]. However, the exchange
potential

∫
W F between the free electron and the bound

electrons in the ion is evaluated such that it is negli-
gible outside the envelope of bound electrons. This is
one of the essential features of the CC approximation. In
the R-matrix method (Section 3.5), configuration space
is divided into the so-called inner and outer regions, as
shown in Fig. 3.8. In the outer region, i.e., beyond the
effective radial extent of the bound electrons in the set
[Pnl (r)] exchange is neglected, but in the inner region
the total (N+1)-electron wavefunction, Eq. 3.42, is explic-
itly antisymmetrized. The coupled equations (Eq. 3.45)
are formally equivalent to Hartree–Fock equations we
discussed earlier in Chapter 2, except that there is one
electron in the continuum.6

3.4.1 Scattering matrices and cross section

Let us first investigate the asymptotic forms of the coupled
channel continuum wavefunctions. The coupled differen-
tial equations (Eq. 3.45) can be integrated outward subject
to the R-matrix boundary conditions at r = a and then fit
to an asymptotic expansion. We denote the free electron
energy k2

i as εi , and let nf = no + nc, where no is the
number of open channels and nc is the number of closed
channels. Then

R-matrix
boundary

Outer regionInner region

r = a

r < a a < r < ∞

FIGURE 3.8 Configuration space in the coupled channel
R-matrix method.

6 The earliest reference to the close coupling method is by M. J. Seaton,

who named it the ‘continuum-state Hartree–Fock method’ and carried

out the first CC calculation for electron impact excitation of O I in

1953 [35].
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k2
i > 0 i = 1, no, (3.47)

k2
i < 0 i = (no + 1), nf . (3.48)

For open channels, the continuum radial functions
must refer to both the incident and the outgoing channels,
say i and i ′. The free electron radial functions are then
Fii ′ (r). As discussed above, the continuum waves have an
asymptotic form that may be described in terms of func-
tions related to sine and cosine functions, with Coulomb
phase ζ from Eq. 3.37:

Fii ′ (r) ∼ si (r)Aii ′ + ci (r)Bii ′ (i, i ′ = 1, no), (3.49)

Fii ′ (r) ∼ exp(−ζr) ∼ 0 (i = no + 1, n f ), (3.50)

where A and B are no × no square matrices and

s(ε, �; r) ∼ (πk)−1/2 sin(ζ ), (3.51)

c(ε, �; r) ∼ (πk)−1/2 cos(ζ ). (3.52)

Note that for the multi-channel case we now have matrices
that define the amplitudes of the continuum waves; these
are related to the flux (as in Eq. 3.4), as we shall discuss
later in the chapter on electron–ion scattering. For the time
being, it is useful to define these matrices in general. First,
the reactance matrix

K = B A−1. (3.53)

With Coulomb functions φ ± = c± i s and their asymp-
totic form given in Eqs 3.35 and 3.38 we now define the
most important quantity in the collision process:7 the scat-
tering matrix S. The S-matrix quantifies the flux in the
outgoing continuum waves asymptotically as

Fii ′ (r) ∼
1

2

[
φ−(r)δ(i, i ′)− φ+(r)S(i, i ′)]

for i, i ′ = 1, no, (3.54)

Fii ′ ∼ 0 for i = (no + 1), nf. (3.55)

The first subscript of Fii ′ denotes the incident channel i ,
while the second subscript specifies a boundary condition
corresponding to the outgoing channel i ′. It follows that
the scattering matrix is related to the reactance matrix as

S = (1+ iK )(1− iK )−1. (3.56)

A fact of considerable computational convenience is that
the S-matrix is complex, whereas the K -matrix is real. In
practice, it is often easier to compute the K -matrix. The
matrix S satisfies the unitarity condition

S† S = 1 → S = ST, S∗S = 1, (3.57)

7 The physical description of these quantities is given in detail in

Chapter 5 in the context of electron–ion collisions.

where the supercript T denotes the transposed matrix. The
mathematical condition of unitarity (see also Chapter 5)
is related to the physical requirement of conservation of
incident and outgoing fluxes in the scattering process. For
the single channel case, it also follows that

S = 1+ iK
1− iK

= e2iδ, (3.58)

and the real part of the S-matrix or the K -matrix is related
to the quantum defect μ as

K = tan(πμ), δ = πμ. (3.59)

The elastic scattering cross section σ in terms of the
phase shift is given by the well-known formula (discussed
in Chapter 5)

σ(ϑ) =
∣∣∣∣∣∣

1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl (cosϑ)

∣∣∣∣∣∣
2

, (3.60)

where k is the wavenumber which we employed in
Eq. 3.32 for dimensionless (ka0), the number of waves
along a distance of one Bohr radius.8

To summarize some of the salient features of the CC
approximation:

• The coupled channel approach is, in principle, equiva-
lent to quantum superposition of (e + ion) pathways for
electron and photon interactions. The total wavefunc-
tion for the (e + ion) system is a sum over all individual
channel wavefunctions; the square of the wavefunction
then yields the coupling.

• The open and closed channels are characterized accord-
ing to the kinetic energy of the free electron relative to
the target ion.

• Resonances are a particular manifestation of channel
coupling: they arise from coupling among the open
channels with continuum wavefunctions, and closed
channels with exponentially decaying wavefunctions.

• The presence of resonances in cross sections makes
them highly energy dependent, necessitating CC cal-
culations for a large number of energies. An important
feature of CC calculations is that resonant structures in
the atomic processes are included naturally. The com-
plex resonant structures in collisional excitation, pho-
toionization and recombination result from couplings
between continuum channels that are open (k2

i > 0)

8 It also means full circle in physics: to re-composition from

de-composition, when the colliding electron – a plane wave (Eq. 3.30),

later modified for the long-range Coulomb potential – was expanded in

spherical partial waves via Legendre polynomials. It implies summing

over the various expansions, the finite range of partial waves � in

particular.
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and bound channels that are closed (k2
i < 0) and form

at electron energies k2
i corresponding to the Rydberg

series of states converging onto the target thresholds.

• At negative electron energies all channels are closed.
Bound states of the (e + ion) (N + 1)-electron system
occur at eigenvalues of the (N + 1)-electron Hamilto-
nian. For a given symmetry SLπ all closed channels
represent bound states, and are exactly equivalent to
electronic configurations. In principle, the CC method
for bound states is equivalent to the multi-configuration
Hartree–Fock method with configuration interaction
included via coupled closed channel functions. Since
generally there are many closed channels for each SLπ ,
a CC calculation amounts to a large configuration inter-
action atomic structure calculation for all bound states
of each symmetry. This powerful technique enables the
calculation of a large number of bound state wavefunc-
tions, transition proabilities and photoionization cross
sections for arbitrarily high states of excitation along
a Rydberg series, as done in the work on the Opacity
Project [36, 37] and the Iron Project [38].

3.5 The R-matrix method

Based on the general concepts of the CC approximation,
we outline the R-matrix method as developed by P. G.
Burke and collaborators [39, 28]. The R-matrix method
forms the basis for a powerful set of computer codes
for a comprehensive treatment of the atomic processes
in Fig. 3.5. Although the method was first employed in
nuclear physics [40, 41, 42, 43], its physical aspects ren-
der it highly suitable for atomic (and molecular) problems.
The basic idea is to consider the projectile–target interac-
tion space (or configuration space) as two distinct regions,
as in Fig. 3.8: an inner region, where the projectile is
close to the target and interactions are strong, as in the
CC approximation already described. In the outer region,
the interactions are weak (particularly exchanges) or long-
range, and may be treated via asymptotic approximations.
Whereas in the inner region all close interactions must be
fully accounted for, in the outer region the potentials, and
hence the wavefunctions, have simpler and generally well-
known forms, such as in terms of the Coulomb functions.
The (e + ion) continuum wavefunction can be expanded
in the inner region at any energy in terms of a basis
set of square-integrable eigenfunctions. The R-matrix is
defined as the inverse of the logarithmic derivative of the
wavefunction at the boundary between the inner and outer
regions. Then the (e + ion) scattering wavefunctions can
be computed by matching suitably asymptotic functions at

the R-matrix boundary (or the channel radius). In addition,
bound state wavefunctions can be obtained by matching
to exponentially decaying functions asymptotically in all
channels.

3.5.1 Single-channel problem

Prior to multi-channel generalization, a simple sketch of
the R-matrix method can be drawn for a single-channel
scattering [44]. First, consider s-wave (� = 0) scattering
with a short-range central potential described by(

d2

dr2
+ V (r)+ k2

)
u(r) = 0. (3.61)

Suppose V (r) = 0 for r > a. Then the radius r ≤ a
defines the aforementioned inner region and r > a
defines the outer region. The radial functions then have
asymptotic form

u(r) = sin(kr)+ K cos(kr), (r ≥ a). (3.62)

Now we invoke one of the main points of the R-matrix
method: the wavefunction u(r) in the inner region r < a
is expanded in terms of a complete orthogonal basis set of
eigenfunctions [u j (r)] for a given value �,

ul (r) =
∞∑
j

a j u j (r), (0 ≤ r ≤ a) (3.63)

∫ a

0
u j (r)u j ′(r)dr = δ j j ′ , (3.64)

obtained in a suitably chosen central-field potential
V (�, r)(

d2

dr2
+ V (lr)+ k2

j

)
u j (r) = 0 . (3.65)

As we shall see later, it is necessary in practice to con-
strain the infinite expansion in Eq. 3.63 to a finite number
j ≤ Nc. The number of nodes in u j (r) increases with j .
We need functions ul (r) regular at r = 0, i.e., limr→0 =
r�+1; at r = a we impose the logarithmic boundary
condition

a
u′(r = a)

u(r = a)
= b, (3.66)

for the slope u′ = du/dr , and b is a constant usually taken
to be simply zero. The expansion Eq. 3.63 converges uni-
formly for all values of the logarithmic derivative b except
at r = a. Nc must be large enough to support u(r), hence
increasing roughly linearly with wavenumber k, which
relates to the collision energy (ka0)

2 Ry, or k2 in atomic
units (see Chapter 4). The expansion coefficients can be
derived as in the following exercise.
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Exercise 3.1 Show that the expansion coefficients a j are

a j = 1

a

u j (a)(
k2

j − k2
) [au′(a)− bu(a)]. (3.67)

Hint: premultiply Eq. 3.61 by u j (r) and Eq. 3.65 by u(r),
and integrate both equations in the range r = [0, a].
Subtraction of the two equations yields an equation that
may be evaluated using Green’s theorem and the specified
boundary conditions on u j (r).

Once the expansion coefficients a j are determined, we
may substitute in Eq. 3.63 to evaluate the radial functions
u(r) everywhere in the inner region 0 ≤ r ≤ a. The
R-matrix can now be defined in terms of the functional
values at the boundary r = a as

R = 1

a

∞∑
j=1

[u j (a)]2
k2

j − k2
. (3.68)

The R-matrix relates the amplitude of u(r) to its derivative
on the boundary such that

R = u(a)

[au′(a)− bu(a]) . (3.69)

Note that with the choice b = 0, we have the R-matrix
as the simple logarithmic derivative on the boundary. But
computationally the most significant point is that in the
R-matrix the energy enters as k2 in Eq. 3.68 indepen-
dently of the inner region expansion. Therefore, once the
R-matrix is evaluated, other energy-dependent quantities
may be obtained in the outer region at any energy provided
their functional forms are known. The outer region func-
tions, of course, have known asymptotic wavefunctions
dependent explcitly on the energy, as in Eq. 3.62.

It follows that we can obtain quantities such as the K -
matrix in terms of the R-matrix by matching the inner
region expansion to the asymptotic form Eq. 3.62 at the
boundary. For the single channel case this is

K = −sinka + R(kacoska − bsinka)

coska + R(kasinka + bcoska)
. (3.70)

This relation demonstrates, without loss of generality,
how the physical reactance matrix K can be obtained in
terms of the R-matrix basis functions. The single chan-
nel model can be generalized in a straightforward manner
to non-zero angular momenta by adding the centrifugal
potential −�(� + 1)/r2 to Eq. 3.61. Recall that the radial
functions are then spherical Bessel functions with simple
asymptotic forms

f�(kr) = j�+1/2(kr) ∼r→∞ sin(kr − �π/2), (3.71)

gl (kr) = j−�−1/2(kr) ∼r→∞ cos(kr − �π/2). (3.72)

The model can be further extended for a long-range
Coulomb potential in the external region, where the solu-
tions are the regular and irregular Coulomb functions dis-
cussed earlier (Eq. 3.35). To complete the single-channel
scattering picture we can write the radial function in terms
of the asymptotic ingoing and outgoing spherical waves

f (r) ∼ exp(−ikr)− S� exp(ikr), (3.73)

for particle scattering with angular momemtum � in
a short-range potential. The single-channel scattering
matrix is

S� = (1+ iK�)(1− iK�)
−1. (3.74)

3.5.2 Multi-channel problem

The generalization to the coupled multi-channel case
entails more than a few modifications of the single-
channel problem. First, we have the target, which is an
ion with internal structure that comprises of several, if not
many, excited states. The general form of the potential
is, therefore, not given by a central field, but by explicit
computation of the potentials in all states of the ion of
interest, or included in the (e + ion) problem. The target
ion must therefore be described accurately with suitably
high precision. Second, the R-matrix, and hence the phys-
ical parameters such as the K -matrix, cannot be obtained
in closed analytic form as in the single-channel case. The
expansion coefficients for the channel radial functions in
the inner region must be obtained on solving the coupled
integro-differential equations (Eq. 3.45) for the (e + ion)
system, with an (N + 1)-electron Hamiltonian containing
all necessary interaction terms. Third, the matching proce-
dure at the R-matrix boundary involves inward integration
of asymptotic functions computed in the outer region.

We begin with the division of configuration space
described above in Fig. 3.8: an inner region circumscribed
by the radial extent of the ion r < ra . In the outer region,
exchange is neglected; the interaction potentials Vii ′ (r)
are the Coulomb and other long-range multipole poten-
tials. The R-matrix boundary a is set such that all target
orbitals have decayed to |Pnl (a)|/max (|Pnl |) < δ, to
some pre-specified small value δ of say 10−3, i.e., the
radial functions decay down to one-thousandth of their
peak value.

The (N + 1)-electron system behaves in a similar way
to a bound state inside the boundary and is represented
by a configuration interaction expansion analogous to that
used in bound state calculations. The coupled integro-
differential equations (Eq. 3.45) are solved in this region.
In the outer region, the electron moves in the long-range
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multipole potentials of the target and the wavefunction is
represented in terms of Coulomb functions. The target or
the core state wavefunctions are expanded in terms of con-
figurations �i =

∑
i aivi in Eq. 3.42. The configurations

are built up from one-electron orbitals coupled together to
give an antisymmetric function (Slater determinant), and
configuration interaction is taken into account as in the
standard Hartree–Fock method (Chapter 2). Each orbital
is a product of a radial function, a spherical harmomic and
a spin function

v = χms (σ )Y�m� (ϑ, ϕ)(1/r)Pn�(r). (3.75)

Atomic structure codes such as CIV3 [45] or
SUPERSTRUCTURE [10] can be used to obtain the set of
one-electron orbital wavefunctions Pn� that represent the
target states � employed in Eq. 3.42.

3.5.3 Inner region

As for the single-channel case, the basic idea is that in
the inner region the total wavefunction can be expanded
in terms of basis functions, which now involve the tar-
get ion and a set of continuum-type orbitals representing
the free electron [46]. The (N + 1)-electron wavefunction
expansion is

�k(x1, . . . , xN , x) (3.76)

= A
∑
i j

ci jk�i (x1, . . . , xN )
1

r
ui j (x)

+
∑

j

d jkχ j (x1, . . . , xN+1) .

The N -electron target eigenfuctions �i are expanded in
terms of configuration interaction (CI) basis functions φk
(cf. Chapter 2) as

�i (x1, . . . , xN ) =
∑

k

bikφk(x1, . . . , xN ), (3.77)

where xi ≡ risi represents the spatial coordinate and
spin of the i th electron. Generalizing the single-channel
case (Eq. 3.63), the ui j are the free-channel radial func-
tions, expanded in terms of continuum basis functions of
a (computationally mangeable) set of angular momenta.
Comparing with the general form of the CC wavefunc-
tion, Eq. 3.42, the coefficients ci jk and d jk are obtained
on diagonalization of the basis functions �k with respect
to the (N + 1)-electron Hamiltonian(
�k |H(N + 1)|� ′k

) = Ekδkk′ , (3.78)

where the parentheses replace bras and kets so as to indi-
cate indicate spatial integration over the inner region only,

in the range from r = 0 up to the R-matrix boundary,
r = a. The continuum orbitals ui j (r) in Eq. 3.76, for each
angular momentum li in the basis set, are obtained in a
suitable model central potential V (r), i.e.,[

d2

dr2
− li (li + 1)

r2
− V (r)+ k2

i j

]
ui j (r)

=
∑

n
λi jn Pnli (r). (3.79)

The R-matrix boundary conditions are

ui j (0) = 0,
u′
u
= b

(
u′ = du

dr

)
. (3.80)

The role of the Lagrange multipliers on the right-hand side
of Eq. 3.79 is to ensure that the continuum orbitals of a
given angular momentum �i are orthogonal to the bound
one-electron orbitals Pn�i ,

(ui j |Pn�i ) = 0, (3.81)

integrated over the finite range up to r = a. Since the
bound one-electron functions Pn�i are also orthogonal to
one another, all of the bound and continuum orbitals taken
together[

Pnmin�i , . . . Pnmax�i ; ui,1, ui,2, . . . ui,n
]

form a complete set in the range r = [0,a] for each �i ; n
is the total number of continuum orbitals. This basis set,
and hence the set ψk , is independent of the total energy E
of the (N + 1)-electron system. The energy dependence
arises through the coefficients AEk , which are obtained
as follows. The total wavefunction expansion in the inner
region is

�E =
∑

k

AEk�k . (3.82)

Though themselves not physical, the functions�k provide
a basis for the expansion of the physical multi-channel
wavefunction �E in terms of the target eigenfunctions
�i and radial channel functions Fik(r). In the inner
region (sometimes denoted by subscript ‘I’) the total
wavefunctions �k are diagonalized and normalized, such
that(
�k |H N+1|� ′k

)
I
= Ekδkk′ . (3.83)

In the inner region we have

(�E |�E )I =
∑

k

|Ak E |2, (3.84)

and from Eq. 3.82 the coefficients

Ak E = (�E |�k). (3.85)
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The radial functions at energy E are expanded in terms of
their basis functions as

Fi E =
∑

k

uik(r)Ak E . (3.86)

It follows that

(H − Ek)(�k |�E )− (�k |(H − E)|�E ) = 0, (3.87)

which on integration by parts gives

(E − Ek)(�k |�E )

=
∑(

u′ik(a)Fi E (a)− uik F ′i E(a)
)
, (3.88)

as before scaled in Rydberg units
(
minus a good number

of additional factors of two from the identity 2 Ry = H,
Eq. 1.22, if one measures energy in ‘atomic’ units such as
in [46]

)
. From the equation above [33] we have

Ak E = (Ek − E)−1
∑

i

uik
(
F ′i E (a)− bFi ′E (a)

)
(3.89)

and, using Eq. 3.86,

Fi E (a) =
∑

i ′
Rii ′ (E)

(
F ′i ′E (a)−

b

a
Fi ′E (a)

)
, (3.90)

where the R-matrix has been introduced with elements

Rii ′ (E) =
∑

k

uik(a)(Ek − E)−1ui ′k(a). (3.91)

There is another practical difficulty not thus far
addressed: how to alleviate the restriction on the basis
functions u(r), which end at the boundary r = a with
the same slope, usually horizonal – while their true phys-
ical compositions F(r) do so only at discrete collision
energies in quasi-periodical sequence. Hence, computed
quantities such as cross sections, while correct at those
discrete energies (within the trial function expansion),
show sinusoidal behaviour in between in cases expected
to be smooth, with amplitudes growing more wildly as
one reduces the number Nc of basis functions for a given
value of �, as expected from Fourier experience. To choose
Nc much bigger than required to support the physical
solutions, say with about twice as many nodes, is not
economical and can be numerically detrimental. But one
can pursue the idea as follows, devised by Buttle [47].
Since the contribution to the R-matrix from Nc to ∞
is from high-lying terms in energy, they may be evalu-
ated assuming a model problem that neglects multipole
potentials (including exchange) with uncoupled channels.
These additional terms are then important only for the
diagonal terms in the R-matrix. The correction to the diag-
onal elements Rc

i i (with channel index i) is given by the
Buttle correction

R c
i i

(
Nc, k

2
i

)
≈ 1

a

∞∑
k=Nc+1

|uik(a)|2
Eik − Ei

(3.92)

=
[

a

F0
i (a)

(
dF0

i
dr

)
r=a

− b

]−1

− 1

a

Nc∑
k=1

|uik(a)|2
Eik − Ei

.

Hence, the Buttle corrected R-matrix is given by

Rii ′ =
1

a

∑
k

ui (a)ui ′(a)
Ek − E

+ R c
i i ′

(
Nc, k

2
i

)
δi i ′ . (3.93)

We again note that the R-matrix is obtained by diago-
nalizing H N+1 once for each symmetry, specified by a set
of conserved quantum numbers and parity of the electron–
target system (Eq. 3.41). Thereafter the wavefunctions in
the outer region and all needed physical quantities may be
obtained. Generalizing for all channels inside the sphere
we can write the radial wavefunction (Eq. 3.90) in matrix
form, introducing the compact notation

F = a R · F′ − b R · F, (r ≤ a), (3.94)

where each boldface variable is a matrix whose size is
given by the number of channels; the ‘dot’ indicates
matrix multiplication. The logarithmic derivative of the
radial wavefunction of the collisional electron on the
boundary is given by F(a), and is to be matched across
the boundary to the external or outer region. The ‘surface’
amplitudes uik(a) and the poles Ek of the basis functions
�k are obtained directly.

3.5.4 Outer region

By choice, the outer region (Fig. 3.8) is outside the charge
distribution of the ion, and exchange between the free
electron and the target ion is neglected. In the outer region
the (N + 1)-electron-coupled integro-differential equa-
tions (Eq. 3.45) reduce to coupled differential equations,
without the W-integral that represents exchange terms.
Therefore, the channel radial functions Fi (r) in the outer
region are given by[

d2

dr2
− li (li + 1)

r2
+ 2z

r
+ k2

i

]
Fi (r)−

∑
j

Vi j Fj (r)= 0,

i = 1, nf, (r ≥ a), (3.95)

where nf is the number of free channels retained in
the expansion and Vi j (r) are multipole potentials due
to electron–electron interaction of the colliding electron
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with the target electrons. The elements Vi j are given in
terms of the target states �i and � j as

Vi j (r) =
〈
�i

∣∣∣∣∣∣
N∑

m=1

1

rm,N+1

∣∣∣∣∣∣� j

〉
. (3.96)

Expanding the two-electron operator in terms of spherical
harmonics,

Vi j (r)=
〈
�

∣∣∣∣∑
i=1

∑
λμ

4π

2λ+ 1
Yμλ (r̂i )Y

μ∗
λ (r̂N+1)

1

rλ+1

∣∣∣∣�
〉

=
∑
λ

Cλi j

rλ+1
. (3.97)

The long-range potential coefficients Cλi j are defined in
terms of the Legendre polynomials as

Cλi j =
〈
�i

∣∣∣∣∣∣
N∑

m=1

rλmPλ(cosϑm,N+1)

∣∣∣∣∣∣� j

〉
. (3.98)

In practice, we include multipole contributions of
λ = 1 and 2 (dipole and quadrupole). From the fact that the
target wavefunctions �i (Eq. 3.77) are negligibly small
for r ≥ a, it follows that

|Vi j (r)� 2z

r
, for r ≥ a . (3.99)

The multipole potentials are, therefore, small pertur-
bations. The outer-region-coupled differential equations
then become(

d2

dr2
− li (li + 1)

r2
+ 2z

r
+ k2

i

)
Fi (r)

=
∑
λ

n f∑
j=1

Cλi j

rλ+1
Fj (r). (3.100)

These solutions from the external region are matched
to the inner region at the R-matrix boundary r = a, and
propogated outward to fit to asymptotic forms (Eqs. 3.49
and 3.50), where we have expressed the open-channel
solutions in terms of the reactance matrix K with indices
running over all open channels no, and closed-channel
solutions in terms of an exponentially decaying factor.

3.5.5 Open channels

The open-channel solutions are required for electron–
ion scattering (Chapter 5), and for photoionization and
(e + ion) recombination (Chapters 6 and 7). To derive for-
mal expressions, it is useful to adopt the compact matrix
notation introduced earlier (Eq. 3.94). The open-channel
wavefunction in the outer region is

F = s + cK , (r ≥ a). (3.101)

Substituting it into the R-matrix boundary condition at
r = a and eliminating F, we get

s + cK = a R(s′ + c′K )− bR(s + cK ). (3.102)

Exercise 3.2 Derive Eqs 3.101 and 3.102 and matrices
A, B that represent the asymptotic form of the reactance
matrix K = BA−1 in Eq. 3.53.

Solving for K (symmetric matrix),

K = A−1 B=[c− R(ac′ − bc)]−1[−s + R(as′ − bs)],
(3.103)

where

A = c − R(ac′ − bc), B = −s + R(as′ − bs). (3.104)

As noted before for the single-channel case (Eq. 3.70),
once the multi-channel R has been calculated, K can be
obtained directly. And from K we obtain the S-matrix
and hence the cross sections (Chapter 5). The R-matrix is
determined by a single diagonalization in the inner region,
and the outer region wavefunctions are matched at the
R-matrix boundary, to yield cross sections at all energies.
The multi-channel scattering problem in general has some
channels open and some closed. The interaction between
the open and closed channels gives rise to resonances,
which we shall study in later chapters.

3.5.6 Bound states: all channels closed

In the CC approximation, the (e + ion) wavefunction may
correspond to bound states if the total E < 0, and there-
fore all nf free channels are closed. Bound states occur at
negative eigenenrgies of the (N+1)-electron Hamiltonian
(Eq. 3.43)

(HN+1 − E)�N+1(e + ion) = 0. (3.105)

We expand Fi in terms of closed channel functions
(Eqs. 3.76 and 3.77)

ci j (r)
∑

r→∞
exp(−φi )δi j , (i, j = 1, no + 1, nf).

(3.106)

Putting x j ≡ exp(−φ j ),

Fi (r) =
n∑

j=1

ci j x j , (r ≥ a), (3.107)

which in matrix notation simply appears as F = cx. As for
open channels, the matching involves equating the coef-
ficients of the outer region expansion above to the inner
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region radial functions in terms of the R-matrix basis.
Adopting matrix notation, and putting Fi in the R-matrix
boundary condition at r = a, we get

F = cx = aRc′x− bRcx, (3.108)

which is a set of nf homogenous equations for determining
x j . Writing it as

Bx =
[
c− aRc′ − bRc

]
x = 0, (3.109)

the components x j of the matrix columns of x are obtained

from
∑n f

j=1 Bi j x j = 0. These equations have only non-
trivial solutions at the negative energy eigenvalues corre-
sponding to bound states of the electron–target system. In
matrix form: Bx = 0, and therefore the non-trivial solu-
tions occur at eigenvalues that satisfy the determinantal
condition

|B| = 0. (3.110)

This equation is solved iteratively and the bound state
energies and wavefunctions of the (N+1)-electron system
are obtained [48, 33]. To treat radiative processes with the
R-matrix method we require a large number of excited
bound state energies and wavefunctions to compute
bound–bound radiative transition probabilities, bound–
free photoionization cross sections, and free–bound
(e + ion) recombination cross sections and rate coeffi-
cients, as discussed in Chapters 4, 6 and 7, respectively.

3.5.7 The R-matrix codes

The R-matrix framework outlined in the preceding sec-
tions enables us to compute the bound and free atomic
wavefunctions and the basic quantities, (i) the scattering
matrix and (ii) the dipole (or multipole) matrix elements.
In subsequent chapters, we discuss their usage in the
treatment of atomic interactions, such as electron impact
excitation (Chapter 4), bound–bound radiative transitions
(Chapter 5), and bound–free photoionization (Chapter 6)
together with the inverse process free–bound recombina-
tion (Chapter 7). But prior to that, in the next section, we
briefly describe the computational methodology schemat-
ically illustrated in Fig. 3.9.

Although other computer program packages were
developed to implement the CC method, most notably
the IMPACT package from University College London
[49], the R-matrix method proved to be the most efficient
for large-scale calculations. As mentioned earlier, The R-
matrix package of codes has been used for the Opacity
Project [37] and the Iron Project [38] for radiative and
collisional CC calculations for nearly all atomic systems

of astrophysical interest.9 Although not apparent from the
simplified discussion in preceding sections, the R-matrix
codes in fact comprise at least three sets of codes that
implement the CC method to account for physical effects
with approximations of varying complexity. In addition,
technical improvements, such as massive parallelization
on high-performance supercomputing platforms, consti-
tute different branches of the large suite of computer
programs (e.g. [50]). Also, a variety of schemes exist for
simplifying or approximating the full R-matrix calcula-
tions through frame transformations, such as the inter-
mediate coupling frame transformation (ICFT) applied to
highly charged ions (e.g. [51]).

The various branches of the R-matrix computer pack-
ages (Fig 3.9) entail (i) pure L S coupling, (ii) L S coupling
with algebraic transformation and limited account of rel-
ativistic effects, (iii) relativistic effects in the Breit–Pauli
R-matrix (BPRM) approximation including (a) only the
one-body terms in the (e + ion) Hamiltonian (Chapter 2),
and (b) ‘full’ Breit–Pauli calculations, including nearly
all terms of the Breit interaction (Eq. 3.111), (iv) a new
version of R-matrix II codes with an enhanced alge-
braic treatment of all terms L S in the target configura-
tions [52], (v) Dirac R-matrix (DARC) methodology with
four-component wavefunctions [53, 54].

The matrix diagonalization of the (N + 1)-electron
Hamiltonian that yields the R-matrix is related to atomic
parameters, i.e., scattering matrices and dipole matrix
elements, from which the excitation and photoionization
cross sections and radiative transition probabilities may
be obtained. The (e + ion) wavefunctions �F (SLπ; E)
and �B(SLπ; E ′) may be calculated for both E > 0 and
E < 0; the former case corresponds to electron scatter-
ing, i.e., continuum states and the latter to bound states of
the system. The functions χ j form a set of L2-integrable
(N+1)-electron correlation functions required by orthog-
onality constraints (the radial functions Eq. 3.86 of the
colliding electrons); they may also represent a pseudostate
expansion. For moderate charge number, say Z < 30, the
BPRM method entails intermediate coupling [55], with
a pair-coupling representation Si Ll (Ji )li (Ki )si (Jπ). As
the individual states Si Li split into the fine structure lev-
els Ji , the number of channels becomes several times
larger than the corresponding L S coupling case, but the
computational problem may be more than an order of
magnitude larger.

9 A detailed description of these two projects, databases and their

astrophysical applications is given on the authors’ websites:

www.astronomy.ohio-state.edu/∼pradhan and

www.astronomy.ohio-state.edu/∼nahar.
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In Fig. 3.9 the L S or the BP (intermediate coupling)
calculations are based on accurate configuration inter-
action representation of the N -electron target states by
two atomic structure codes, SUPERSTRUCTURE [10])
and CIV3 [45]. The first two R-matrix codes, STG1
and STG2, are then employed to generate multipole inte-
grals and algebraic coefficients and set up the (N +
1)-electron Hamiltonian corresponding to the coupled
integro-differential equations. The Hamiltonian is diag-
onalized in STGH; in the BP calculations the diagonal-
ization is preceded by L S J recoupling in RECUPD, as
shown in the left branch of Fig. 3.9. The R-matrix basis set
of functions and the dipole matrix elements so produced
are then input into STGB for bound state wavefunctions,
STGF for continuum wavefunctions, STGBB for radiative
transition probabilities, and STGBF for photoionization
cross sections. In addition, STGF[J] is used to obtain
collision strengths for electron impact excitation in L S or
intermediate coupling and fine structure transitions.

3.5.7.1 Full Breit–Pauli R-matrix (BPRM)
method

Until recently the Breit–Pauli version of R-matrix codes
include only the one-body operators – mass–velocity, Dar-
win, and spin–orbit – had been incorporated [46, 56].
This is inadequate even for some low-Z ions, and the
two-body ‘magnetic’ terms must be included for high
accuracy, as discussed in Section 2.13.2. Further work
has now been concluded to include all eight operators in
the full Breit interaction [52], as in the BP Hamiltonian
(Section 2.13.2),

HBP
N+1 = HN+1 + Hmass

N+1 + HDar
N+1 + H so

N+1 + Hoo

+ Hssc + Hss + Hsoo. (3.111)

3.5.7.2 R-matrix II method
To improve the electron-correlation treatment within
the R-matrix formulation, Burke and collaborators have
developed new algebraic algorithms to enable complete
sets of N - and (N +1)-electron configurations in Eq. 3.42
to be generated, with one- or few-electron excitations. The
Rmatrix II codes are efficiently parallelized into a package
called PRMAT [57]. Recent calculations for astrophys-
ically important iron-group systems, such as Fe II and
N III include several hundred terms L S [58]. The Rma-
trix II codes (the middle branch of Fig. 3.9) employ the
two-dimensional R-matrix propagator technique through
sub-divisions of the atomic radius into several internal
regions. These sub-regions are circumscribed by separate
R-matrix boundaries. The R-matrix proper is subdivided

into block propagator matrices. Schematically, if s and
s−1 denote two adjacent regions, then the corresponding
R-matrices are related as

Rs = rss − rss−1[rs−1s−1Rs−1]−1rs−1s. (3.112)

The middle branch in Fig. 3.9 illustrates the correspo-
dence with the earlier version of codes in the left branch:
STG2 → ANG, RECUPD → FINE, STGH → HAM and
STGF→ FARM. Parallel versions of asymptotic codes are
denoted, for example, as PFARM.

3.5.7.3 Dirac R-matrix (DARC) method
For heavy atomic systems it is essential to use the
fully relativistic Dirac treatment in j j-coupling (the right
branch of Fig. 3.9), rather than the intermediate coupling
BPRM approach [59, 60]. The R-matrix methodology
using the Dirac Hamiltonian paved the way for the devel-
opment of the Dirac R-matrix (DARC) codes [53, 61].
The four-component spinors are used to describe orbital
wavefunctions:

ψnκm j =
(
ψL
ψS

)
= 1

r

(
χκm j Pnκ (r)

iχ−κm j Qnκ (r)

)
. (3.113)

The large radial component of the continuum electron, Pi
at the boundary can be expressed in terms of the R-matrix
(Eq. 3.91) as [59],

Pi (a) =
∑

j

Ri j
[
2acQ j (a)− (b + κ j )Pj (a)

]
. (3.114)

To construct the target ion eigenfunctions for the fully rel-
ativistic DARC calculations, a relativistic atomic structure
code with the Dirac formulation called GRASP2 is
employed [11]. To facilitate interface with the asymp-
totic BPRM codes, DARC calculations sometimes employ
four-component spinors in the inner region but two-
component spinors using the large component Pnκ in the
outer region. This may lead to some inaccuracy for very
highly charged ions or heavy elements. The effects of
small radial component Qnκ may be significant for certain
transitions and energy regions [62].

3.6 Approximate methods

The CC approximation incorporates most of the atomic
effects necessary for a comprehesive and accurate treate-
ment of (e + ion) processes. The importance of resonance
and coupling effects, inherent in the CC approximation, is
well-established. Although the CC calculations are com-
plex and intensive in terms of effort and computational
resources, these are now commonplace, especially using
the R-matrix method, and have been carried out for most
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FIGURE 3.9 The three main branches represent different versions of the R-matrix package of close-coupling codes as described in
the text.

astrophysically important atomic systems under the Opac-
ity Project and the Iron Project [37, 38]. Nevertheless, for
large-scale production of atomic data, simpler methods
remain in common usage, particularly for extensive mod-
elling of plasmas in laboratory fusion devices employ-
ing magnetic confinement (e.g., tokamaks) or inertial
confinement fusion (ICF). These approximations, which
we describe next, form the basis for several existing
codes.

3.6.1 Distorted wave method

The distorted wave (DW) method does not include cou-
pling among channels; only the initial and final channels

are considered in the scattering or the continuum prob-
lem. It follows that resonance effects, which arise due to
coupling among open and closed channels, are not con-
sidered in the DW approximation in an ab-inito manner.
But they may be included perturbatively using a vari-
ety of schemes. The DW approximation is valid when
coupling to channels other than the initial and the final
states is weak. Such a situation does not occur in gen-
eral in (e + ion) collision processes, but may be assumed
to be the case for strong (say dipole) transitions. In
highly charged ions, the Coulomb potential dominates
the electron–electron interaction, and coupling among all
channels is weak. Therefore, an example of where the
DW approximaion may be valid would be strong dipole
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transitions in highly charged ions. Furthermore, the DW
approximation is conveniently employed in constructing
collisional–radiative models that couple not only a large
number of levels within an ion, but also different ioniza-
tion states of an element.10

The main feature of the DW method may be illustrated
simply by neglecting the summation in the total (e + ion)
wavefunction expansion in CC approximation (Eq. 3.24).
More precisely, we may write the uncoupled Eq. 3.45 with
a single index i in the potential term[

d2

dr2
− Vi (r)− l(l + 1)

r2
+ k2

]
Fi (r) = 0, (3.115)

where Vi assume the asymptotic form

lim
r�R̄

Vi (r) = −2z/r (3.116)

far enough outside the target. Its solution is the radial
function in channel i , the continuum electron moving in
the potential of the ion in state i . The name of the DW
method stems from the idea that the radial functions are
thought to be ‘distorted’ from a free plane wave form in
the presence of the ionic potential of the initial and the
final state.

Given the asymptotic form

Fii ′ (r) ∼ sin(ζi )δi i ′ + cos(ζi )Kii ′ (3.117)

of the radial functions of the colliding electron in the
total wavefunction �, a solution of the Kohn variational
equation (see Section 5.1.3)

δ
[〈
�i |H − E |� ′i

〉− Kii ′ )
] = 0 (3.118)

secures stability for small variations in�i , �
′
i . With K trial

from trial functions �, the Kohn variational principle (cf.
Section 5.1.3) yields

K Kohn
i i ′ = K trial

i i ′ − (
�i |H − E |� ′i

)trial
, (3.119)

which differs from the exact matrix K in second order
of the error in the trial functions. Using the Kohn varia-
tional principle with K trial = 0 (and appropriate choice of
phases) we can write the K -matrix in the DW formulation
as [34]

K DW
i i ′ = − (

�i |H − E |� ′i
)
. (3.120)

We recall that in its simplest form the total (e + ion)
wavefunction � (Eq. 3.24) is the product �θ , where �
is the target function and θ is the free electron function

10 A discussion of the related physics and the widely used code for

semi-empirical atomic calculations for plasma applications is given by

R. D. Cowan [63].

with radial functions F(r). However, we can formulate
the DW approximation such that the total � also includes
the functions χ (Eq. 3.42), which, in addition to provid-
ing short-range correlation, would also lead to resonances
at eigenvalues of these functions. Since resonances are
of crucial importance in atomic processes, DW calcula-
tions sometimes include their effect in a perturbative or
ad-hoc manner. The (N+1)-electron bound state (e + ion)
wavefunctions may be explicitly included in the collision
problem [64]. These would then give rise to resonances in
cross sections at the eigenvalues of the (N + 1)-electron
configurations [65, 66]. However, only a limited num-
ber of resonances can be included individually in this
way, and Rydberg series of resonances converging on to
target thresholds may not be considered (see, however,
the section on quantum defect theory). Note that we are
able to write the K -matrix elements directly in Eq. 3.120,
because the channels are uncoupled, except of course for
initial and final channels.

There are a number of computer codes based on the
DW method, or variants thereof, such as the University
College London DW code [67], which uses the atomic
structure code SUPERSTRUCTURE [10] to construct the
target ion eigenfunctions� (Eq. 3.24). There are also sev-
eral relativistic DW (RDW) codes in pure jj-coupling. A
fully relativistic approach for calculating atomic data for
a variety of atomic processes, and a RDW code for highly
charged ions, has been developed by D. H. Sampson, H. L.
Zhang, and C. Fontes (e.g., [68]). The atomic structure
data necessary for electron–ion collision calculations are
either obtained by the Dirac–Fock–Slater code or by a
multi-configuration Dirac–Fock (MCDF) code [11, 54].
In the former case, the same potential is used for treating
both bound and free electrons so that all electron orbitals
are automatically orthogonal and the exchange integrals
are calculated in a consistent manner. In the latter case,
since a potential is constructed from bound wavefunctions
to solve for the free-electron orbitals, a different potential
from the one in the MCDF code can be used, such as a
semi-classical exchange potential.

In the RDW approach [68], the radial wavefunction
containing a large and small component P and Q (cf.
Eq. 3.113), for all orbitals, bound and free, that are
solutions of the single-electron Dirac equation,[

d

dr
+ κ

r

]
Pi (r) = α

2

[
εi − V + 4

α2

]
Qi (r) (3.121)

and

[
d

dr
− κ

r

]
Qi (r) = α

2
(V − εi )Pi (r) , (3.122)



68 Atomic processes

where α is the fine-structure constant, V (r) is a central
potential and the relativistic quantum number κ has the
values

κ = l, j = l − 1
2 ;

κ = −(l + 1), j = l + 1
2 . (3.123)

These single electron wavefunctions are used to form
a basis set of multi-electron wavefunctions for struc-
ture calculations or for e + ion collision calculations.
In doing this, a standard j j-coupling scheme, the nat-
ural scheme for a fully relativistic treatment, is fol-
lowed. The electron impact excitation collision strength is
then given by the K -matrix or reactance-matrix elements
according to

 i j = 2
∑

J

(2J + 1)
∑
�,�′
j, j ′

|K (Ji�j, J j�
′ j ′; J )|2 , (3.124)

where J represents the total angular momentum of the
(e + ion) system. The inner summations are performed
over all channels associated with J , and that correspond
to initial and final levels i and j .

The RDW approach has been extended to treat other
atomic processes: electron–impact ionization, photoion-
ization, electron capture and autoionization, and dielec-
tronic recombination [68]. When coupling with other
channels, except between the relevant initial and final
channels, is negligible, this RDW approach is expected
to yield accurate results, especially for high-Z highly
charged ions or for sufficiently high energies. The for-
mer is especially true, since it treats relativistic effects
non-perturbatively. The latter is practically useful for light
elements of astrophysical interest, since the data cal-
culated for high energies can be used to complement
low-energy R-matrix results, as done for photoioniza-
tion in [69]. However, for light elements and for low
energies, the RDW approach suffers from two deficien-
cies. First, the RDW approach generally overestimates
the background contribution to the cross sections (or
collision strengths) since this approach neglects channel
coupling and often employs the weak-coupling approxi-
mation, Eq. 3.120, which does not satisfy the principle
of unitarity, Eq. 3.57. We note that a fully unitarized
DW calculation can always be performed by calculat-
ing T - or S-matrix elements from the K -matrix ele-
ments in precisely the same manner that is employed
in the R-matrix approach, i.e., via the exact relation,
Eq. 3.57. Thus, it is possible to eliminate a lack of
unitarity as a cause of discrepancies between DW and
R-matrix results, in favor of a lack of channel coupling
in the former calculations. Second, the RDW approach

does not include resonances in an ab-initio manner.
This latter concern can be remedied by using Cowan’s
two-step method [63], also known as the independent-
process and isolated-resonance approximation (IRA; cf.
Chapter 7), to include resonance contribution to the rele-
vant processes. For example, the resonance contribution
to electron impact excitation can be considered as the
two-step process of electron capture followed by autoion-
ization [68].

It should be mentioned that, when using DW data to
solve rate equations associated with collisional-radiative
modelling, autoionization levels are treated explicitly, on a
par with bound levels. With this type of explicit treatment,
the resonance contribution to all processes, including the
appropriate radiation damping, is automatically taken into
account for all processes and their inverses within the IRA
approximation (see also Chapter 7).

3.6.2 Coulomb–Born approximation

A simpler variant of the DW approximation is the
Coulomb–Born (CB) approximation which results if we
replace the potential term Vi (r) by the Coulomb potential
−2z/r in Eq. 3.115. The radial function solutions are then
the Coulomb functions, known analytically (Eqs. 3.51,
3.52). Physically, the CB approximation is valid when the
free electron is relatively far from the ion, moving in the
Coulomb potential of the ionic charge on the whole, and
not interacting with the target electrons closely. Such sit-
uations occur for large angular momenta of the incident
electron, where the CB radial waves do not differ much
from the DW functions. Therefore, the CB method may
be used for large �-waves, but not for low-� scattering, for
which the CC, or at least the DW, approximation should
be employed.

An important difference between the CC and the
DW methods on the one hand, and the CB approxi-
mation on the other, is that exchange is not included
in the CB method (although another variant called the
Coulomb–Born–Oppenheimer approximation does allow
for exchange). The CB approximation, therefore, cannot
be used for spin-change transitions, which require close
low-� interactions between the electron and the ion.

We may write the CB K -matrix elements, using
Eq. 3.24 as

K CB
i i ′ = −

⎛
⎝�i θi

∣∣∣∣∣∣
N∑

n=1

1

rn,(N+1)

∣∣∣∣∣∣�′i θ ′i
⎞
⎠ , (3.125)

where the operator is the direct two-electron interac-
tion potential between the N target electron(s) and the
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free colliding electron ‘N + 1’; exchange is neglected.
Note the difference with the similar expression in the
DW approximation, where the Hamiltonian may include
other interactions in addition to the direct Coulomb
potential.

3.6.3 Coulomb–Bethe approximation

We may treat the collisional transition as an induced radia-
tive process. Provided the incident electron is sufficiently
far from the ion, and close interactions, such as electron
exchange, are not important, the approximate effect of
the collision is to induce a ’radiative’ dipole transition in
the target ion. This is called the Coulomb–Bethe (CBe)
approximation.

The CBe approximation is valid only for sufficiently
large angular momenta, which may be determined approx-
imately as follows [70]. Since the Coulomb potential is the
only one considered, we can write

2z

r0
− �(�+ 1)

r2
0

+ k2 = 0. (3.126)

The solution of the equation yields the conditionality

� > �0 =
[

k2r2
0 + zr0 + 1

4

]1/2
− 1

4
, (3.127)

where we may take r0 to be the mean radius of the tar-
get orbitals. This condition should then be satisfied for
both the incident and the outgoing channel momenta �, �′
in order for the CBe method to be valid. The condition
also provides a useful marker for the value of angu-
lar momenta sufficiently large for close interactions to
be unimportant. Conversely, for partial waves less than
l0, close encounters should be considered such as in the
CC method.

Although the CBe method is not accurate for low par-
tial waves, it is often useful to ensure convergence of the
partial wave expansion. The CC method is emoloyed for
low-� wave scattering, and the CBe method is used to
complete the summation to high partial waves (� > �0) for
dipole allowed transitions whose cross sections converge
slowly with �. Since Coulomb functions and related inte-
grals may be evaluated analytically, efficient procedures
have been developed to compute CBe cross sections up to
arbitrarily high � [70, 71].

3.6.4 Central-field approximation

As discussed in Chapter 2, bound or continuum state
wavefunctions of an atomic system may be computed

in a suitably chosen central potential V (r), such as the
Thomas–Fermi–Dirac potential described in Chapter 2.
The radial wave equation with a central potential yields
the one-electron orbitals Pn�(r) for an ion with effective
charge z = (Z−N+1), where Z is the nuclear charge and
N is the number of electrons. Past calculations of many
astrophysical parameters have been made with no further
refinement, i.e., with no multiplet structure. For example,
photoionization cross sections for individual n�-subshells
may be obtained using the central-field model, but with-
out the further division according to the L S terms that
constitute atomic term structure. Obviously, effects such
as channel coupling or resonances cannot be considered
using a simple central potential. We discuss the physical
effects in the central-field method for photoionization in
Chapter 6, in comparison with more elaborate CC work
using the R-matrix method.

3.6.5 Quantum defect theory

The quantum defect theory (QDT) relates (e + ion) bound
states and the continuum. As the level of excitation of
a bound electron increases in energy, the energy lev-
els become less and less negative until they approach
zero energy, when the electron becomes free and is mov-
ing in the potential of the ion. We have already seen
that the bound energy levels in a Rydberg series of a
given orbital angular momemtum n� approach a constant
quantum defect μ�. Moreover, a free electron under the
influence of a potential undergoes a phase shift that is
also dependent on � and energy k2. It is therefore phys-
ically reasonable that the quantum defect and the phase
shift should be related at zero energy, the Rydberg series
limit

lim
n→∞πμn� = lim

k2→0
δ�(k

2). (3.128)

This fundamental relationship of QDT is Seaton’s
theorem.11 It is a powerful tool, since the (e + ion) scat-
tering cross section is directly related to the phase shift
(or the multi-channel generalization thereof discussed
below). The phase shift may be obtained from quan-
tum defects by analytic continuation from negative bound
state energies according to the modified Rydberg formula
(Eq. 2.65), and extrapolation to positive energies of the
continuum.

11 Note the formal resemblance to Levinson’s theorem: given a radial

potential, the phase shift δl (k) satisfies limk→0 δl (k) = n�π , where n�
is the number of bound states of angular momentum � supported by

the potential.
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Now consider the reverse process. Recall that in the
single-channel case K� = tan δ� (Eq. 3.59). It follows that

|K� − tan(πμ�)| = 0, (3.129)

which again relates the continuum phase shift to the quan-
tum defect of bound energy levels. Therefore, if the phase
shift is known then we may obtain the energy levels of
bound states by extrapolation from positive energies to
negative energies, from the continuum to the bound state
region.

Quantum defect theory is often useful in the multi-
channel case. The S- and the K -matrices are general-
ized multi-channel phase shift matrices. Perhaps the most
important use of multi-channel QDT, or MCQDT, is in
the analysis of resonance structures, which involve cou-
pled closed and open channels. In scaled form, the energy
balance for closed channels reads

k2
i = −z2/ν2

i , i > no, (3.130)

where νi is the effective quantum number in the closed
channel i . As we have seen, the coupled radial solu-
tions in the open and closed channels have the asymptotic
form

Fii ′ ∼ sin(ζi ) δi i ′ + cos(ζi ) Kii ′ , i = 1, no,

Fii ′ ∼ C exp(−zr/(n − μ�)), i > (no + 1), n f ,

(3.131)

respectively. The K -matrix (and the S-matrix) is defined
only for energies above threshold(s) where all channels
are open. However, the multi-channel K -matrix elements
may be fitted to analytic expressions in energy and extrap-
olated to energies below the threshold where resonances
occur. This analytic continuation of the K -matrix to ener-
gies where some channels are open and some closed,
is denoted as K and partitioned as Koo,Koc,KcoKcc,
where the sub-matrices stand for open–open, open–
closed, closed–open and closed–closed parts of the K -
matrix. The main result of the MCQDT is then

K = Koo −Koc [Kcc + tan(πνc)]
−1 Kco, (3.132)

where νc are the effective quantum numbers in closed
channels. The denominator on the right-hand side gives
rise to poles in the K -matrix when

|Kcc + tan(πνc)| = 0. (3.133)

The pole position and the residues reflect energies and
widths of the resonance. Thus MCQDT gives the Rydberg
series of resonance structures from a scattering calcula-
tion above threshold, where there are no resonances, to
energies below threshold, where they occur. Expressions

may be readily obtained for the S-matrix and its analytic
continuation S.12 We will apply MCQDT expressions
to problems in (e + ion) scattering, photoionization and
recombination in Chapters 5, 6 and 7.

In summary: following up from Chapter 2, where we
revisited basic quatum mechanics of atomic structure, we
have described a theoretical and computational framework
that underlies modern calculations for most of the atomic
processes in astrophysics.

Basically, the atomic processes and spectra in
astrophysical and laboratory plasmas involve electron–
ion–photon interactions including a variety of processes
(not all of which are considered herein). Figure 3.5 shows
the main reactions that can take place leading to excitation
and ionization with one free electron and photon, that are
the main subject of this chapter. As might be seen from
the above sketch of the dominant atomic processes in a
plasma, a theoretical description requires a knowledge of
the wavefunctions of the quantum mechanical states of
the ion, and electron–ion–photon interactions that must be
included in the appropriate Hamiltonian in a generalized
Schrödinger equation. In the past few decades, consid-
erable progress has been made and precise theoretical
calculations may be carried out using sophisticated com-
putational programs. However, large-scale calculations
involving many atomic states need extensive computing
resources and effort.

Most of the fundamental atomic parameters associated
with primary atomic processes are either computed theo-
retically or, to a much lesser degree measured experimen-
tally. The sections above describe the individual processes
with a view to providing a unified and self-consistent
theoretical framework. The atomic theory outlined in
this chapter describes the main features of interest in
astrophysical calculations. The close coupling or the cou-
pled channel method, particularly as implemented through
the R-matrix method, is discussed in detail, since it is
the most general and the most advanced formulation
to treat electron–photon–ion reactions in a unified man-
ner. Other methods, such as the distorted wave method,
may be regarded as approximations to the general the-
ory; they are nevertheless useful in computations of data
for atomic systems where coupled channel calculations

12 Further extensions of the matrix expressions (Eq. 3.132) may be made

by combining it (i) with matrix operators for transformation from LS

coupling to a pair-coupling scheme, taking account of fine structure

algebraically, and (ii) also incorporating limited relativistic effects in

the target ion via term coupling coefficients (TCC) transformation.

Both (i) and (ii) operations are performed by codes such as in

computer programs JAJOM and STGFJ [38, 72], shown in Fig. 3.9.

Further discussion is given in the next chapter.
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are computationally demanding or may not yield signif-
icantly higher accuracy (such as for highly charged ions).
Although considerable work has been done, the atomic
physics methods are yet to be generalized to treat several
important problems, such as external electric or magnetic
field effects in all plasma environments. Particular appli-
cations of the methods discussed in this chapter to specific
atomic processes are described in the next four chapters on

radiative transitions, electron impact excitation, photoion-
ization and recombination, respectively.13

13 In this chapter we have limited outselves to a fairly concise treatment

of atomic processes in astrophysics. A more general exposition is

given in the classic treatise by N. F. Mott and H. S. W. Massey [32].

More recent and extensive essays on a variety of topics in

atomic–molecular-optical (AMO) physics are given in the

compendium edited by G. W. F. Drake [73].



4 Radiative transitions

A radiative transition between the bound states of an atom
occurs when an electron jumps to an upper or excited level
by absorption of a photon (photo-excitation), or jumps to
a lower level by emission of a photon (de-excitation or
radiative decay). For an atom X , these processes can be
expressed as

X + hν � X∗, (4.1)

where the superscript ∗ denotes an excited state. Excited
states have finite lifetimes relative to the ground state,
which is supposed to be infinitely long-lived. Radiative
processes introduce absorption and emission lines at par-
ticular transition energies in a spectrum (discussed in
Chapters 8 and 9). The strength of an observed emission
or absorption line depends on both the internal proper-
ties of the atom, and the external environmental conditions
where the atomic system exists. To analyze a spectrum, we
need to understand the qualitative nature of the observed
features as well as their measured quantitative strength.
The physics of the former determines the latter, when
coupled with external factors, such as the temperature or
density. Spectral formation under laboratory conditions is
often different from that encountered in astrophysical con-
ditions. In this chapter, we describe the internal atomic
physics of radiative transitions and outline the rules that
govern spectral formation.

In common astrophysical or spectroscopic parlance,
transitions are often classified as ‘allowed’, ‘forbidden’
or ‘intersystem’. For example, in many astrophysical
sources, some of the most important observed lines
are classified as ‘forbidden’. But what does that mean
exactly? The answer to this question requires an under-
standing of the physical basis, as well as the quantum
mechanical rules, that determine the strength of each type
of transition. ‘Forbidden’ clearly does not mean that the
associated transitions cannot take place; they obviously
do since the lines are observed. Rather, it means that
their transition rates are orders of magnitude smaller than

allowed lines, so that the forbidden lines are extremely
weak when observed in laboratory experiments compared
with those resulting from allowed transitions. But in many
astrophysical sources, especially H II regions (gaseous
nebulae, supernova remnants, the interstellar medium),
the external physical conditions are such that, despite
small intrinsic probabilities, the forbidden transitions are
the dominant mode excitation and radiative decay. In such
sources, the electron temperatures are low, about 10 000 K
(∼1 eV) or lower, and the densities are often lower than
those attained in the laboratory, typically 103–106 cm−3.
We shall see why forbidden lines can form just as easily
as allowed lines, depending on physical conditions.

The classification of radiative transition rests on transi-
tion rates described by Einstein’s well-known coefficients
A and B, which depend only on intrinsic atomic proper-
ties. They are computed quantum mechanically or mea-
sured in the laboratory. However, it is important to keep
in mind that the intensities of lines depend on external
physical conditions. The Einstein transition probabilities
or rates are independent of extrinsic factors, such as tem-
perature or density in the source. We first outline the
fundamentals of atomic transitions related to the forma-
tion of emission and absorption lines in terms of the
Einstein relations. This is followed by a first-order quan-
tum mechanical treatment usually valid for astrophysical
applications. More elaborate treatments, such as includ-
ing quantum electrodynamic (QED) effects, are necessary
for exceptional accuracy. But we limit our exposition to
an outline of the basic formulation employed in most
practical calculations.

The incident photons from the ambient radiation field
may induce various transitions in the atom. Quantum
mechanically, their probability is computed from a tran-
sition matrix element that, in turn, depends on the wave-
functions of the initial and final states, and an operator
corresponding to the appropriate moment of the radiation
field. These moments are generally characterized as the
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dipole moments that correspond to allowed transitions, or
higher-order multipoles that correspond to non-dipole or
forbidden transitions. In addition, radiative transitions are
governed by the symmetries of the atomic states involved,
as specified by the quantized angular and spin momenta of
the initial and final states. The specification of these sym-
metries with respect to a given type of transition is referred
to as selection rules. An outline of the computational
framework for the calculation of transition matrix ele-
ments, and hence the probabilities and rates for radiative
transitions, forms the bulk of this chapter.

4.1 Einstein A and B coefficients

Interaction of electromagnetic radiation with atoms may
be treated in what is known as the first quantization: the
energy levels are quantized (discrete), but the radiation
field is continuous, i.e., forms a continuum of photon
energies. This assumption simplifies to a perturbative
treatment suitable for piece-wise consideration of transi-
tion operators. Second quantization, where the radiation
field is also quantized, constitutes QED, which enables
high precision but entails far more elaborate calcula-
tions. Accuracy at QED level is not generally required
for most astrophysical situations.1 Here, we confine our-
selves to the former case, with stationary atomic levels
under perturbation by an external radiation field.

We begin with a simple picture of two atomic levels,
such that E2 > E1; the transition energy is given by a
discrete quantum of energy

E21 = E2 − E1 = hν . (4.2)

In accordance with the old quantum theory – which entails
Planck’s definition of light quanta – Einstein postulated
three distinct radiative processes that connect the two lev-
els shown in Fig. 4.1. The intrinsic probability coefficients
are: (i) spontaneous decay from 2 to 1 with probability
coefficient A21, (ii) absorption of a photon from the radi-
ation field of density ρ and transition from 1 to 2 with
the probability coefficient B12, and (iii) the inverse of (ii),
namely stimulated emission with a probability coefficient
B21, resulting in a transition from 2 to 1 induced by some
other photon. We assume that the levels are degenerate
with weights g1 and g2, that is, there are gi states with the
same energy Ei .

Let the level populations denoted as Ni , ρ(ν) be
the radiation density. Then the rates for these processes

1 Hydrogen and helium are outstanding exceptions, for which the most

advanced radiative calculations have been carried out (e.g. [73] and

references therein).

A21

2

1

ρB12 ρB21

FIGURE 4.1 The three radiative processes connecting two
levels 1 and 2.

depend on their respective coefficients A and B. In detail,
the rate of spontaneous decay depends on N2, the rate of
absorption depends on both N1 and the photon number
ρ(ν12) with the right energy hν= E2 − E1. Likewise,
from detailed balance, the rate of stimulated or induced
emission depends on N2 and ρ(ν21). In equilibrium, the
time-dependent level populations satisfy the rate equa-
tions

−dN2

dt
= dN1

dt
= A21 N2 − B12ρ12 N1 + B21ρ21 N2,

(4.3)

that is, the population loss in level 2 equals the population
gain in level 1. For a steady state dN2/dt = dN1/dt = 0
we get

N2

N1
= B12ρ(ν)

A21 + B21ρ(ν)
. (4.4)

In the absence of an external radiation field, i.e., ρ(ν) = 0,
the equation simplifies to

dN2

N2
= −A21dt . (4.5)

It follows that

N2(t) = N2(0) e−A21t , (4.6)

which implies that an excited-level population decays
exponentially with time at an e-folding rate given by A21.
This rate determines the lifetime τ2 of level 2 as

A21 ≡ 1

τ2
. (4.7)

Hence, the Einstein coefficient A is an inverse time, for
the hydrogenic Lyα line in the order of 109 transitions per
second, namely A2p,1s = 6.25 · 108s−1. Inserting this
value into Eq. 4.7 results in a lifetime τ2p ∼ 1.6 ns.

Next, we define the probabilities P21 and P12 for
emission and absorption per atom per unit time:

−dN2

dt
= P21 N2 − P12 N1, (4.8)

and then

Pemi = A21 + B21ρ(ν) and Pabs = B12ρ(ν). (4.9)
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Under steady-state conditions dN2/dt = 0 we get

N2

N1
= B12ρ(ν21)

A21 + B21ρ(ν21)
. (4.10)

Generalizing this expression to more than two levels,
the principle of detailed balance requires dNi/dt = 0 for
each level i , taking account of all transitions in and out
of level i to and from all other levels j . In fact, detailed
balance further requires that the steady-state condition
applies to each pair of levels (i, j) for each process and its
inverse separately. Otherwise, the system can deviate from
the equilibrium steady state via any particular process that
remains ‘unbalanced’. Thus we have

N j

Ni
= Bi jρ(νi j )

A ji + B jiρ(νi j )
. (4.11)

If there is no radiation field, Eqs 4.5 and 4.6 generalize to

−dN j

dt
=

∑
i< j

A ji N j , (4.12)

N j (t) = N j (0) e−
∑

i A ji t (4.13)

for all levels i < j . Now the lifetime of level j against
radiative decay to any level i becomes

τ j =
⎛
⎝∑

i

A ji

⎞
⎠
−1

. (4.14)

For hydrogen, it may be shown that the lifetime of a state
nl varies as τnl ∝ n3 and that the l-avaraged lifetime is
given by

τn =
⎛
⎝ 1

n2

∑
l

2l + 1

τnl

⎞
⎠
−1

∝ n5. (4.15)

It is instructive to examine the relationship between the
coefficients A and B by working through the following
example.

Exercise 4.1 In steady state and thermal equilibrium at
temperature T , the level populations are expressed by the
Boltzmann equation

N j

Ni
= g j

gi
exp(−hνi j/kT ), (4.16)

with statistical weights g of the respective levels. Assum-
ing a black-body radiation field given by the Planck
function

ρν = 8πν2

c3

hν

exp(hν/kT )− 1
, (4.17)

derive the Einstein relations

A ji = B ji
8πν2

i j

c3
hνi j = gi

g j
Bi j

8πν2
i j

c3
hνi j . (4.18)

Hint: detailed balance implies gi Bi j = g j B ji .

From Exercise 4.1, at a specific frequency νi j for
transition i → j we obtain the coefficient

B ji =
(

c3

8πhν3

)
A ji (4.19)

as stimulated emission. With the transition wavelength
c/ν = λ and plain arithmetic with atomic shell identi-
ties from Section 1.9 such as h = 2π ·Ry·τ0 = 3.0397 ×
10−16 Ry s, and 
Ei j in Ry, one arrives at

B ji =
λ3

i j

8πh
A ji =

8.833× 1038a3
0

Ry · s
·
(
λi j

cm

)3
Aij (4.20)

= 6.0048× 1024 A ji λ
3
i j (4.21)

= 4.54161× 109 A ji


E3
i j

. (4.22)

With λ in angstroms, B = 6.0048 λ3 A, which shows
that B increases rapidly with λ. Because it depends
on energy ∝ λ−3, Einstein’s A is extremely small at
radio frequencies. Therefore, longer-wavelength transi-
tions, say in the cm range of microwaves, are more readily
subject to stimulated emission than shorter-wavelength
transitions. That is because longer-wavelength transitions
occur between more closely spaced levels than shorter
wavelength; the associated coefficients A are smaller
than B, and therefore radiative depopulation via spon-
taneous decay is relatively slow. Stimulated emission in
the microwave region is called microwave amplification
of stimulated emission of radiation, or maser. More gen-
erally it is a particular case of the well-known light
amplification of stimulated emission of radiation and its
acronym, laser. Astrophysical sources with stimulated
emission in the microwave region occur, for example,
in the molecular torus around black holes. The reason
for molecular emission in the microwave region is that
molecular energy levels are closely spaced, and the tran-
sition energies Ei j = hc/λi j are very small. Of course,
for sufficient intensity to build up in a maser or laser,
we must have a large population of atoms in the upper
level. This usually (but not always) requires population
inversion. It can be achieved if A is very small, which
is often true for forbidden transitions among closely
spaced levels in the context of selection rules discussed
later.
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In thermal equilibrium, according to the Boltzmann
equation, there are far fewer atoms in the upper level than
in the lower level. Therefore, although the coefficients for
stimulated absorption and emission are equal, i.e., Bi j =
B ji (modulo the statistical weight ratio g j/gi ), the actual
number or rate of upward excitations is more than down-
ward stimulated radiative decays. The balance of upward
and downward transitions under equilibrium conditions in
the rate equations is achieved by the addition of downward
spontaneous decays, governed by the A coefficient, to the
stimulated emission rate. Population inversion generally
means that the ratio of the upper to lower level population
exceeds that given by the Boltzmann equation, that is,

N j

Ni
>

g j

gi
e−Ei j /kT . (4.23)

A quantitative examination of the numerial values of A
and B may be made as in the following example.

Exercise 4.2 The ratio of the stimulated emission rate
and the spontaneous emission rate under thermal equilib-
rium at temperature T is given in terms of the black-body
Planck function for the radiation density of photons ρ as

A ji

B jiρ(νi j )
= ehνi j /kT − 1 . (4.24)

Compare this ratio for different regions of the elec-
tromagnetic spectrum in thermal equilibrium. Show in
particular that, as discussed above, stimulated emission
dominates in the microwave region by a factor of about
1000. In the ultraviolet or X-ray region, the reverse is the
case. Of course, the actual rate depends on the external
radiation source and photon density, and therefore for a
non-thermal external source this ratio can assume arbi-
trary values, particularly in tunable and high-intensity
laboratory sources.

The coefficients A and B are independent of level
populations and external parameters, such as the tem-
perature, density and radiation field (which was assumed
to be a black body only in order to derive the relations
in Exercise 4.1). As stressed before, the Einstein coef-
ficients depend only on intrinsic atomic properties, such
as nuclear charge, number of atomic electrons and elec-
tronic structure, and level of excitation. Evaluation of A
and B requires us to describe the interaction of the elec-
tromagnetic radiation field with atomic levels quantum
mechanically.

4.2 Electron motion in an
electromagnetic field

A semi-classical perturbative treatment of the inter-
action of a radiation field with matter, embodied
in first quantization, follows from the time-dependent
Schrödinger equation

i�
∂�

∂t
= H�. (4.25)

As long as time and spatial dependences are separable, the
wavefunction can be written in terms of stationary states
or time-independent eigenstates of the atom, since we are
interested in changes in states of the atom with time rather
than the state of the field. We expand

� =
∑

n
an(t)ψne−iEnt/� (4.26)

with time-dependent coefficients an(t) over space-
dependent atomic wavefunctions satisfying[

p2

2m
+ V

]
ψn = Enψn, 〈ψ j |ψi 〉 = δi j , (4.27)

and select an(0) = 1 for a particular state i at time t = 0,
while an �=i (0) = 0 for all the other states. Then |a j (t)|2 is
the probability to find the atom in an excited state j after
a time t .

Our interaction Hamiltonian involves the electron
charge −e moving with velocity v in some applied radia-
tion or electromagnetic field (B, E):

E = −∇φ − 1

c

∂A
∂t
, B = ∇ × A, (4.28)

where A is a vector potential and φ is a scalar potential.
The Lorentz force experienced by the electron is

F = −e

[
E + 1

c
v × B

]
. (4.29)

The radiation field can be regarded as a superposition of
plane waves periodic in time:

A = A0

[
ei(ωt−k·r) + e−i(ωt−k·r)] , (4.30)

where ω is the angular frequency and k is the wave vector;
hence,

E = −∇φ + 2ω

c
A0 sin(ωt − k · r). (4.31)

The magnetic field B is usually much weaker than the
electric field E. Then we can write the Lorentz force
(Eq. 4.29) as

F = −eE = −e∇φ − e

c

∂A
∂t

= −e∇φ − ∂ pE

∂t
, (4.32)
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where pE =
e

c
A is a momentum affecting or ‘retard-

ing’ the internal motion or momentum of the atomic
electron due to the electric force of the varying external
field; pE can be treated as the retardation correction to
the unperturbed momentum p. The radiatively perturbed
Hamiltonian is then written as

H = 1

2m

(
p+ e A

c

)2
+ eφ + V . (4.33)

Substituting in the Schrödinger equation (Eq. 4.25),

i�
∂�

∂t
=

[
− �

2

2m
∇2 − e

2mc
( p · A + A · p)+ e2

2mc2
A2

+ eφ + V

]
�. (4.34)

Using [ f (x), px ]ψ = i� ∂ f
∂xψ , it can be shown that

A · p − p · A = i�∇.A. With the choice ∇.A = 0,2 the
above equation reduces to

i�
∂�

∂t
=

[
− �

2

2m
∇2 + i�e

mc
A · ∇ + e2

2mc2
A2 + eφ + V

]
�.

(4.35)

Assuming no additional charge, φ = 0. The square term
A2 describes two-photon processes, but for the current
task we consider weak external time-dependent fields
that induce the atom to emit or absorb a single photon,
which is an adequate assumption in astrophysical environ-
ments. Compared with other terms, the contribution A2

may therefore be neglected in the first-order perturbation
approach. Then the Schrödinger equation (Eq. 4.25) in an
electromagnetic field can be rewritten as

i�
∂�

∂t
=

[
− �

2

2m
∇2 − e

mc
A · p+ V

]
�. (4.36)

However, we do note that A2 is important in cases where
the external electromagntic field is strong, i.e., comparable
to internal atomic fields, such as in laser interactions with
atoms or multi-photon processes.

4.2.1 Radiative transition probability

Dividing the current Hamiltonian,

H = H0 + H ′ (4.37)

H0 = p2

2m
+ V (4.38)

2 This choice – the transverse gauge – corresponds to the reasonable

assumption that radiation propagates perpendicular to the direction of

the electric and magnetic field vectors, and that the induced motion of

the electron is along the electric field given by A.

H ′ = e

mc
(A · p), (4.39)

with a first-order perturbation Hamiltonian H ′ and sub-
stituting the wavefunction expansion � = ∑

n an(t)ψn

e−iEnt/� in the Schrödinger equation (Eq. 4.25) with the
total Hamiltonian gives

∑
n

[
i�

dan

dt
+ Enan

]
ψn exp

(
− iEnt

�

)

= (H0 + H ′)
∑

n
anψn exp

(
− iEnt

�

)
. (4.40)

Since the unperturbed Hamiltonian satisfies H0ψn =
Enψn ,

∑
n

(
i�

dan

dt

)
ψn exp

(
− iEnt

�

)

=
∑

n
an H ′ψn exp

(
− iEnt

�

)
. (4.41)

We assume that H ′ is so small that the initial an(0) = 1
does not change much with time, so that, on the right-hand
side, we can approximate an (an(0) = 1, an( �= 0) = 0):

∑
n

i�
dan

dt
ψn exp

(
− iEnt

�

)
= H ′ψi exp

(
− iEi t

�

)
,

(4.42)

in which ai (0) = 1. Multiplying on the left by ψ∗j and
integrating over spatial coordinates, we obtain

i�
da j

dt
= 〈 j |H ′|i〉 exp

[
− i(E j − Ei )t

�

]
. (4.43)

Writing (E j − Ei ) = �ω j i and substituting for A from
Eq. 4.30, we have

i�
da j

dt
=

〈
j
∣∣∣ e

mc
A0 · p e−ik·r ∣∣∣ i

〉
e−i(ω j i+ω)t

+
〈

j
∣∣∣ e

mc
A0 · p eik·r ∣∣∣ i

〉
ei(ω j i−ω)t , (4.44)

which on integration over t from t = 0 gives

a j (t) =
〈

j
∣∣∣ e

mc
A0 · p e−ik·r ∣∣∣ i

〉 [1− e−i(ω j i+ω)t
�(ω j i + ω)

]

+
〈

j
∣∣∣ e

mc
A0 · p eik·r ∣∣∣ i

〉 [1− ei(ω j i−ω)t
�(ω j i − ω)

]
.

(4.45)

Consider E j > Ei so that the transition i → j is an
absorption process. The first term can then be ignored
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compared with the second because of its large value when
ω j i ∼ ω. Then the transition probability at time t is

|a j (t)|2 =
∣∣∣〈 j

∣∣∣ e

mc
A0 · p eik·r

∣∣∣ i
〉∣∣∣2 sin2[{(ω j i − ω)/2}t]

�2{(ω j i − ω)/2}2 .

(4.46)

Note that

{1− ei(ω j i−ω)t }{1− e−i(ω j i−ω)t }
= 2− 2 cos{2(ω j i − ω)t/2}
= 2[1− cos2{(ω j i − ω)t/2} + sin2{(ω j i − ω)t/2}]
= 4 sin2{(ω j i − ω)t/2}. (4.47)

But |a j (t)|2 increases with t2 for small t , a behaviour that
does not look physically realistic before recognizing the
distribution function

sin2{(ω j i − ω)/2}t
{(ω j i − ω)/2}2

→ 2π�tδ(E ji − �ω). (4.48)

The function on the left peaks at (ω j i − ω)= 0 but
decreases rapidly with decaying oscillations. It is similar
to the delta function, namely

δ(x) = lim
ε→0

ε

π

sin2(x/ε)

x2
(4.49)

and therefore approaches 2π tδ(ω j i − ω) for large t
using δ(ax)= δ(x)/|a|, and hence the right-hand side of
Eq. 4.48.

With the unit vector ê of polarization along the direc-
tion of E or A0 in A0 = ê A0, the transition probability
per unit time can be written as

|a j (t)|2
t

= 2πe2

�
A2

0

∣∣∣∣
〈

j

∣∣∣∣ ê · p
mc

ei k·r
∣∣∣∣ i

〉∣∣∣∣2 δ(Ei j − �ω)

(4.50)

= 2π

�

∣∣〈 j |H ′|i〉∣∣2 δ(E j − Ei ),

(4.51)

where 〈. . .〉 in (Eq. 4.50) is dimensionless, and the expres-
sion (Eq. 4.51) is explicitly an inverse time observing
the identity δ(ax) = δ(x)/ |a|. In first order, this is
the probability per unit time for a transition from an
arbitrary state |i〉 to a state 〈 j | under the perturbing
potential H ′.

It is worthwhile to extend the formulation of the dis-
crete bound–bound transitions to the case where the final
states may encompass a range of continuous energies,
such as in the vicinity of a resonance in the bound–free
process. The well-known Fermi’s golden rule gives the

radiative transition rate (as opposed to the probability
Eq. 4.51)

Ti j = 2π

�
|〈 j |H ′|i〉|2n j , (4.52)

where n j is the density of final states j , or the number
of states per unit energy, with lifetime τ j = 1/Tji . Fol-
lowing the uncertainty principle, the energy ‘width’ of the
state is then

Γ j = �Tji , (4.53)

identified as the autoionization width and considered in
detail in the three subsequent chapters.

4.3 Transition matrix elements

The derivation for transition probability in the previous
section has been carried through at a single frequency, and
should be integrated over the frequency distribution of the
incident waves. The field energy is given by

W = 1

8π

∫
V
(E∗ · E + B∗ · B) dV, (4.54)

which on substitution of A and using some identities gives

W = (V/2πc2)
∑

k

∑
j

ω2
k |Akj |2, (4.55)

where the sum over k is over all frequencies, and the
sum over j reflects possible polarizations of the radi-
ation. This gives radiation energy density ρ= W/V =
(1/2πc2)ω2|A|2. Introducing ρ in the probability expres-
sion, Eq. 4.50

|a j (t)|2
t

= 4π2c2e2

�ω2

∣∣∣∣
〈

j

∣∣∣∣ ê · p
mc

eik · r
∣∣∣∣ i

〉∣∣∣∣2
× ρ(ν) δ(Ei j − �ω). (4.56)

The total transition probability over a distribution of
frequencies is obtained by integrating as

Pi j =
∫ |a j (t)|2

t
dν

=4π2c2e2

�2

∣∣∣∣
〈

j

∣∣∣∣ ê · p
mc

ei k · r
∣∣∣∣ i

〉∣∣∣∣2

×
∫
ρ(ν)

ω2
δ(ωi j − ω)dω

2π
, (4.57)

again exploiting the identity δ(ax)= δ(x)/|a|. The major
contributions to the integral come from a narrow region
where ω=ω j i during absorption. We therefore put
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ω2 = ω2
j i and assume that the radiation density does not

vary much in this region, that is ρ(ν) = ρ(ν j i ). Then

Pi j = 2π
c2e2

h2ν2
j i

∣∣∣∣
〈

j

∣∣∣∣ ê · p
mc

ei k·r
∣∣∣∣ i

〉∣∣∣∣2 ρ(ν j i ) (4.58)

is the transition probability between two levels i and j per
atom per unit time. Note that the transition probability is
independent of time. A similar expression for |a j (t)|2 can
be obtained from emission, where the indices (i, j) will
interchange and ei k·r will be replaced by e−i k·r .

Using Eq. 4.9 the absorption coefficient Bi j can now
be obtained as

Bi j = Pi j/ρ(ν) =2π
c2e2

h2ν2
j i

∣∣∣∣
〈

j

∣∣∣∣ ê · p
mc

ei k·r
∣∣∣∣ i

〉∣∣∣∣2. (4.59)

For non-degenerate levels we have Bi j = B ji . This
result is important, as it is an example of microscopic
reversibility, the quantum mechanical basis for the princi-
ple of detailed balance. In a central-field potential V (r) =
V (r), the states i , j are products of radial functions and
spherical harmonics Ylm discussed in Chapter 2. In that
case, or for random relative orientation between ê and p,
the average of cos2 ϑ from the dot product contributes a
factor of 1

3 . The above equation for unpolarized radiation
is, therefore,

Bi j = 2π

3

c2e2

h2ν2
j i

∣∣∣〈 j
∣∣∣ p

mc
ei k·r ∣∣∣ i

〉∣∣∣2 . (4.60)

The coefficients A and B are related (Eq. 4.18, Exercise
4.1), so if one coefficient is determined from the transition
matrix element as above, then the other is as well.

4.4 Multipole expansion

Evaluating the dimensionless transition matrix element
〈. . .〉 in Eq. 4.60 is not trivial, because it involves a
matrix or exponential operator and several commutation
relations. This is readily anticipated from the familiar
Legendre expansion

ei k·r = 1+ ik · r + (ik · r)2/2! + · · ·

=
∞∑

l=0

il (2l + 1) jl (kr)Pl (cosϑ) (4.61)

with spherical Bessel functions jl (kr) (and ϑ in the
Legendre polynomial as the angle between the vec-
tor k describing the radiation field and the particle in
position r). Consider an electron at a distance of 10−8 cm,
twice a Bohr radius from the nucleus, and visible light,
when the wavenumber k is of order 105cm−1. In this

long-wavelength scenario, Eq. 4.61 does not deviate much
from the identity 1 over the volume of an ion, and a good
answer can be expected – if the angular momenta L asso-
ciated with i and j are not both zero and differ by one unit,
at most (case of circular polarization ê±1). This leads to

the electric dipole approximation ei k·r ≈ 1. Successive
interaction terms k · r between photon k and electron r
contribute one more weakening factor α to the magnitude
and correspond to higher-order components in radiative
transitions. We discuss the effect of incident electromag-
netic radiation for the first two terms in the expansion and
of related multipole moments in the following sections.

4.5 Electric dipole approximation

Dipole and non-dipole transitions are generally referred
to as allowed and forbidden transitions, respectively. The
practical difference lies in transition rates that differ by
orders of magnitude, as determined by intrinsic atomic
properties. Evaluation of the particular transition matrix
elements involves the use of appropriate moment opera-
tors. We first carry through the formulation for the dipole
moment, and later generalize to non-dipole transitions.

The electric dipole transition matrix element has been
identified as the first term of the exponential factor eik·r .
The physical basis of this approximation becomes evident
through simple considerations. Incident radiation wave-
lengths in the optical–UV region of λ∼ 103–104 Å are
large compared with the size a of an atom, which is
of order a0/Z . With the magnitude k = 2π/λ of the
radiation wave vector one has

ka ∼ 2π

λ

a0

Z
= a0

Zhc
(E j − Ei ) <

a0

Zhc

Z2e2

a0

= Zα ∼ Z

137
, (4.62)

where Z2e2/a0 is the binding energy of a hydrogen-like
ground state electron. The condition means that the ampli-
tude of the radiation wave varies little over the much
smaller size of the atom. Such a situation obviously pre-
vails when the wavelength of the incident radiation λ �
a0 = 0.529 Å. That is indeed the case for electromag-
netic radiation of the strongest spectral lines from most
astrophysical sources. For example the IR–radio range
begins with λ> 10 000 Å, the optical (visible) radiation
lies in the 3000–7000 Å band (Fig. 1.1). So a0/λ ≈ 10−3

at λopt = 5000 Å. The physical consequence is that the
atoms feel a nearly uniform external electric field, which
thereby induces an electric dipole on the atomic charges.
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The B-coefficient for absorption transition probabil-
ity per unit time (Eq. 4.9) can now be written quantum
mechanically as

Pi j = 2πc2e2

h2ν2
j i

∣∣∣∣
〈

j

∣∣∣∣ ê · p
mc

∣∣∣∣ i

〉∣∣∣∣2 ρ(ν j i ). (4.63)

Let us assume that the electric vector is polarized along
the x-axis. The momentum operator of an unperturbed
atom can be written in terms of the Hamiltonian H0 as

〈 j |px |i〉 =
〈

j

∣∣∣∣m dx

dt

∣∣∣∣ i

〉
= im

�
〈 j |H0x − x H0|i〉 (4.64)

for the unperturnbed atom. With the commutation relation
[xi , p j ]ψ = xi p jψ − p j (xiψ) = xi p jψ − (p j xi )ψ −
(p jψ)xi = −i�δi jψ one obtains

[r, p2] = p · [r, p] + [r, p] · p = 2i� p. (4.65)

Replacing p2 = 2m(H0− V ),
[
r, H0

] = i �
p
m

: since

H0 is Hermitian,〈
j
∣∣∣ px

mc

∣∣∣ i
〉
= i

�c
(E j − Ei ) 〈 j |x |i〉= 2π i

c
ν j i 〈 j |x |i〉, (4.66)

where hν j i = E j − Ei . Loosely writing r for (x, y, z):

e

mc
〈 j | p|i〉 = 2π ie

c
ν j i 〈 j |r|i〉 = 2π i

c
ν j i 〈 j |D|i〉, (4.67)

where D = er , charge e times the mean distance between
opposite charges, is the dipole moment operator.3 The
transition matrix element with operator r in Eq. 4.67
will lead to radiative results in length form, and p to the
velocity formulation: see equations like (Eq. 4.80) further
along. The integration in Eq. 4.67 is over all space with
respect to the initial and final states i and j . The associated
dipole allowed transition is denoted as an E1 transition.

We rewrite the E1 absorption transition probability per
unit time (Eq. 4.63),

Pi j = 2πc2

h2ν2
j i

∣∣∣〈 j
∣∣∣ e

mc
ê · p

∣∣∣ i
〉∣∣∣2 ρ(ν j i )

= 2π

�2
|〈 j |ê · r|i〉|2ρ(ν j i ), (4.68)

and the absorption B coefficient as

Bi j = 2π

�2
|〈 j |ê · r|i〉|2 = 2πe2

h2m2ν2
j i

|〈 j |ê · p|i〉|2. (4.69)

While E1 transitions are referred to as allowed transi-
tions, it really means that electric dipole transitions are the

3 D is rather a superfluous quantity: as in atomic structure work the

charge enters radiative results only as the e2 = 2a0 Ry – see Eq. 1.23 –

and one can do without the third expression in Eq. 4.67; but it is often

employed in literature.

strongest types of electromagnetic transitions correspond-
ing to the dominant first term in the multipole expansion
of the radiation field (Eq. 4.61). However, a very impor-
tant caveat is that a transition is allowed if and only if
the initial and final states can be connected by an electric
dipole moment. That in turn depends on the angular and
spin symmetries of the states involved, and corresponding
selection rules discussed later.

The transition matrix element yields several quanti-
ties that are physically equivalent but useful to define for
different applications. In the dipole approximation, the
transition probability from state i to j per unit time, by
absorption of electric dipole radiation of energy density
ρ(ν) per unit frequency, polarized in the x-direction, is

Pi j = 2πe2

�2
|〈 j |x |i〉|2ρ(νi j ), (4.70)

and for unpolarized radiation, averaging out the effects
of ê,

Pi j = 2πe2

3�2
|〈 j |r|i〉|2ρ(νi j ), (4.71)

where

|〈 j |r|i〉|2 = |〈 j |x |i〉|2 + |〈 j |y|i〉|2 + |〈 j |z|i〉|2. (4.72)

This expression applies to induced emission when the lev-
els are non-degenerate. In the semi-classical treatment, the
transition probability A ji per unit time for spontaneous
emission by electric dipole radiation is obtained as

Bi j =
Pi j

ρ(ν)
= 8π3e2

3h2
|〈 j |r|i〉|2. (4.73)

Then Einstein’s A coefficient, the radiative decay rate,
reads

A ji =
8πν2

j i

c3
hν j i Bi j

gi

g j
= 64π4e2

3hc3
ν3

j i
gi

g j
|〈 j |r|i〉|2 (4.74)

= 4e2

3hc3
ω3

j i
gi

g j
|〈 j |r|i〉|2, (4.75)

with ω j i = 2πν j i for unpolarized radiation. A ji is also
referred to as the transition probability (although ‘transi-
tion rate’ per unit time might be more appropriate).

To get an order-of-magnitude estimate for A at opti-

cal wavelengths we can put |〈 j |r|i〉|2∼ a2
0 for a transition

allowed by electric dipole radiation. To within an order
of magnitude (i.e., factors of 1

4 or 2π ), the quantity A
becomes

A ≈ ω3

�c3
(ea0)

2 ≈ αω3
(a0

c

)
∝ 108s−1 (4.76)

≈ α3ω3 τ2
0 ∝ 108s−1. (4.77)
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The travel time of light is 2a0/c across the ground state
of H atom, whereas the Rydberg time τ0 ≈ 50 attosec-
onds for an electron to traverse H with velocity αc (see
Section 1.9). Conversion factors from atomic to cgs units
are:

A ji = A ji (au)/τ0 second−1,

τ0 = 2.419× 10−17 second, (4.78)

where τ0 is also called the atomic unit of time. The
transition matrix element depends on the orientation and
the direction of polarization, and hence on the magnetic
quantum numbers mi ,m j of the initial and final states.
Suppose for the general case that the lower level is gi -fold
degenerate in mi and the upper level is g j -fold degenerate
in m j ; then the decay rate from each state j is the same,
meaning∑
mi

|〈 jm j |r|imi 〉|2

=
∑
mi

∣∣∣〈 j |r |i〉
〈

jm j

∣∣∣C[1]mj−mi

∣∣∣ imi

〉∣∣∣2 (4.79)

is independent of m j , and C[1] is an algebraic Clebsch–
Gordon coefficient, defined in Appendix C. For each j the
coefficient A implies a summation over degenerate final
levels of i . Hence

A ji = 4

3

ω3
j i e2

�c3

∑
mi

|〈 jm j |r|imi 〉|2

= 4e2

3m2

ω j i

�c3

∑
mi

|〈 jm j | p|imi 〉|2 : (4.80)

pick one observable of the canonical pair (r , p) (and
approximate the canonical by the unperturbed mechani-
cal momentum p ≈ mv of the electron), and one gets A ji
either in the length form or the velocity form.

4.5.1 Line strengths

Consider a lower degenerate level with gi values of mi
and an upper degenerate level with g j values m j . Recall-
ing the footnote past Eq. 4.67 we introduce the line
strength as the effective area4 or ‘cross section’

S ji =
∑
m j

∑
mi

|〈 jm j |r|imi 〉|2 (4.81)

= 1

m2ω2
j i

∑
m j

∑
mi

|〈 jm j | p|imi 〉|2 (4.82)

4 This is consistent with applications such as for E1-type electron impact

collision strength at the high-energy limit [74].

facing radiation at excitation energy E ji , i.e., without
a charge factor e2, which cancels in all applications.
The line strength remains unchanged with interchange of
indices, i.e., it is symmtrical: S ji = Si j . As in Eq. 4.67,
length and velocity form are related by the operator iden-

tity p = i �∇. For the radial component is p = i�
∂

∂r
,

while the angular part, involving just the Racah tensor,
remains unchanged (see Appendix C). In line strength
terms, the A coeffcient (with e2 = α�c outside S) reads

A ji = 4

3

ω3
j i e2

hc3

S ji

g j
=

2α ω3
j i

3πc2

S ji

g j
. (4.83)

4.5.2 Oscillator strengths

The oscillator strength is a useful dimensionless response
function, in the first place applied to electric dipole
transitions [75]. It offers a measure of the intrinsic
strength of an atomic transition and the intensity of a
spectral line. It usually serves to describe the radiative
absorption strength (see Chapter 8), which is, of course,
related to the emission strength via detailed balance as

fi j =−
g j

gi
f j i

(
or as ‘g f -values’ gi fi j = −g j f j i

)
.

(4.84)

The name derives from the analogy with an ensem-
ble of classical oscillators with dipole moments in shifted
phase with the incoming electromagnetic wave. The defi-
nition of absorption oscillator strength is such that fi j is a
fraction, so normalized as to obey the sum rule∑

j

fi j = 1, (4.85)

if i is the ground level of an atomic system with one active
electron. For an excited state j , emission to lower levels i ,
as well as absorption to higher levels k, occurs, leading to
the one-electron sum rule,∑
i,k

( f j i + f jk) = 1, (4.86)

where f j i is a negative fraction. Generally, if N electrons
participate in photo-excitation then the sum equals N , and
one gets∑
i,k

( f j i + f jk) = N . (4.87)

We can express an averaged oscillator strength as the
average over all inital degenerate states and summed over
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all final states,

f̄ j,i = 1

2li + 1

∑
mi

∑
m j

fi j (mi ,m j )

= 2m

3�
ωi j

∑
m j

|〈 j |r|i〉|2, (4.88)

as the dimensionless atomic quantity common to all three
Einstein coefficients with a norm compatible with the sum
rules. It is used in general by omitting the bar over f .
Expressed in terms of the line strength it becomes

fi j = 2m

�

ωi j

3gi
Si j = 1

3gi

E j − Ei

Ry

Si j

a2
0

, (4.89)

exploiting Ry = e2/(2a0), a0 = �
2/(me2). With this man-

ifestly dimensionless quantity f , the B coefficient for
absorption becomes

Bi j = 8π3

3h3
|〈 j |D|i〉|2 = 4π2e2

hν j i m
fi j . (4.90)

Similarly the coefficient A for absorption from atomic
state i to j reads

A ji = α3

τ0

gi

g j

(E j − Ei )
2

Ry2
fi j

= 8.032× 109 gi

g j

(
E ji

Ry

)2
fi j s−1, (4.91)

where again the ‘travel’ time τ0= �/Ry≈ 50 attoseconds
across the Rydberg atom appears.5

Dipole oscillator strengths are also related to another
useful quantity called dipole polarizability αd

i of a
level i [3],

αd
i =

∑
j

fi jα( j, i), (4.92)

where i is usually the ground state. The quantity α( j, i) is
the classical polarizability of an oscillator defined as

α( j, i) = e2

4π2m

(
1

ν2
i j − ν2

)
, (4.93)

where ν is the frequency of the incident photon.

Exercise 4.3 Using hydrogenic wavefunctions from
Chapter 2, calculate A(Lyα: 1s–2p). Hint: the initial and

5 Take an experimenter’s dial reading of E = 10.2 eV at some resonance,

perhaps observing f = 0.416 as an absorption feature. If gi = 2 and

g j = 8, then Eq. 4.91 yields A = 4.70× 108s−1. It goes without

saying that 3
4 = 1− 1

4; from the numerator, 10.2 eV, and the

denominator, 13.59 eV, in the equation, the case is revealed as Lyα.

final (sub)levels |nlm > are |100 > and |210 >, |211 >,
|21− 1 >. It is helpful to prove the following identity

1

2
| < 21± 1|x ± y|100 > |2 = | < 210|z|100 > |2

= 215

310
a2

0 . (4.94)

A general example is described in the next section using
the central field approximation.

4.6 Central-field approximation

From the relations derived above for photoabsorption or
photo-emission, we note that the line strength Si j =∑

mi

∑
m j
|〈 jm j |r|imi 〉|2 is independent of any kine-

matical factors, and is common to both A- and f -values.
Later we will see that the same quantity Si j can be gener-
alized for bound–free radiative transition probabilities as
well (Chapter 6).

In this section, we employ the central-field approxima-
tion to evaluate the wavefunctions and expressions for the
Si j . Whereas state-of-the-art calculations using advanced
methods, such as the multi-configuration Hartree–Fock
method or the R-matrix method are rather complex in
nature, it is useful to work through an example to show
the essential details of the calculations with a conve-
nient potential. Like the hydrogenic problem studied in
Chapter 2, in the central-field approximation the poten-
tial depends only on the radial coordinate. Hence we can
express an atomic state by independent radial and angular
functions as Rnl (r)Ylm(r̂). Let us define a quantity

Ti j =
∑
m j

| < jm j |D|imi > |2, (4.95)

and begin with the transition matrix element

< j |r|i > =
∫ ∞

0
R∗n j l j

(r)r Rni li (r)r
2dr

×
∫

d Y∗l j m j
(r̂)r̂Yli mi (r̂). (4.96)

Expand the radial operator as

r = x̂
2
[(x + iy)+ (x − iy)] + ŷ

2i
[(x + iy)−(x − iy)]+ ẑz,

(4.97)

which in spherical coordinates is

r r̂ = x̂r

2
[sin θeiφ+ sin θe−iφ]+ ŷr

2i
[sin θeiφ− sin θe−iφ]

+ ẑr cos θ. (4.98)
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To carry out the angular integral we use the following
three recursion relations:

cos θYlm =
[
(l − m + 1)(l + m + 1)

(2l + 1)(2l + 3)

]1/2

Yl+1,m

+
[
(l − m)(l + m)

(2l − 1)(2l + 1)

]1/2

Yl−1,m

eiφ sin θYlm =
[
(l + m + 1)(l + m + 2)

(2l + 1)(2l + 3)

]1/2

Yl+1,m+1

−
[
(l − m)(l − m − 1)

(2l − 1)(2l + 1)

]1/2

Yl−1,m+1

e−iφ sin θYlm = −
[
(l − m + 1)(l − m + 2)

(2l + 1)(2l + 3)

]1/2

Yl+1,m−1

+
[
(l + m)(l + m − 1)

(2l − 1)(2l + 1)

]1/2

Yl−1,m−1

(4.99)

Let < j |z|i >≡ z
n j lj mj
ni li mi

, and using the first recursion rela-
tion, the z-component of the transition matrix element is

z
n j l j m j
ni li mi

=
∫ ∞

0
R∗n j l j

(r)Rni li (r)r
3dr

∫
d Y∗l j m j

(r̂)

×
{[
(li− mi + 1)(li+ mi+ 1)

(2li+ 1)(2li+ 3)

]1/2
× Yli+1,mi

+
[
(li − mi )(li + mi )

(2li − 1)(2li + 1)

]1/2
Yli−1,mi

}

=
∫ ∞

0
R∗n j l j

(r)Rni li (r)r
3dr

×
{[
(li − mi + 1)(li + mi + 1)

(2li + 1)(2li + 3)

]1/2

× δl j ,li+1δm j ,mi

+
[
(li − mi )(li + mi )

(2li − 1)(2li + 1)

]1/2
δl j ,li−1δm j ,mi

}
.

(4.100)

The selection rules manifest themselves in accordance
with the symmetries of initial and final levels. For
non-vanishing elements 
m = m j − mi = 0, 
l =

l j − li = ±1. Hence all compoments of z
n j l j m j
ni li mi

vanish
except

z
n j ,li+1,m j
ni li mi

=
[
(li+1)2−m2

i

(2li+1)(2li+3)

]1/2
R

n j ,li+1
ni li

,

z
n j ,li−1,m j
ni li mi

=
[

l2
i −m2

i

(2li−1)(2li+1)

]1/2

R
n j ,li−1
ni li

,

(4.101)

where

R
n j l j
ni li

=
∫ ∞

0
R∗n j l j

(r)Rni li (r)r
3dr. (4.102)

Similarly,

(x ± iy)
n j l j m j
ni li mi

=
∫ ∞

0
R∗n j l j

(r)Rni li (r)r
3dr{[

(li ± mi + 1)(li ± mi + 2)

(2li + 1)(2li + 3)

]1/2

× Yli+1,mi±1

∓
[
(li ∓ mi )(li ∓ mi + 1)

(2li − 1)(2li + 1)

]1/2

× Yli−1,mi±1

⎫⎬
⎭ (4.103)

vanish unless
m = m j −mi =±1 and
l = l j − li =±1.
Therefore, the surviving components are

(x + iy)
n j ,li+1,mi+1
ni li mi

=
[
(li + mi + 1)(li + mi + 2)

(2li + 1)(2li + 3)

]1/2

× R
n j ,li+1
ni li

,

(x + iy)
n j ,li−1,mi+1
ni li mi

= −
[
(li − mi )(li − mi − 1)

(2li − 1)(2li + 1)

]1/2

× R
n j ,li−1
ni li

,

(x − iy)
n j ,li+1,mi−1
ni li mi

= −
[
(li − mi + 1)(li − mi + 2)

(2li + 1)(2li + 3)

]1/2

× R
n j ,li−1
ni li

,

(x − iy)
n j ,li−1,mi−1
ni li mi

=
[
(li + mi )(li + mi − 1)

(2li − 1)(2li + 1)

]1/2

× R
n j ,li−1
ni li

. (4.104)

If all directions in space are equivalent, then the atom
can be in any of the mi states with equal probabilities.
Adding all the intensities of the transitions from a certain
state ni li mi to all sublevels m j of the level n j l j , without
regard to the direction of polarization of the interacting
photon, one can find that the sum is independent of m j .
Substituting < i | ≡< ψni li mi | and < j | ≡< ψn j l j m j |,
we get for transitions l j = li + 1,

Ti j =
∑
m j

| < ψn j ,li+1,m j |r|ψni li mi > |2

=
∑
m j

| < ψn j ,li+1,m j |
x̂
2
[(x + iy)+ (x − iy)]

+ ŷ
2i
[(x + iy)− (x − iy)] + ẑz|ψni li mi > |2.

(4.105)
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Substituting from Eq. 4.104

Ti j =
∑
m j

{
1

4

∣∣∣(x + iy)
n j ,li+1,m j
ni li mi

+(x − iy)
n j ,li+1,m j
ni li mi

∣∣∣2 + 1

4

∣∣∣(x + iy)
n j ,li+1,m j
ni li mi

−(x − iy)
n j ,li+1,m j
ni li mi

∣∣∣2 + ∣∣∣zn j ,li+1,m j
ni li mi

∣∣∣2} ,
(4.106)

which reduces to

Ti j = 1

2

∣∣∣(x + iy)
n j ,li+1,mi+1
ni li mi

∣∣∣2
+ 1

2

∣∣∣(x − iy)
n j ,li+1,mi+1
ni li mi

∣∣∣2 + ∣∣∣zn j ,li+1,mi
ni li mi

∣∣∣2 .
(4.107)

Exercise 4.4 Show that

Ti j =
∑
m j

| < ψn j ,li+1,m j |r|ψni li mi > |2

= li + 1

2li + 1

∣∣∣Rn j ,li+1
ni li

∣∣∣2 . (4.108)

In a similar manner, for transitions with l j = li − 1,

Ti j =
∑
m j

| < ψn j ,li−1,m j |r|ψni li mi > |2

= li
2li + 1

∣∣∣Rn j ,li−1
ni li

∣∣∣2 (4.109)

Now the line strength for l j = li + 1 transitions is

Si j =
∑
m j

∑
mi

| < jm j |D|imi > |2

=
∑
mi

e2 li + 1

2li + 1

∣∣∣∣
∫ ∞

0
R∗n j li+1

(r)Rni li (r)r
3dr

∣∣∣∣2 .
(4.110)

and for l j = li − 1 transitions,

Si j =
∑
mi

e2 li
2li + 1

∣∣∣∣
∫ ∞

0
Rn j li−1(r)Rni li (r)r

3dr

∣∣∣∣2 .
(4.111)

Si, j does not depend on mi and hence
∑

mi
= 2li + 1 =

gi . Since l j = li±1, the values (li + 1) and li are often
referred to as max(li , l j ). The corresponding f -value for
any two transitions is then

fi j =
E ji (Ry)

3gi e2
Si j

= Ei j

3

max(li , l j )

2li + 1

∣∣∣∣
∫ ∞

0
Rn j l j (r)Rni li (r)r

3dr

∣∣∣∣2 ,
(4.112)

and the A-values,

A ji (s
−1) = 0.8032× 109 gi

g j
E2

j i fi j

= 0.8032× 109 gi
g j

E3
i j

3
max(li ,l j )

2li+1

×
∣∣∣∫∞0 Rn j l j (r)Rni li (r)r

3dr
∣∣∣2 .

(4.113)

The expressions derived above correspond to the
length formulation. The derivation of the velocity forms is
similar but a little longer. Evaluation of the quantity Ti j =∑

m j
| < jm j |p|imi > |2 in velocity form can be carried

out by writing

< j |p|i >= < j | x̂
2
[(px + ipy)+ (px − ipy)]

+ ŷ
2i
[(px + ipy)− (px − ipy)] + ẑpz |i>,

(4.114)

where, for example, px = −i� ∂
∂x . Since p is a Hermi-

tian operator, |< j |p|i>|2 = |<i |p| j>|2. Then we can get
expressions for <i |pz | j>, <i |px + ipy | j> and <i |px −
ipy | j> using standard factors for spherical harmonics
(see Appendix C), obeying the same selection rules for
quantum numbers l and m in dipole transitions as for the
length formulation. The non-vanishing terms for l j = li±1
are

(pz)
n j ,li+1,mi
ni li mi

= −i�

[
(li + 1)2 − m2

i

(2li + 1)(2li + 3)

]1/2

× (R+)n j ,li+1
ni li

,

(pz)
n j ,li−1,mi
ni li mi

= −i�

[
l2
i − m2

i

(2li − 1)(2li + 1)

]1/2

× (R−)n j ,li−1
ni li

,

(px ± ipy)
n j li+1,mi∓1
ni li mi

= ±i�

×
[
(li ∓ mi + 1)(li ∓ mi + 2)

(2li + 1)(2li + 3)

]1/2

× (R+)n j ,li+1
ni li

,

(px ± ipy)
n j li−1,mi∓1
ni li mi

= ∓i�

[
(li ± mi )(li ± mi − 1)

(2li + 1)(2li − 1)

]1/2

× (R−)n j ,li−1
ni li

, (4.115)

where

(R+)
n j l j
ni li

=
∫ ∞

0
Rni li

[dRn j l j

dr
+ (l j + 1)

Rn j l j

r

]
r2dr,

(R−)
n j l j
ni li

=
∫ ∞

0
Rni li

[dRn j l j

dr
− l j

Rn j l j

r

]
r2dr.

(4.116)
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Carrying out the summations, it can be shown that for
l j = li + 1,

T li+1
i j =

∑
m j

|| < jm j |p|imi > ||2

= �
2 li + 1

2li + 1

∣∣∣∣
∫ ∞

0
Rni li

×
[d Rn j li+1

dr
+ (li + 2)

Rn j li+1

r

]
r2dr

∣∣∣∣
2

.

(4.117)

With Pnl = r Rnl , the expression above reduces to

T li+1
i j = �

2 li + 1

2li + 1

∣∣∣∣
∫ ∞

0
Pni li

×
[dPn j li+1

dr
+ (li + 1)

Pn j li+1

r

]
dr

∣∣∣∣
2

.

(4.118)

The line strength for the l j = li + 1 transition is then
given by

S ji = e2

m2ω2
j i

∑
mj

∑
mi
| < jm j |p|imi > |2

= �
2e2

m2ω2
j i

∑
mi

li + 1

2li + 1

∣∣∣∣
∫ ∞

0
Pni li

×
[dPn j li+1

dr
+ (li + 1)

Pn j li+1

r

]
dr

∣∣∣∣
2

.

(4.119)

Similarly for l j = li − 1,

T li−1
i j =

∑
m j

|| < jm j |p|imi > ||2 = �
2li

2li + 1

∣∣∣∣
∫ ∞

0
Pni li

×
[dPn j li−1

dr
− li

Pn j li−1

r

]
dr

∣∣∣∣
2

, (4.120)

and the corresponding line strength is

S ji = �
2e2

m2ω2
j i

∑
mi

li
2li + 1

∣∣∣∣
∫ ∞

0
Pni li

×
[dPn j li−1

dr
− li

Pn j li−1

r

]
dr

∣∣∣∣
2

. (4.121)

The oscillator strengths and radiative decay rates can now
be obtained from S ji as before. A couple of useful for-
mulae for oscillator strengths are as follows. The average
oscillator strengths for transitions between two Rydberg
states, ni li and n j li ± 1 where 
n = n j − ni � ni , n j ,
varies as f (ni li → n j l j ) ∼ ni [76]. The average oscil-
lator strengths for transition between two Rydberg states

with principle quantum numbers ni and n j such that

n � 1 is given by [76]

f (ni → n j ) = 4ni

31.5π(
n)3
. (4.122)

4.7 Length, velocity and acceleration

In Eq. 4.67 we introduced two equivalent forms of radia-
tive transition matrix elements, involving either the length
or the velocity (momentum) operator. As just outlined, all
it needs when extending from 1 to N electrons is a summa-
tion over the particle index n appended on the respective
observables. Then the oscillator strength reads

fi j = 2

m�ωi j

∣∣∣∣∣∣
N∑

n=1

∫
�∗j

(
ê · pneik·rn

)
�i dr1. . . drN

∣∣∣∣∣∣
2

,

(4.123)

writing dr for the volume elements r2dr dϑ cosϑdϕ in
the integral 〈 j |(. . .)|i〉. In the dipole approximation the
operator exponential is cut down to the identity operator,
when

fi j = 2

m�ωi j

∣∣∣∣ ê ·
N∑

n=1

∫
�∗j pn �i dr1 . . . drN

∣∣∣∣2
(4.124)

= 2mωi j

�

∣∣∣∣ ê ·
N∑

n=1

∫
�∗j rn �i dr1 . . . drN

∣∣∣∣2
(4.125)

are the velocity and length forms for N active electrons.
Having derived the length from the momentum or velocity
form with the help of the commutation relation [r, H ] =
i � p/m, one can again exploit the commutation property
of the previous result with H . Next one arrives at

[ p, H ] = [ p, V ] = −i�∇V, (4.126)

so that

〈 j | [ p, H ] |i〉 = (E j − Ei )〈 j | p|i〉 = 〈 j | − i�∇V |i〉,
(4.127)

which leads to the ‘acceleration’ form

〈 j | p|i〉 = −i�

Ei j
〈 j |∇V |i〉 = −i�e2

Ei j

〈
j

∣∣∣∣ r

r3

∣∣∣∣ i

〉
. (4.128)

Exercise 4.5 Derive the above relation by using ∇ 1
ri j
=

−∇ 1
r ji

in V = −∑
n

e2

rn
+

∑
n<m

e2

rmn
. Hence the

oscillator strength has the following acceleration form,

fi j = 2e4
�

mω2
i j

∣∣∣∣∣∣ê.
N∑

n=1

∫
�∗j

rn

r3
n
�i dr1...drN

∣∣∣∣∣∣
2

. (4.129)
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Chandrasekhar [77] verified that the three forms give
the same value for the oscillator strength, if �i and � j
are exact solutions of the Hamiltonian H . With approx-
imate wavefunctions though, the three values differ. The
extent of agreement among the three forms is an indica-
tor of the consistency and accuracy of the approximation
made in computing the wavefunctions. The basic physical
fact is that the length, velocity and acceleration operators
sample, or operate on, different parts of the wavefunc-
tion with different weights. The length operator in the
integrand leads to predominant contributions from large
distances r ; the first derivative velocity operator ∂/∂r
collects most of its contribution from shorter distances,
and the acceleration operator with its second derivative
∂2/∂r2 most sensitively probes the sections of large cur-
vature in a wavefunction at even shorter distances. Thus
small details in this range of the integrand carry an inor-
dinate weight, and results from this form may be poor,
while the other two, especially the length form, make good
sense. Disagreement between length and velocity is a sig-
nal for caution, yet one may still be able to pick one as the
better choice, often the length form, depending upon the
nature of the observable.

4.8 Oscillator strengths for hydrogen

Transitions nl → n′ l ± 1 in hydrogen are of obvious
interest, since H I exists in nearly all astrophysical envi-
ronments, from extremely cold interstellar and intergalac-
tic media, to extremely hot stellar and galactic interiors
(the latter are also the sites of massive black hole activ-
ity). For the Lyman series 1s–np an analytic expression
can be used [78]:

g1 f1n′ =
29n′5(n′ − 1)2n′−4

3(n′ + 1)2n′+4
, (4.130)

where g1 = 2. For high values of n the oscillator strengths
decrease rapidly,

g1 f1n′ =
29

(
1− 1

n′
)2n′−4

3n′3
(

1+ 1
n′
)2n′+4

≈ 29

3n′3
e−2

e2
≈ 3.1

1

n3
,

(4.131)

saying that the hydrogenic oscillator strengths decrease
as n−3.

A variety of approximations has been employed to
overcome the difficulty with rapidly oscillating wavefunc-
tions associated with high-(nl) orbitals (e.g., [79, 80]).
We reproduce some of the key steps in a semi-classical

calculation [80] using the well-known Wentzel–Kramers–
Brillouin (WKB) method from basic quantum mechanics
(viz. [4]), which gives [80]

f n′l ′
nl = 
(En′l ′,nl )

Ry

max(l, l ′)
3(2l + 1)

∣∣∣∣∣ Dn′l ′
nl
a0

∣∣∣∣∣
2

Z2 (4.132)

at transition energies 
(En′l ′,nl )/Ry = (1/n2 − 1/n′2)
between Rydberg levels and with radial integrals

Dn′l ′
nl =

∫
Rnl (r)r Rn′l ′(r)dr. (4.133)

For the 1s–2p transition this integral (of dimension length)
becomes

D
2p
1s (WKB) =

∫
R1sr R2pdr

= 1√
6

(
4

3

)4 a0

Z
= 1.2903

a0

Z
, (4.134)

or f (1s–2p)= 4(2/3)9 = 0.4657, which differs consider-
ably (∼10%) from the exact value 0.4162 [81]. However,
the accuracy of the WKB values improves with nl, as
shown in Table 4.1, which gives a representative sample of
f -values for relatively low-lying transitions.

We mentioned that the dipole integral becomes more
involved with higher nl. To obtain a general form of the
dipole integral for any transition using the WKB method
[80], a spherically symmetrical system is represented by
the sum of incoming and outgoing waves as

Rnl (r) = 1

2

[
�
(+)
nl +�(−)nl

]
, (4.135)

where

R(±)nl = Cnl√
k(r)

exp(±i[φ(r)− π/4]). (4.136)

The normalization coefficient of the wavefunction can be
determined by the WKB normalization factor

|Cnl |2 = 2∫ r2
r1

dr
k(r)

= 2m

π�2

dEnl

dn
. (4.137)

The function k(r) is the wavenumber, proportional to the
radial velocity,

k(r) =
√

2m

�2

⎡
⎢⎣Enl + eV (r)− �

2

2m

(
l + 1

2

)2

r2

⎤
⎥⎦

1/2

,

(4.138)

where Enl is the energy eigenvalue, V (r) is the electro-
static potential, and φ is the phase integral

φWKB(r) =
∫ r

r1

q(r ′)dr ′, (4.139)
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TABLE 4.1 Oscillator strengths for hydrogen.

Line Transition <
E/Ry>
∣∣∣Dn′l ′

nl /a0

∣∣∣2 ∣∣∣Dn′l ′
nl /a0

∣∣∣2 fabs

nl−n′l ′ avg exact WKB exact

Lyα 1s–2p 0.75 0.166 479 1.565 0.416 2
Lyβ 1s–3p 0.889 0.266 968 0.228 7 0.079 1
Lyγ 1s–4p 0.937 5 0.092 771 0.078 18 0.028 99
Lyδ 1s–5p 0.96 0.043 56 0.036 48 0.013 9
Hα 2s–3p 0.138 9 9.393 1 9.884 0.434 9
Hα 2p–3s 0.138 9 0.880 6 1.004 0.013 59
Hα 2p–3d 0.138 9 22.543 4 21.273 0.695 8
Hβ 2s–4p 0.187 5 1.644 4 0.102 8
Hβ 2p–4s 0.187 5 0.146 2 0.003 045
Hβ 2p–4d 0.187 5 2.923 1 0.121 8
Paα 3s–4p 0.048 6 29.913 32.962 5 0.484 7
Paα 3p–4s 0.048 6 5.929 2 7.280 3 0.032 2
Paα 3p–4d 0.048 6 57.235 3 58.213 8 0.618 3
Paα 3d–4p 0.048 6 1.696 0 2.067 6 0.010 99
Paα 3d–4f 0.048 6 104.659 98.511 1.017 5

with r1 = r1(n, l) as the inner turning point defined by
knl (r1) = 0. The hydrogenic case is characterized by

V (r) = Ze/r, Enl = − Z2e2

2a0n2
,

Cnl =
√√√√ 2Z2

πa2
0n3

, r1 = a0 Z2

Z
(1− ε), (4.140)

where

ε =
[

1−
(
(l + 1

2

)2
/n2

]1/2

(4.141)

is the ‘eccentricity’ of the elliptical orbit. Allowing the
radius r to be complex, knl (r) has a a branch-cut along
r1 ≤ r ≤ r2; k(r) is defined to be positive (real) above
the real axis and negative (real) below. Then the WKB
approximation yields

Dn′l ′
nl (WKB) = 1

2
�
[

R(+)nl (rs)rs R(−)n′l ′ (rs

√
2iπ

G′(rs)

]
,

(4.142)

where � is the real part and rs is a saddle point. Then

G(r) = knl (r)− kn′l ′(r)−
i

r
+ 1

2

[
k′nl (r)

knl
+ k′n′l ′(r)

kn′l ′

]
.

(4.143)

The variables rs , G(r), G′(r) are directly calculated from
the central potential V (r) (the ‘prime’ represents deriva-
tive with respect to r ). In addition to the few low-n
f -values in Table 4.1, a larger set of transitions can be
computed (e.g., [82]).

The total inter-shell n−n′ hydrogenic oscillator
strengths obey the recurrence relation

fnn′ =
1

2n2

n−1∑
l=0

2(2l + 1)
[

f n′l+1
nl + f n′l−1

nl

]
. (4.144)

For l = 0, a term f n′l−1
nl does not exist.

Finally, the spectroscopic quantities for hydrogenic
ions of nuclear charge Z are related to those of
hydrogen as

(
E)Z = Z2 EH, SZ = SH

Z2
,

AZ = Z4 AH, fZ = fH . (4.145)

It may be noted that the collective oscillator strength fnn′
remains the same regardless of Z . The generalized treat-
ment of radiative transitions for non-hydrogenic systems
is given in Appendix C.

4.9 Configuration interaction

For non-hydrogenic atoms and ions where analytic
expressions are no longer possible, evaluation of tran-
sition matrix elements is subject to numerical accuracy
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TABLE 4.2 Coefficients F−1 between the first two configurations of the carbon sequence: F0 = 0 in the expansion
f abs = F0 + F−1/Z+ F−2/Z2 + . . . for the oscillator strength in transitions within one principal shell.

1s22s22p2 — 3P 1D 1S

1s22s12p3 5So 3Do 3Po 3So 1Do 1Po 1Po

W1/Ry 6.6380 6.7599 6.8021 6.8724 6.8771 6.9193
CI(+1s22p4) — 1.180 0.834 1.394 2.799 1.060 3.479
Full CI — 0.958 1.031 1.122 2.258 1.303 2.206

with which the wavefunctions can be computed. As dis-
cussed earlier in Chapters 2 and 3, the accuracy of the
wavefunction representation of an atomic level depends
on configuration mixing. We again refer to the example on
neutral carbon discussed in Chapter 2 (see Table 2.5), with
a simple three-configuration expansion C1 :1s22s22p2,
C2 :1s22s12p3 and C3 :1s22p4, belonging to the n = 2
complex. Employing Layzer’s isoelectronic Z -expansion
[8] referred to in Chapter 2, Table 4.2 illustrates the
effect of configuration mixing for the high-Z absorption
oscillator strengths from the even-parity ground config-
uration C1 terms 3P, 1D, 1S in transitions to odd-partiy
terms associated with the first excited configuration C2:
5So, 3Do, 3Po, 3So, 1Do, 1Po. Inclusion of the ‘quasi-
degenerate’ C3 configuration 1s22p4 has no effect on
terms arising from C2 of opposite parity. But C1 inter-
acts strongly with C3, and calculations ignoring this fact
may be off by perhaps 50 % – see the last entry in the table
with 2.206 : 3.479.

4.10 Fine structure

Relativistic effects couple the spin and angular momenta
and give rise to fine structure. Recalling the discussion in
Chapter 2, whereas L S coupling is a reasonable approx-
imation for light elements Z ∼ 10 when fine structure
components are often blended, for higher Z they are read-
ily resolved in practical observations. For most astrophys-
ically abundant elements, such as the iron-group elements
with 20 ≤ Z ≤ 30, intermediate coupling suffices,
i.e. L+ S = J (however, for high-Z a pure j j-coupling
scheme is required, see Section 2.13.2). The fine struc-
ture levels in intermediate coupling are designated as
L S J . Radiative transitions are governed by selection rules
as discussed later (Table 4.4) for dipole and non-dipole
transitions including fine structure (see Section 4.13). In
L S J -coupling, an additional selection rule for dipole fine
structure transitions (with parity change as required) is


J = 0,±1, (4.146)

except that there is no J = 0 → 0 transition, which is
strictly forbidden. The physical reason is simple: a pho-
ton carries angular momentum, therefore its absorption
or emission from a J = 0 level must involve a change
in J -value. However, because of vectorial addition of
angular momenta, one can readily have transitions from a
non-zero J -level to another one with the same J but oppo-
site parity, e.g., the C II: 1s22s22p (2Po

1/2)−1s22s2p2

(2P1/2). Since the spin remains the same, this is a dipole
allowed E1 transtion.

However, the J -selection rule for L S J coupling also
allows for spin flip, giving rise to an intermediate class
of semi-forbidden transitions. They are called intercom-
bination transitions, and involve intersystem L S multi-
plets. Like dipole allowed transitions they entail parity
change, but initial and final levels of different spin sym-
metries, i.e., 
S �= 0. The intercombination transitions
arise because of departure from LS coupling. They are
not ‘pure’ transitions in the sense that they do not corre-
spond to either of the two terms in the radiation operator
(Eq. 4.61) considered thus far. They arise from relativistic
mixing between allowed and forbidden transitions, imply-
ing that we must consider fine structure. While forbidden
in L S coupling, intercombination transitions behave as
E1 transitions, and become increasingly so with Z . An
intercombination line is symbolically written with a right
square bracket], e.g., the two fine structure lines C II]
2323.5 Å and C II] 2324.69 Å, corresponding to tran-
sitions 1s22s22p 2Po

1/2 →1s22s2p2 4P3/2,1/2 in the
2Po

J−4PJ ′ multiplet (note the spin-flip and the parity
change).

A good number of astrophysically important transi-
tions occur between atomic states that must be treated
beyond Russell–Saunders coupling, because magnetic
effects due to μB are too large at higher Z to be neglected.
The case of states i in intermediate coupling has been
expanded in Chapter 2 and is applied in Section 4.14 in
particular. The initial and final states involve term cou-
pling coefficients based on matrix diagonalization of the
Breit–Pauli Hamiltonian – and discussed in Section 2.13
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as ‘significant for radiative transitions’. A simple exam-
ple is as in Eq. 4.168; the radiative kernels of the matrix
elements are as derived in this chapter. The Z-scaled
behaviour of dipole allowed E1 vs. intercombination E1
transitions has been explored extensively in the litera-
ture for radiative transitions [83], as well as for collision
strengths (Chapter 5, [74, 84, 85, 86]). In general, dipole
allowed E1 transitions with the same-spin multiplicity are
much stronger than the intercombination E1 transitions.
The selection rules associated with different transitions
are listed in Table 4.4.

4.11 R-matrix transition probabilities

In Section 4.6 we worked through the formulation using
the simplest atomic model, the central-field approxima-
tion. However, in Chapter 3 we also sketched out the
formulation of the R-matrix method (Section 3.5) which
has generally enabled the most elaborate numerical pro-
cedure based on the close coupling approximation for the
treatment of bound and continuum (e + ion) processes.
A large volume of radiative atomic data for astronomy
has been, and is, computed using the R-matrix method,
such as from the Opacity Project and the Iron Project
([37, 38]).6 It is therefore worthwhile to relate the ear-
lier discussion to the final expressions required to obtain
transition probabilties.

Let �i be the initial wavefunction of a bound state
i of the target with decaying waves in all channels, and
�−f (k̂) be the wavefunction of the final scattering state
of the (e + ion) system corresponding to a plane wave
in the direction of the ejected electron momentum k̂ and
incoming waves in all open channels. Both�i and�−f (k̂)
are now expanded in terms of the R-matrix basis set in
the inner region as described in Eq. 3.82 (note the resem-
blance of the coefficients of the R-matrix basis and the
Einstein A coefficient),

�i (Ei ) =
∑

k

�k AEi ki ; �−f (k̂)(E f )

=
∑

k

�k A−E f k f (k̂). (4.147)

The coefficients AEi ki and A−E f k f (k̂) are determined by
solving the coupled differential equations in the external
region (Eq. 3.95) subject to the bound state and free state
boundary conditions and matching to the R-matrix bound-
ary condition at r = a (Fig. 3.8). The energy dependence
is carried out through the AEk coefficients; the energy

6 See also the on-line database NORAD: www.astronomy.ohio-state.edu/

∼nahar, for up-to-date extensions of the OP and IP work.

independent R-matrix basis functions �k are the same in
both the bound and the free state. The bound state wave-
functions are normalized, e.g., 〈�b|�b〉2=1. When the
final state lies in the continuum, as for photoionization or
bound–free, the free state wavefunctions are normalized
per unit energy (say Rydbergs) as 〈�

(
E ′′f

)
|�

(
E ′f

)
〉 =

δ(E ′ − E ′′).
The angular algebra associated with generalized radia-

tive transitions is sketched out in Appendix C. To compute
dipole matrix elements for either the bound–bound or
the bound–free transitions we consider the dipole length
operator

D = R + r (4.148)

with R = ∑N
n=1 rn for N target electrons and a collid-

ing or outer electron r . As a vector in ordinary space, the
photon interaction D is a tensor of rank k = 1, namely
the vector DL =

∑
n rn in the length form of the dipole

matrix and DV = −∑
n ∇n in the velocity form.

The reduced dipole matrix7 in the R-matrix formula-
tion is the sum of two parts:

〈a||D||b〉 = Di(a, b)+ Do(a, b), (4.149)

where Di represents the contribution from the inner region
(r ≤ a), and Do from the outer region, (r ≥ a). In
the outer region, antisymmetrization or exchange can be
neglected. Then

Do(a, b) =
∑
i i ′

αi i ′ (Fia |Fi ′b)+ βi i ′ (Fia |r |Fi ′b),

(4.150)

where

αi i ′ = 〈�||R||�〉, βi i ′ = 〈�||r||�〉. (4.151)

� is the usual target wavefunction in the close coupling
expansion (Eq. 3.42). The coefficient αi i ′ is non-zero only
if there is an optically allowed transition between the tar-
get states belonging to channels i and i ′, and li = li ′
The coefficient βi i ′ is non-zero if the channels i and i ′
belong to the same target and if li = (li ′ ± 1). The
integrals in Do can be evaluated as described in [87].
In this manner the complete dipole matrix elements are
computed from the wavefunction expansions in the inner
region and the outer region. The extension to transition
elements with higher multipoles is straightforward in prin-
ciple, though computationally more demanding, where
bound state wavefunctions are normalized to unity.

7 This important concept refers to the separation of radial and angular

components according to the basic Wigner–Eckart theorem, Eq. C.18

discussed in Appendix C.
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The coupled channel R-matrix method has been gen-
eralized to a uniform consideration of radiative processes:
bound–bound, bound–free, and free–free transitions in the
(e + ion) system. The division between the inner and the
outer region in the operator Eq. 4.148 directly enables the
computation of the two separate terms involving R and
r, as in Eq. 4.150: the radial matrix elements with the R
operator involving the target ion in the inner region, and
with the r operator. If the initial and the final (e + ion)
states are both bound then the free channel radial functions
Fia and Fi ′b are exponentially decaying, representing
bound–bound transitions. On the other hand, if the final
state is in the continuum, with oscillating radial functions,
then the radial matrix elements refer to the bound–free
process. Likewise, when both the initial and the final states
are in the continuum then the same radial matrix element
represents the free–free process.

As in Section 4.5.2 in the bound–bound case 〈b′|b〉2 =
δb′,b for the dimensionless oscillator strength

f (b, a) = 1

3ga

Eb − Ea

Ry

Sa,b

a2
0

(4.152)

(Eq. 4.89), now with weight factors (2Sa + 1)(2La + 1)
in L S or (2Ja + 1) in intermediate coupling. Again the
atomic details for a transition between two bound states at
energies Ea and Eb are carried through the line strength

SL(b; a) = |(b||DL||a)|2,
SV(b; a) = Ry2

(Eb − Ea)2
|(b||DV||a)|2, (4.153)

which is symmetric in a and b. In the current case of
invariably approximate (N + 1)-particle functions the
arguments at the end of Section 4.10 in favour of the
length formulation SL pertain, yet with modifications if
the initial or the final state involves an oscillating radial
wavefunction (an incoming or outgoing electron).

Large-scale calculations of transition probabilities are
illustrated in Fig. 4.2. Dipole oscillator strengths are com-
puted in the length and velocity formulations using the
close coupling R-matrix method, and plotted against each
other as an overall measure of accuracy. Figure 4.2 (a)
compares the length and velocity f -values for dipole
E1 transitions obtained for the relatively simple case of
Li-like Fe XXIV. The agreement is consistently good over
the entire range of magnitudes from Log g fL = 0 to −6
(it is customary to compare the symmetric quantity g f ,
the statistically weighted average). That implies that even
for extremely small f -values the length and velocity oper-
ators in the dipole matrix element (Eq. 4.149) yield the
same numerical value, both of which are therefore accu-
rate. A rather different picture emerges for a somewhat

log10[fL]

lo
g 1

0[
f V

]
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FIGURE 4.2 Dispersion in oscillator strengths computed in the
length and velocity formulation as an indicator of overall
accuracy of large-scale computations (the magnitude decreases
to the right): (a) the relatively simple case of dipole transitions
in He-like Fe; (b) the more complex case of B-like Fe shows
much greater dispersion. The length values gfL are used in
practical applications. The calculations were performed in the
close coupling approximation using the relativistic Breit–Pauli
R-matrix method.

more complicated ion, B-like Fe XXI. Here the agreement
between fL and fV is good for relatively strong transi-
tions with large f -values, say g f > 0.1, but increasingly
worse as they get smaller. The dispersion in the length
and velocity f -values is not only significant, but could
also range over an order of magnitude for very weak
transitions. The behaviour in Fig. 4.2 (b) is quite typi-
cal of complex atomic systems. As explained earlier, we
generally find that the length f -value g fL is the more
accurate.

A sample table of a large-scale calculation of transition
probabilities computed using the Breit–Pauli R-matrix
method is presented in Table 4.3. The table lists all three
forms that are useful in practice: oscillator strength f ,
the line strength S, and the Einstein A coefficient. The
first two sets of values correspond to those between the
fine structure components of intercombination transitions,
2Po

J −4 Pe
J ′ and 4Pe

J −2 Po
J ′ . The components are distin-

guished by their statistical weights g = (2J + 1). The



90 Radiative transitions

TABLE 4.3 Oscillator strengths (f ), line strengths (S) and radiative decay rates (A values) for intercombination and allowed E1
transitions in Fe XXII [88].

Ci − Ck Ti − Tk gi : I – g j : K Eik f S A
(Å) (s−1)

2s22p1 − 2s12p2 2Po − 4Pe 2: 1− 2: 1 247.63 7.58× 10−4 1.24× 10−3 8.24× 107

2s22p1 − 2s12p2 2Po − 4Pe 4: 1− 2: 1 349.14 1.22× 10−4 5.61× 10−4 1.33× 107

2s22p1 − 2s12p2 2Po − 4Pe 2: 1− 4: 1 217.49 2.70× 10−5 3.87× 10−5 1.91× 106

2s22p1 − 2s12p2 2Po − 4Pe 4: 1− 4: 1 292.07 1.15× 10−4 4.41× 10−4 8.96× 106

2s22p1 − 2s12p2 2Po − 4Pe 4: 1− 6: 1 253.13 1.04× 10−3 3.46× 10−3 7.21× 107

2s12p2 − 2p3 4Pe − 2Po 2: 1− 2: 2 85.81 2.31× 10−4 1.30× 10−4 2.09× 108

2s12p2 − 2p3 4Pe − 2Po 2: 1− 4: 4 81.73 1.77× 10−5 9.51× 10−6 8.82× 106

2s12p2 − 2p3 4Pe − 2Po 4: 1− 2: 2 90.14 3.07× 10−5 3.65× 10−5 5.04× 107

2s12p2 − 2p3 4Pe − 2Po 4: 1− 4: 4 85.65 3.30× 10−4 3.72× 10−4 3.00× 108

2s12p2 − 2p3 4Pe − 2Po 6: 1− 4: 4 89.69 1.18× 10−4 2.10× 10−4 1.47× 108

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 2: 1− 2: 6 11.79 5.12× 10−1 3.97× 10−2 2.46× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 2: 1− 4: 9 11.80 6.72× 10−1 5.22× 10−2 1.61× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 4: 1− 2: 6 11.87 1.25× 10−2 1.95× 10−3 1.18× 1012

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 4: 1− 4: 9 11.87 1.08× 10−1 1.68× 10−2 5.10× 1012

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 4: 1− 6: 6 11.75 1.18× 10−1 1.83× 10−2 3.81× 1012

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 6: 1− 4: 9 11.95 3.03× 10−3 7.14× 10−4 2.12× 1011

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 6: 1− 6: 6 11.82 3.54× 10−1 8.26× 10−2 1.69× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Do 6: 1− 8: 2 11.84 6.73× 10−1 1.57× 10−1 2.40× 1013

LS 4Pe − 4Do 12− 20 7.92× 10−1 3.69× 10−1 2.27× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Po 2: 1− 2: 8 11.67 1.03× 10−3 7.89× 10−5 5.03× 1010

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Po 2: 1− 4: 12 11.67 4.97× 10−3 3.82× 10−4 1.22× 1011

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Po 4: 1− 2: 8 11.75 1.79× 10−1 2.76× 10−2 1.73× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Po 4: 1− 4: 12 11.75 2.34× 10−1 3.63× 10−2 1.13× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Po 4: 1− 6: 4 11.89 4.35× 10−1 6.81× 10−2 1.37× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Po 6: 1− 4: 12 11.82 1.12× 10−1 2.62× 10−2 8.03× 1012

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 4Po 6: 1− 6: 4 11.96 2.34× 10−2 5.52× 10−3 1.09× 1012

LS 4Pe − 4Po 12− 12 3.51× 10−1 1.64× 10−1 1.68× 1013

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 2Po 2: 1− 2: 11 11.68 5.36× 10−3 4.12× 10−4 2.62× 1011

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 2Po 2: 1− 4: 15 11.40 2.88× 10−2 2.16× 10−3 7.39× 1011

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 2Po 4: 1− 2: 11 11.76 1.24× 10−4 1.92× 10−5 1.20× 1010

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 2Po 4: 1− 4: 15 11.47 3.99× 10−4 6.03× 10−5 2.03× 1010

2s12p2 − 2s12p1(3P∗)3d1 4Pe − 2Po 6: 1− 4: 15 11.54 1.53× 10−4 3.48× 10−5 1.15× 1010

2s22p1 − 2s12p2 2Po − 2Pe 2: 1− 2: 2 117.28 7.85× 10−2 6.06× 10−2 3.80× 1010

2s22p1 − 2s12p2 2Po − 2Pe 4: 1− 2: 2 136.01 1.87× 10−4 3.35× 10−4 1.35× 108

2s22p1 − 2s12p2 2Po − 2Pe 2: 1− 4: 3 100.80 1.87× 10−2 1.24× 10−2 6.13× 109

2s22p1 − 2s12p2 2Po − 2Pe 4: 1− 4: 3 114.34 8.59× 10−2 1.29× 10−1 4.38× 1010

LS 2Po − 2Pe 6− 6 8.98× 10−2 2.02× 10−1 4.60× 1010

2s12p2 − 2p3 2Pe − 2Po 2: 2− 2: 2 139.55 8.33× 10−3 7.66× 10−3 2.85× 109

2s12p2 − 2p3 2Pe − 2Po 2: 2− 4: 4 129.07 1.69× 10−2 1.44× 10−2 3.38× 109

2s12p2 − 2p3 2Pe − 2Po 4: 3− 2: 2 173.24 4.58× 10−3 1.05× 10−2 2.04× 109

2s12p2 − 2p3 2Pe − 2Po 4: 3− 4: 4 157.39 6.87× 10−2 1.42× 10−1 1.85× 1010

LS 2Pe − 2Po 6− 6 5.73× 10−2 1.75× 10−1 1.60× 1010
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next four sets of transitions are within several LS mul-
tiplets and their fine structure components. The total LS
multiplet strengths are also given at the end of each set
of dipole allowed E1 transitions with 
S = 0, as the
sum over all fine structure components. However, for the
intercombination E1 transitions
S �= 0, the total is omit-
ted since it does not strictly refer to an LS multiplet. All
transitions in Table 4.3 are between levels whose energies
have been measured. Since the experimental energies are
generally more accurate than theoretically computed ones,
they are used in transforming line strengths into oscillator
strengths and A-values, according to Eq. 4.89.

4.12 Higher-order multipole transitions

The radiative dipole moment has been discussed in
detail deriving transition probabilities. Not every pair
of states constitutes a dipole allowed transition leading
to electric dipole radiation E1. Yet if the exponen-
tial operator is expanded high enough in powers of
i k · r , one comes across non-vanishing radiative matrix
elements of

〈 j |ei k · r (ê · p)|i〉.

To study the higher-order multipole transitions of char-
acter λ = l + 1 we recall the Legendre expansion
(Eq. 4.61), namely

ei k · r =
∞∑
l

il (2l + 1) jl (kr)Pl (cosϑ),

once more emphasizing that ϑ is the angle between
photon-k and electron-r . This expression implies that
the angular dependences can be expressed in terms of
spherical harmonics. Successive terms in the transition
matrix element can be interpreted as dipole, quadrupole,
octupole, etc., involving correspondingly higher powers
of ka. However, the numerical magnitude of the tran-
sition matrix element is reduced by a factor of kr in
each term. Therefore, transitions due to higher multipoles
are much weaker and called forbidden. With respect to
Eq. 4.62, the next higher term is approximately lower by
the factor (ka)2 with respect to the dipole term. Typi-
cally (ka)2 � 1, where a is the linear size of the particle
or electron wavefunction. A forbidden transition is often
symbolically written within square brackets [ ]. The far-IR
[C II] λ = 157μm forbidden line for example is due to
the transition 2Po

1/2−2Po
3/2 between the two levels of the

1s22s22p ground term.

Up to the second-order contribution to the radiative
interaction operator, the perturbation Hamiltonian reads

H ′ = e

mc
(1+ i k · r) p . (4.154)

In transverse gauge, k · p= 0, each component (px ,

py , pz) of the electron momentum p must be taken
together with the components of the radiation field k · r
perpendicular to it. In rectangular coordinates this leads
to (1+ iky y)pz and two more cyclically equivalent com-
ponents. Then it can be shown that in the expression

∣∣∣〈 j
∣∣∣ e

mc
ê · p(1+ ik · r)

∣∣∣ i
〉∣∣∣2

only the first-order (electric dipole) and the second-order
piece survive; the cross terms cancel out. If i and j
are states of well-defined parity, the first-order opera-
tor connects only the states of opposite parity, while the
second-order operator will connect states of the same
parity. Looking at the second-order decomposition

(k · r)(ê · p) = 1

2

[
(ê · p)(k · r)+ (ê · r)( p · k)

]
+ 1

2

[
(ê · p)(k · r)− (ê · r)( p · k)

]
= 1

2

[
(ê · p)(k · r)+ (ê · r)( p · k)

]
+ 1

2

[
(k × ê) · (r × p)

]
(4.155)

of the radiative operator, the first of the two terms repre-
sents the electric quadrupole or E2 interaction. The cross
products expose the second term as a magnetic dipole
or M1 interaction, because it is related to B · L, where
L = r× p is the angular momentum component along the
magnetic field B. The magnetic dipole moment is given
by �μ = e�/(2mc) �L . Since they physically arise from the
same second-order interaction in the perturbation Hamil-
tonian due to radiation, the probability of M1 is of the
same order of magnitude as that of E2. Moreover, the
two operators are of even parity, hence no parity change
between states for E2 and M1 transitions.

Expansion of the electric quadrupole term gives rise to
components

m

2
(xvy + vx y) = m

2

i

�
(x H0 y− xy H0+ H0xy− x H0 y)

= m

2

i

�
(H0xy − xy H0). (4.156)

Thus the contribution to the matrix element of electric
quadrupole is
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e2

m2c2

ω2

c2

1

4

m2

�2
(E j − Ei )

2|〈 j |xy|i〉|2

= 1

4

ω4

c4
| < j |exy|i > |2. (4.157)

The operator in the matrix element has the appearance of
a second-order spherical tensor, and is called the atomic
electric quadrupole moment Q. Pure quadrupole transi-
tion arises when two parts of the charge distribution are
oscillating like electric dipoles out of phase so that the
dipole contribution vanishes. For this kind of radiation to
be important, the wavelength of the incident wave must be
comparable with the size of the charge distribution.

In analogy with the electric quadrupole and magnetic
dipole transitions, E2 and M1, the transition rates via var-
ious higher-order multipole transitions in general can be
expressed as the line strength [89],

SXλ(i j) =
∣∣∣〈� j

∥∥∥OXλ
∥∥∥�i

〉∣∣∣2 , (4.158)

where Xλ represents the electric or magnetic type and
λ represents various multipoles with notations: electric
dipole (E1), quadrupole (E2), octupole (E3), magnetic
dipole (M1), quadrupole (M2), etc. The operator for elec-
tric multipole transitions in the length formulation is
given by

OEλ = b[λ]
N+1∑
i=1

C[λ](i)rλi , b[λ] =
√

2

λ+ 1
. (4.159)

The magnetic multipole operators, which are slightly
more complex,8 are expressed to the lowest order as

OMλ =b[λ]
∑

i

rλ−1
i

[
C[λ−1](i)

×
{

l(i)+ (λ+ 1)s(i)
}][λ]

, (4.160)

where the sum runs over electron coordinates and l and
s = σ

2 are the single electron orbital and spin operators.
For magnetic dipole transitions the radiative operator

in the line strength Eq. 4.158 reads

OM1 = μB

N∑
i

⎡
⎣(l(i)+ 2s(i))

⎤
⎦ (4.161)

to first order. Including higher-order M1 contribu-
tions [90]

OM1 = μB

N∑
i

[
(l(i)+ 2s(i))

8 A brief introduction to the algebra related to the calculation of angular

coefficients of mulitipole radiative transition matrix elements is given

in Appendix C.
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×
{

ri j × [ri j × (σi + σ j )] + (ri × r j )ri .(pi + p j )

r3
i j

− (ri × p j )− (r j × pi )

ri j

}]
, (4.162)

where ε = Ei−E j is the photon energy for the transition.
The higher-order terms were formulated [90] to explain
the observed forbidden line due to the M1 transition
1s1ns1 3S1 → 1s2 1S0) in He-like ions (Section 4.14).
Some of these higher contributing terms due to higher
partial waves were later included in the M1 formula-
tion [89] in the atomic structure code SUPERSTRUCTURE

[10] (Section 3.5, Fig. 3.9) to calculate accurately the
forbidden transition probabilities in the well-known fine
structure doublet λλ 3626, 3629 lines of [O II], and sim-
ilar λλ 6717, 6731 lines in [S II] due to the transitions
np3: 4So

3/2−2Do
3/2,5/2 between same-parity levels within

the ground configuration 2p3 of O II and 3p3 of S II, as
discussed later in Chapter 8.

Exercise 4.6 The orbital angular momentum operator
L = 1/�(r× p), where p = −i�∇ = −i�(∂/∂x, ∂/∂y,
∂/∂z).

Derive the relations for the components of L:
Lx = −i (y∂/∂z − z∂/∂y), L y = −i (z∂/∂z − x∂/∂z)) ,
Lz = −i (x∂/∂y − y∂/∂x). What are the equivalent
expressions involving orbital and azimuthal angles (θ, φ)
(e.g., Lz = −i∂/∂φ)?

One of the points of this exercise is to note that
the magnetic dipole moment is expressed in terms of
the z-component of the orbital angular momentum:
μ = (e�/2mc)Lz . It follows that the second-order
radiation operator yields the magnetic dipole matrix
element (ehν jk/2mc3)|< j |μLz |k>|2. Likewise, other
second-order terms of the radiation operator are quadratic
r2 (xy, yz, etc.) and yield electric quadrupole matrix
elements.

Exercise 4.7 The radiative matrix element involves the
square |< j |H ′|k>|2. Show that the cross terms vanish
and one is left with either the dipole term, when the states
are of opposite parity, or the quadratic non-dipole term,
when they have the same parity.
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4.13 Selection rules and Z-scaling

Since both the M1 and E2 non-dipole transitions arise
from the second-order term in the radiation field opera-
tor, it follows from Eqs 4.61 and 4.62 that their intrinsic
strengths are lower than those of dipole E1 transitions by
a factor of α2 Z2 or about four to six orders of magnitude
smaller for low-Z elements than high-Z ones, depending
on the particulars of the two transitions. As Z increases,
the higher-order transitions become more probable. The
order of magnitude in difference between E1 and (M1, E2)
transition strengths may also be obtained by considering
the ratio of the dipole moment de on the one hand, and the
magnetic moment μm and the quadrupole moment Qe on
the other hand [5], i.e., d2

e : μ2
m : Q2

e ∼ 1 : (αZ)2 : (αZ)2.
The individual transition rates vary widely not only

according to Z but also the particulars of each transition.
Whether or not a transition is probable, and its precise
strength, depends on the angular and spin symmetry of the
initial and final states. The primary reason for the alge-
braic derivations above is to highlight the relations that
connect quantum numbers of different levels. These rela-
tions in turn are governed by selection rules for dipole and
non-dipole transitions, summarized in Table 4.4.

Finally, as with Eq. 4.113 for E1 transitions,
the A-coefficients for spontaneous decay by electric
quadrupole E2 and magnetic dipole M1 transition(
temporarily turning E and S dimensionless along the

lines of (Eq. 2.27) are

g j AE2
j i = 2.6733× 103 s−1 (E j − Ei )

5SE2(i, j),

(4.163)

g j AM1
j i = 3.5644× 104 s−1 (E j − Ei )

3SM1(i, j);
(4.164)

and for electric octopole E3 and magnetic quadrupole M2
transitions

g j AE3
j i = 1.2050× 10−3 s−1 (E j − Ei )

7SE3(i, j),

(4.165)

g j AM2
j i = 2.3727× 10−2 s−1 (E j − Ei )

5SM2(i, j).

(4.166)

Like E2 and M1, the electric octupole and the mag-
netic quadrupole transitions arise from the same term
in the multipole expansion, Eq. 4.61. However, approxi-
mations may be made in treating magnetic quadrupole
(λ = 2) terms to lowest order from the general expression,
Eq. 4.160. The transition probabilities also vary with ion
charge z. Although allowed transitions are stronger than
forbidden ones, the latter increase more rapidly with Z
as AE1 ∝ Z4, AM1 eventually ∝ Z10, AE2 ∝ Z8. In
accordance with these, while the relative strengths of E1
transitions are a factor of (αZ)2 or up to six orders of
magnitude stronger than for E2 and M1, the E2 and M1
lines become increasingly more prominent with Z along
an isoelectronic sequence.

4.14 Dipole and non-dipole transitions
in He-like ions

The helium isoelectronic sequence provides the best
example of a set of multipole transitions: allowed, for-
bidden and ‘mixed’ intercombination system. The He-like
ions are of great importance in X-ray astronomy. The
two-electron closed K-shell core requires high energies to
excite or ionize. These energies therefore lie in the X-ray
range, at wavelengths of the order of the size ∼ 1–20 Å of
the atom for the astrophysically abundant ions from O to
Fe. The He-like spectra are modelled in Chapter 8; here,
we confine ourselves to a designation of the relevant radia-
tive transitions that form the well-known emission lines.
Their line ratios afford a range of diagnostics of physical
parameters, such as the density, temperature and ioniza-
tion state of the source or the medium. These lines are
usually well separated and hence can be observed easily.

TABLE 4.4 Selection rules for radiative transitions of multipole order λ: note that the dipole allowed E1 and intercombination E1
transitions differ only in 
S; the 
l, 
L, 
J change by unity in both.

Type 
π (Eλ,Mλ) 
l 
S 
L(Eλ,Mλ) L �= L ′ 
J (
M) J �= J ′
(−1)λ,−(−1)λ ≤ ±λ,≤ ±(λ− 1) ≤ ±λ(≤ λ)

Dipole allowed (E1) Yes ±1 0 ≤ ±1 0�=0 ≤ ±1 0�=0
Intercombination (E1) Yes ±1 1 ≤ ±1 0�=0 ≤ ±1 0�=0
Forbidden (M1) No 0 0 0 ≤ ±1 0�=0
Forbidden (E2) No 0, ±2 0 ≤ ±2 0�=0,1 ≤ ±2 0�=0, 1,

1
2 �= 1

2
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FIGURE 4.3 Multipole radiative transitions in He-like ions, showing the He Kα complex of fine structure levels (solid lines),
with transitions (arrows) and autoionizing levels (dashed lines), that form the primary X-ray lines and dielectronic satellite lines
(Chapter 7). The LS designation of each level nSLJ is shown on the left of each level and the value of J on the right.

Excitations from the ground to excited n = 2 levels are
responsible for the formation of lines usually labelled as
w, x , y and z arising from the following four transitions:

w : 1s2 1S0 ←− 1s12p1 1Po
1 dipole allowed (E1),

x : 1s2 1S0 ←− 1s12p1 3Po
2 forbidden (M2),

y : 1s2 1S0 ←− 1s12p1 3Po
1 intercombination (E1),

z : 1s2 1S0 ←− 1s12s1 3S1 forbidden (M1). (4.167)

In the intersystem transition 1s2 1S–1s12p1, 3Po spin–
orbit interaction couples level 3Po

1 with 1s2p (1Po), i.e.,

�
(

1s12p1 3Po
1

)
= c1�

(
1s12p1 3Po

1

)
+ c2�

(
1s12p1 1Po

1

)
. (4.168)

For (near) neutral species the term coupling coefficient
c2 is small, a few percent. It implies that the transition
1 1S0 − 2 3Po

1, which is spin-forbidden in L S coupling,
might have a coefficient A about two orders of magnitude
lower than in the allowed transition 1s2 1S–1s12p1 1Po.
Transition 1s12s1 1S0 →1s2 1S0 decays by a two-photon
continuum (denoted by 2hν in Fig. 4.3); it does not give
rise to a single line but nevertheless contributes to the level
populations and line intensities (see Chapter 8).

Table 4.5 gives A-coefficients for the relevant radiative
transitions of He-like ions.9

9 They are taken from [91], which is an extensive compilation of

accurate transition rates for E1, M1, E2 and M2 multipole transitions

among levels up to n ≤ 6 in He-like C, N, O, Ne, Si and Ar.

4.15 Angular algebra for radiative
transitions

Appendix C provides an introduction to the angular alge-
bra necessary for dealing with generalized radiative tran-
sition matrix elements, including multipole moments. In
addition to the angular-spin decomposition of the rele-
vant matrix elements computed from elaborate methods,
it is often useful to obtain expressions for purely algebraic
transformation from L S coupling to include fine structure
([36]) as described next.

4.15.1 Fine structure components of LS
multiplets

The relative strength of observed lines is a central topic in
astrophysics, in particular for transitions between pairs of
multiplets to terms 2S+1L . We introduced the concept of
a multiplet in Section 2.4, supplemented in Section 2.13
with observed features in the shape of fine structure, an
effect the electron’s magnetic moment μB = e�/2m and
of relative magnitude α2 Z2 over the equivalent terms of
its electric charge e. Now we are going to deal with the
relative strength of lines or transitions J j − Ji within a
multiple S j L j − Si Li .

In this section we ignore multiplet mixing, explained
in Section 2.13 as a high-Z effect. Then the line strength
Si j = Si j , the primary quantity in atomic physics calcula-
tions, can be decomposed purely algebraically following
Racah techniques for the respective angular operator C[λ],
so that
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TABLE 4.5 A-coefficients for X-ray decay to the ground state of He-like ions.

Ion M1 – 2 3S1 (z) E1 – 2 3Po
1 (y) M2 – 2 3Po

2 (x) E1 – 2 1Po
1 (w)

λ/Å A· s λ/Å A· s λ/Å A· s λ/Å A· s
C V 41.47 4.87× 101 40.73 8.37× 107 40.73 5.72× 107 40.27 8.86× 1011

N VI 29.53 2.54× 103 29.08 2.03× 108 29.08 6.93× 107 29.79 1.81× 1012

O VII 22.10 1.05× 103 21.80 6.15× 108 21.80 8.22× 107 21.60 3.30× 1012

Ne IX 13.71 1.09× 104 13.56 5.36× 109 13.56 1.13× 108 13.45 8.85× 1012

Si XIII 6.74 3.61× 105 6.69 1.55× 1011 6.69 3.33× 108 6.65 3.76× 1013

Ar XVII 3.995 4.80× 106 3.970 1.78× 1012 3.967 6.70× 108 3.950 1.07× 1014

Ca XIX 2.838 1.42× 107 2.854 4.79× 1012 2.857 7.55× 108 2.868 1.64× 1014

Fe XXV 1.8682 2.12× 108 1.8595 4.42× 1013 1.8554 6.64× 109 1.8504 4.57× 1014

SL S J
i j = C(Li , L j ; Ji , J j )

SL S
i j

(2S + 1)(2Li + 1)(2L j + 1)
,

(4.169)

in the Eλ case, λ= 1.10 Contrary to the general case, not
restricted by S j = Si ≡ S, notably in the He-transition ‘y’
of Section 4.14, the coupling coefficients C are rational
numbers, explicitly displayed here as Racah products for
f -values, which, along with Einstein’s A, are secondary
quantities.

Fine-structure transitions are restricted by the selec-
tion rule 
J = 0,±1. The values of the coef-
ficients C(Li , L j ; Ji , J j ) depend on the difference

J = 0,±1, |
L| = 0, 1 and on total multiplicity factors
(2S+1)(2Li + 1)(2L j + 1). The quantities SL S J

i j satisfy
the sum rule

SL S
i j =

∑
Ji ,J j

SL S J
i j , (4.170)

where the indices run over all allowed transitions Ji − J j .
Based on the work by E. U. Condon and G. H. Shortley

[3], C. W. Allen [81] deduced C(Li , L j ; Ji , J j ) for all
possible transitions L j − Li up to 5–6, and spin multi-
plicities (2S+1) up to 11. Table 4.6 gives the values of
C(Li , L j ; Ji , J j ) for various transitions of normal multi-
plets (|
L| = 1) and symmetrical multiplets (|
L| = 0).
The transformation coefficients are arranged in matrix
form for the strongest or principal transitions: 
J = −1
for normal multiplets and and 
J = 0 for symmetrical
multiplets. The associated coefficients C(Li , L j ; Ji , J j )

are denoted by x1, x2, etc. Similarly, the coefficients for
the first satellites (
J = 0 for normal and 
J = ±1 for

10 A program LSJTOLS [92] for calculating fine-structure components is

available at the OSU-NORAD website; for an application to iron and

other ions (S. N. Nahar, see [92]).

symmetrical multiplets) are denoted by y1, y2, etc., and
for the second satellites (
J = 1 for normal multiplets)
by z1, z2, etc. Numerical values of these coefficients are
given in Appendix C.

The calculated line strength in length form is inde-
pendent of the transition energy Ei j . Line strengths are
therefore useful to employ experimentally observed ener-
gies, wherever available, in place of calculated transition
energies to provide more accurate fine-structure results for
the oscillator strengths f . The fine-structure values fL S J
may be computed directly from fL S [36]:

fL S J (n j SL j J j , ni SLi Ji ) = fL S(n j SL j , ni SLi )

× (2J j + 1)(2Li + 1)

× W2(L j Li J j Ji ; 1S),

(4.171)

where W(L j Li J j Ji ; 1S) is a Racah coefficient and is
often expressed in the form of a Wigner 6-j symbol (see
Appendix C):

W(L j Li J j Ji ; 1S) =
{

L j S Ji
J j 1 Li

}
. (4.172)

These components satisfy the sum rule∑
Ji J j

(2Ji + 1) fL S J (n j SL j J j , ni SLi Ji )

= fL S(n j SL j , ni SLi )(2S + 1)(2Li + 1). (4.173)

Since this way of splitting an f -value does not require
transition energies, the method can be used to approxi-
mate fine-structure components when no observed ener-
gies are available. Finally, we emphasize that we have
considered transitions without change in total spin S, and
the algebraic approach is unsuitable for intercombination
lines.
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TABLE 4.6 Recoupling coefficients C(Li, Lj; Ji, Jj) for relative strengths between components 2S+1LJ of multiplets, hence
Jm[ax] = 2 min(S, L)+ 1 .

Normal multiplets Symmetrical multiplets
SP, PD, DF, . . . PP, DD, FF,. . .

Jm Jm−1 Jm−2 Jm−3 Jm−4 Jm Jm−1 Jm−2 Jm−3

Jm−1 x1 y1 z1 Jm x1 y1
Jm−2 x2 y2 z2 Jm−1 y1 x2 y2
Jm−3 x3 y3 z3 Jm−2 y2 x3 y3
Jm−4 x4 y4 Jm−3 y3 x4

This chapter (together with Appendix C) was aimed at
a general exposition of atomic radiative transitions. While
we shall be discussing spectral line formation in greater
detail later in Chapters 8, 9, 12 and other chapters, it is
worth mentioning the basic types of spectrum observed
in astrophysical and laboratory sources. Emission spec-
tra are caused by spontaneous radiative decay from an
upper to a lower level; the line intensity is governed by
the A-coefficient and upper level population. Populating
upper levels may take place through a variety of atomic
processes (see Chapter 3), generally via electron impact
excitation in the case of low-lying levels, and (e + ion)

recombination into high-lying levels, which may cas-
cade downward to affect population distribution among
lower levels. If there is an external radiation source,
then stimulated emission also contributes via the down-
ward B-coefficient. Emission lines add energy to the
continuum, giving the characteristic peaked line profile.
Contrariwise, absorption line formation, governed by the
upward B-coefficient and the lower level population,
removes energy from the ambient radiation field giving
a line profile that dips below the background continuum.
Chapters 8 and 9 describe the emission and absorption
spectra, respectively.



5 Electron–ion collisions

In ionized plasmas spectral formation is due to particle
collisions or radiative excitations. In astrophysical situ-
ations there is usually a primary energy source, such as
nuclear reactions in a stellar core, illumination of a mol-
ecular cloud by a hot star or accretion processes around
a black hole. The ambient energy is transferred to the
kinetic energy of the particles, which may interact in
myriad ways, not all of which are related to spectroscopy.

Electron collisions with ions may result in excitation or
ionization. The former process is excitation of an electron
into discrete levels of an ion, while the latter is excitation
into the continuum, or ionization, as shown in Fig. 3.1 and
discussed in Chapter 3. A practically complete descrip-
tion of the (e + ion) excitation process requires collisional
information on the ions present from an observed astro-
physical source, and for all levels participating in spectral
transitions. As the excitation energy from the ground state
to the higher levels increases, the ionization energy EI is
approached. The negative binding energy of the excited
states increases roughly as E ∼ −z2/n2, where z is
the ion charge. As n → ∞, E → 0, i.e., the electron
becomes free.

At first sight, therefore, it might seem like a very large
number of levels need to be considered for a given atomic
system in order to interpret its spectrum completely. While
that is true in principle, in practice, the number of levels
involved depends on the type(s) of transition(s) and result-
ing lines depending on physical conditions in the plasma
environment, as discussed in detail in later chapters, par-
ticularly Chapters 8 and 12. Thus, in actual atomic models
rather a limited number of levels are included in repre-
senting the collision process. Unlike radiative transitions,
collisional transitions are not restricted by parity rules.
Therefore, electron–ion collisions are the primary mecha-
nism for exciting low-lying transitions within levels of the
ground configuration of the same parity, where radiative
transitions have extremely small probabilities, such as in
ionized gaseous nebulae (Chapter 12).

For non-hydrogenic ions, we need to consider the
LS terms and fine structure levels LSJ of the particular
subshell n� in the electronic configurations that are ener-
getically accessible to the free electrons in the plasma, so
that the kinetic energy of the free electrons can be trans-
ferred to the ion in exciting the levels in question. The
energies of levels that can be excited in a source are related
to the kinetic temperatures of the free electrons, known as
the excitation temperatures. In the following discussion,
we often refer to a generic plasma in an ionized H II region
or nebula. Recall (Chapter 1) that these are characterized
by low densities and temperatures, ne ∼ 103–6 cm−3 and
Te ∼ 103–4 K. In nebular plasmas only the forbidden
lines, such as the [O II], [O III] and [S II] are collisionally
excited. The low-lying participating levels belong to the
respective ground configurations; the excitation energies
are only a few eV, corresponding to kinetic temperatures
Te ≈ 1000− 30 000 K. Subsequent radiative decays from
excited levels give rise to the forbidden emission lines.
For higher temperature–density sources, more highly ion-
ized species and more atomic levels come into play, such
as the case of the solar corona (including solar flares)
with ne ∼ 108–12 cm−3 and Te ∼ 106–7 K. The typi-
cal coronal ions are Fe X–Fe XXV, with several tens of
levels, where collisional excitation can give rise to many
forbidden as well as allowed lines.

The complementary process to excitation – collisional
ionization – determines the ionization balance, or the
relative distribution of ionic states of a given element,
in collisionally dominated plasmas (without appreciable
contribution from a radiative source to ionization). The
kinetic temperature of the free electrons also determines
which ionization stages of an element would exist in a
plasma. However, there is generally a large difference
between ionization energies and excitation energies for
emission lines. For example, in the nebular case, the exci-
tation energies of emission lines are much lower than the
ionization energies of the ions. For example, the ionization
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FIGURE 5.1 Maxwellian distribution of electron energies at a
kinetic temperature Te = 2 eV or 23 200 K. Excitation and
ionization energies of O II are indicated. The excitation
energies of the low-lying levels that produce the forbidden
[O II] 3726, 3729 lines are much lower than the ionization
energy; the ratio of these two fine structure blue lines is a
well-known indicator of nebular densities (see Chapters 8, 12).

energy of O II is 35.12 eV, as opposed to the excita-
tion energy of [O II] 3626, 3629 Å lines of about 3 eV.
Figure 5.1 exmplifies the situation with respect to excita-
tion and ionization of O II. One might ask how it is that
plasmas with Te ∼ 1 eV are able to ionize atoms and
ions with more than ten times the ionization energy. That
is because of external energy sources. Nebular plasmas
are ionized by hot stars, with intense UV radiation fields,
which produce sufficiently high energies to ionize most
elements to one or two stages of ionization.

To determine ionization balance in collisional equilib-
rium, only total ionization cross sections of the ground
state of ions are usually needed (low-lying metastable
states may sometimes be important). While both excita-
tion and ionization processes are essential to a complete
description of spectral formation, electron impact excita-
tion requires more detailed cross sections for excitation
of many specific levels in ions of astrophysical interest.
In this chapter, we discuss both processes, with more
attention devoted to the excitation process.

5.1 Electron impact excitation (EIE)

Spectral lines due to either (e + ion) excitation or (e + ion)
recombination are seen in emission spectra. Emission
lines are indicators of temperatures, densities, abun-
dances, velocities and structure of astrophysical objects.
Excitation of levels by electrons is followed by radiative
decay; these two processes – electron impact excitation

and radiative transitions – are responsible for collision-
ally excited emission lines in optically thin plasmas where
photons escape without significant absorption or scatter-
ing (discussed in Chapter 9).

If we have the excitation of low-lying levels, it is gen-
erally sufficient to consider a relatively small number of
levels in an ion. However, the excitation cross sections
for these levels, from the ground state as well as among
excited states, need to be known accurately, to compute
EIE rate coefficients. Most of these cross sections are
calculated theoretically using methods decribed in the pre-
ceding chapter. But although experimental measurements
can be made for only a few transitions in limited energy
ranges, they are very important in benchmarking the accu-
racy of theoretical cross sections. Before going into the
calculations in detail, and comparison with experiments,
we describe the basic concepts of electron–ion scattering
and the relevant quantities to be determined.

5.1.1 Cross section

Collision of an electron with an ion may result in (i) elastic
scattering – no net exchange of energy – or (ii) inelas-
tic scattering – exchange of energy between the electron
and the ion, excited or de-excited from an initial level
to an energetically different level. For spectral formation,
we are interested in process (ii), or the determination of
inelastic cross sections for (de-)excitation among the lev-
els of an ion. Figure 5.2 shows a schematic diagram of
electron–ion scattering.

An incident beam of free electrons impacts on a posi-
tive ion and is scattered at an angle θ between the incident
direction and the final (asymptotic) direction into the
detector. If the free electrons have sufficient energy to
excite ionic levels, there may be transfer of energy 
Ei j ,
exciting the ion from level i to j . In a real situation, in lab-
oratory experiments or astrophysical environments, most
of the electrons are elastically scattered from the ion. Only
a relatively small number result in inelastic scattering and
excitation of levels. As the name implies, the cross section
has units of area. Its simplest definition is

Q(E) = Number of scattered particles

Number of incident particles per unit area
cm2.

(5.1)

In laboratory experiments, quantum mechanical effects
imply that the number or the flux of scattered electrons
depends on the angle where the measurement is made
relative to the incident beam, as shown in Fig. 5.2. Elec-
trons are scattered into a solid angle ω about the angle
of scattering θ , such that the solid angle dω = sinθdθdφ
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FIGURE 5.2 Electron impact
excitation of a positive ion from level
i → j.

(where φ is the azimuthal angle). In such a case, the partial
differential cross section dQ is written in terms of the
scattering amplitude f (θ) as

dQ(E, θ)

dω
= | f (θ)|2. (5.2)

The scattering amplitude f (θ) may be related to the
amplitude of the outgoing scattered waves, or the scat-
tering matrix S, derived from the asymptotic form of the
outgoing radial wavefunctions, as discussed in Chapter 3
and in the next section. The total cross section at a given
energy E is then the integrated value over all solid angles

Q(E) =
∫

dQ

dω
dω. (5.3)

Quantum mechanically, the incident electron wavefunc-
tions may be assumed to be plane waves before scatter-
ing, and spherical waves afterwards. The measured cross
section of scattering therefore depends on the scattering
angle θ . The usual approach to account for the geometry
inherent in the scattering process is the decomposition of
the incident plane wave into Legendre polynomial func-
tions (Eq. 3.30) P�(cosθ), or partial waves according
to the orbital angular momentum �. Equation 4.61 gives
the partial wave expansion in terms of the Riccati–Bessel
function jl (kr). For example, � = 0 refers to radial scat-
tering with the electron directly incident on the target ion.
Higher � > 0 partial waves correspond to a non-radial
approach towards the target; also, the higher the � the
greater the distance of closest approach to the target.

The total cross section is, therefore, the sum over
partial cross sections of different angular momenta �

Q(E) =
∑
�

Q�(E). (5.4)

As inferred from the description of the LS coupling
approximation in Chapter 2, and the description of the

methods in Chapter 3, this partial wave expansion implies
that the cross section is generally computed separately for
each partial wave. In LS coupling, we consider the total
symmetry of the (e + ion) system corresponding to each
partial wave: SLπ , where S usually refers not to the total
spin but to the multiplicity (2S + 1).

Experimental measurements may be made at a fixed
energy but different angles 0◦ ≤ θ ≤ 180◦ to reveal
details of the scattering cross section due to polarized
beams or due to angular distribution of partial waves of
different �. Such measurements are useful tests of the-
oretical models, which generally employ partial wave
decomposition. Also, since experimental measurements
cannot be carried out at all energies, such comparisons
can be made at selected energies but a range of angles.
Differential cross sections are indicative of details of
scattering in different directions ranging from ‘forward’,
θ = 0◦, to ‘backward’ scattering θ = 180◦. Intu-
itively, the direction of the scattered beam tends towards
forward scattering as the incident energy E increases;
however, the details depend on the quantum mechanical
structure of the target and the properties of the incident
beam.

5.1.2 Collision strength

Collisional and radiative processes resulting in line forma-
tion due to EIE may be viewed in an analogous manner
by defining a dimensionless quantity called the collision
strength,1 in analogy with the line strength for a radiative
transition. The inelastic EIE cross section for excitation of
level i to j , in units of the hydrogen atom cross section in
the first Bohr radius, is expressed as

1 This was first defined by D. H. Menzel and named the collision strength

by M. J. Seaton.
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Qi j (E) =
 i j

gi k2
i

(
πa2

0

)
, (5.5)

where  i j is the collision strength, gi = (2Si + 1)
(2Li + 1) is the statistical weight of the initial level,
πa2

0 = 8.797 × 10−17cm2 and E = k2
i is the energy

of the incident electron in Rydbergs (1 Ryd = 13.61 eV).
 i j is also symmetrical with respect to i and j , like the
line strength. Owing to the division by the incident elec-
tron energy E (Ry) = k2 (in the non-relativistic limit), the
collision strength varies slowly with energy. As such, its
numerical value varies much less than that of the cross
section, making it easier to compare different transitions
within an ion or in different ions. Throughout most of this
and later chapters we will employ the collision strength to
discuss the EIE process and applications.

In addition to the background collision strength for
direct excitation, the presence of autoionizing resonances
gives rise to indirect pathways, or channels, that greatly
affect its energy dependence. The enhancement due to
resonances is seen from Fig. 5.3. The collision strength
 (11S0 − 23S1) shown is for the important forbidden
X-ray transition in He-like Fe XXV, from the ground state
1s2 1S0 to the metastable level 1s12s1 3S1 – that gives
rise to the z-line discussed in Eq. 4.167. The resonance
complexes in Fig. 5.3 lie in between the n = 2 and the
n = 3 states of Fe XXV. Therefore, in this region the
autoionizing resonance configurations are generally of
the type 1s3�n�′. The two groups shown in Fig. 5.3 are
1s3�3�′ and 1s3�4�′. The dashed line is the resonance-
averaged collision strength computed according to the
Gailitis procedure described later. Above the n = 3 states,

 (11S0 − 23S1) is relatively smooth and represents
a slowly varying background. But below the n = 3
thresholds the extensive resonance groups enhance the
 (11S0 − 23S1) by nearly a factor of two, according to
the resonance-averaged values from the Gailitis averaging
procedure discussed in Section 5.2.3.

The scattering cross section has quite different forms
for electron scattering with neutral atoms or positive ions.
The differences appear in two ways: threshold effects and
resonances. For positive ions, we have the long-range
Coulomb potential, therefore, for the excitation between
levels i → j there is a non-zero cross section at all
energies, even at the threshold energy just equal to the
excitation energy E = Ei j . However, for neutral atoms
there is no such attractive force and the cross section at the
excitation threshold must be zero. Of course the collision
strength or the scattering cross section is identically zero
for E < Ei j . Even for positive ions, the incident electron
cannot both excite the ion and escape its attractive field
unless it has the mininum threshold energy Ei j .

For electron scattering with neutral atoms, Ryd-
berg series of resonances such as for (e + ion) scat-
tering do not occur because there is no Coulomb
potential that might support an infinite number of
(quasi-)bound states or resonances. But in electron–atom
scattering we do find shape resonances that occur at
near threshold energies due to short-range interactions
of the electron with the atom. Shape resonances are
generally much broader than Rydberg resonances (see
Section 6.9.3). Weaker short-range non-Coulomb inter-
actions, such as the dipole and quadrupole polariza-
tion potentials, Vdip∼ r−2 and Vquad∼ r−4, and the
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[k (11S)]2 (Ry)
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n = 3
States

Resonances
1s 3L 3L'

1s 3L 4L'

e + Fe24+

Ω(11S0–23S1)

FIGURE 5.3 Resonances in the
collision strength for the forbidden
transition 11S0 − 23S1 in Fe XXV

(the z-line) Eq. 4.167 [85], showing
the Gailitis jump at the n = 3
thresholds (Section 5.2.3).
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van der Waals potential VvdW(r)∼ r−6, assume much
greater importance for neutral atoms than for ions where
the Coulomb potential VCoul∼ r−1 dominates. There-
fore, electron–electron correlation effects in electron–
atom scattering are much more intricate than in electron–
ion scattering. However, in astrophysical sources, atoms
are often ionized so excitation of neutral atoms is not as
common. Experimental measurements are also difficult
for neutral atoms, since there is no Coulomb ‘focusing’
effect such as that for ions, and at near-threshold ener-
gies overall electron–electron repulsion is greater than for
ions. For these reasons, there are fewer atoms than ions
for which electron scattering cross sections have been
calculated or measured.

5.1.3 Variational method

Before we delve into the details of electron–ion colli-
sions, it is worth mentioning the salient features of the
unified theoretical framework of atomic processes built up
in Chapter 3. Indeed, the coupled channel approximation
is based on atomic collision theory, and was developed
to describe electron–ion collisions in particular. It was
also used to obtain bound states of the (e + ion) system,
and hence atomic parameters for bound–bound radiative
transitions, bound–free photoionization and free–bound
recombination processes. This is because, in principle, the
methodology, most effectively exploited by the R-matrix
method, solves the fundamental quantum mechanical
problem and enables an accurate representation of the
total (e + ion) wavefunction in any state of excitation.
The derivation of the coupled channel equations (Eq. 3.45)
then follows using well-known variational methods.

As is well-known from basic quantum mechanics, a
variational principle is needed to find a stationary (min-
imum) eigenvalue, with respect to variations in a trial
wavefunction �t . For bound states we have the Rayleigh–
Ritz variational principle,

E0 ≤ < �t |H |�t >

< �|� > . (5.6)

E0 is the upper bound on the minimum (ground state)
energy with respect to first-order changes δ� about the
exact wavefunction �ex (which is, of course, unknown
and to be approximated). In the case of scattering, we
have an analogous quantity: the phase shift introduced
in a freely propagating wave by an interaction poten-
tial (Chapter 3). A corresponding minimum principle in
collision theory is the Kohn variational principle:

tan δ = tan δt − π
∫ ∞

0
Ft

l (r)[H − E]Ft
l (r)dr. (5.7)

The (integro-)differential operator [H − E], including
potential interactions relevant to electron–ion collisions as
well as the radial form of Fl (r), are as given in Chapter 3.
Since tan δl is defined to be the K -matrix, generalized to
Eq. 3.53 for the multi-channel case, the Kohn variational
principle yields an upper bound for the minimum phase
shift computed from trial wavefunctions �t with radial
function Fl . Using multi-channel close coupling wave-
functions (Eq. 3.42), and for small variations about the
exact wavefunctions, Eq. 5.7 may be written as,

δ
[
< �i |H − E |� ′i > −Kii ′

] = 0, (5.8)

where i and i ′ refer to incoming and outgoing collision
channels. The asymptotic form of the trial wavefunctions,
Eq. 3.50, yields a trial K -matrix with elements K t

ii ′ . The
Kohn variational principle then gives

K Kohn
i i ′ = K t

ii ′ −<�t
i |H − E |�t

i ′>, (5.9)

which differs from the exact form to second order of the
error in the trial wavefunctions. The Kohn K -matrix can
now be used to compute scattering matrices and cross sec-
tions using expressions in Chapter 3, e.g. Eq. 3.56, and as
derived in the next section.

5.2 Theoretical approximations

In Chapter 3, we have already described general theoret-
ical methods used to study (e + ion) interactions, in par-
ticular the coupled channel approximation implemented
in the widely employed R-matrix package of codes.2 A
large number of R-matrix calculations have been carried
out, especially under the Opacity Project and the Iron
Project collaboration [36, 38]. Prior to the wide use of
the coupled-channel approximation in literature, a con-
siderable amount of data for excitation collision strengths
had been computed in the distorted wave approximation
discussed in Chapter 3, without channel coupling and
resonance effects but taking account of the ‘distortion’

2 Another set of close coupling codes was developed at University

College, London, by M. J. Seaton, W. Eissner and co-workers called

IMPACT [49]). It is no longer employed since IMPACT codes required

the solution of the coupled integro-differential equations (Eq. 3.45) at

each incident electron energy, carried out by a linear algebraic

matrix-inversion technique. Therefore, it became computationally more

demanding than the R-matrix method, and prohibitively so, in

large-scale calculations, such as under the Opacity Project [37] and the

Iron Project [38], where delineation of resonances often meant

computations at thousands of energies per cross section. Interestingly,

however, IMPACT did yield physical wavefunctions in the so-called

inner region (Fig. 3.8) for both the continuum (open and closed) and

the bound (e + ion) channels.
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of the incident and outgoing free-electron wavefunctions
in the potential due to initial and final states involved in
the transition. Going back further in the history of col-
lisional calculations, excitation collision strengths were
also computed in simpler approximations such as the
Coulomb–Born or, for optically allowed transitions, the
Coulomb–Bethe approximation. More recently, the con-
vergent close coupling method, and other variants of the
coupled channel approximation, such as the R-matrix with
pseudostates, have been employed [93, 94, 95] for a lim-
ited number of high-accuracy calculations. In all of the
advanced methods, the main quest remains the same:
to couple as many of the target levels as possible. In
addition to channel coupling, which essentially reflects
electron correlation effects, relativistic effects need to be
considered as completely as possible. Next, we describe
some specialized features often useful in practical
computations.

5.2.1 Isoelectronic sequences

Ions with the same number of electrons N but different
nuclear charge Z are said to belong to an isoelectronic
sequence characterized by (N , Z). Calculations of col-
lision strengths are simplified by considering some ele-
mentary properties of the behaviour states in these ions as
Z changes. The N -electron Hamiltonian for an ion with
nuclear charge Z is (in Ryderg atomic units)

H(Z , N ) = −
N∑

i=1

(
−∇2

i +
2Z

r

)
+

N∑
j=i+1

N−1∑
i=1

2

ri j
,

(5.10)

where the electron–electron repulsion term is written
explicitly with sums over pairs of electrons, such that each
pair is counted only once. If we transform to variable
ρ = Zr then we can write

H(Z , N ) = Z2 H0 + Z H1, (5.11)

where H0 and H1 correspond to the one-electron and the
two-electron operators in Eq. 5.10. Using first-order per-
turbation theory, with the expansion parameter 1/Z, the
energy is

E = Z2 E0 + Z E1. (5.12)

E0 is given by hydrogenic eigenvalues of the principal
quantum numbers (with no � dependence)

E0 = −
∑

i

1

n2
i

. (5.13)

The first-order ‘correction’ E1 is the electron repulsion
energy obtained by diagonalizing (�|H1|�), where the
eigenfunctions � all belong to the same n. These are the
states we referred to in Chapter 2 as an n-complex [9, 12].
Given two energy levels in ions of the same isoelectronic
sequence, if the principal quantum numbers are different,
then the energy difference,


Ei j (Z) = Ei (Z)− E j (Z) ∼ Z2 (ni �= n j ). (5.14)

But if the states belong to the same n-complex, then


Ei j (Z) ∼ Z , (ni = n j ), (5.15)

since the zero-order energy is the same for both i and j .
These simple considerations simplify numerical calcula-
tions of cross sections along isoelectronic sequence of
ions, since (i) the configuration-interaction of electrons
in the target ions is similar, if not identical, and (ii) the
energy differences between states behave in a predictable
manner, as shown above. An important caveat is that,
strictly speaking, these arguments are valid if relativis-
tic effects are neglected; fine-structure mixing of levels
causes an additional degree of complexity. Nonetheless, in
the non-relativistic LS coupling approximation we have

Z2 i j → Constant, (Z →∞). (5.16)

5.2.2 Multi-channel scattering matrix

The most important quantity in scattering theory is the
scattering matrix S, as mentioned in Chapter 3. Elastic
and inelastic scattering cross sections are given by the
diagonal and the off-diagonal elements of the S-matrix,
respectively. The dimensionality of the S-matrix is the
number of scattering channels. Individual channels are
labelled by spin and angular quantum numbers of the
initial and final levels of the ion Si Li Ji , S j L j J j , and
the orbital angular momemtum of the incident and scat-
tered electron �i , � j . The symmetry of the S-matrix, say
in LS coupling, is the total spin and angular momenta
of the (e + ion) system SLπ . The physical meaning of
the S-matrix is related to channel coupling achieved by
diagonalizing the multi-channel (e + ion) Hamilitonian
(Eq. 3.78), say by the program STGH of the R-matrix-
coupled channel codes, as explained in Chapter 3. A
consequence of this is the principle of unitarity, which
defines conservation of flux before and after scattering.
For a given incident channel i∑

j

|Si j |2 = 1, (5.17)
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summed over all outgoing channels j . Therefore, the sum
over all inelastic channels∑
i �= j

|Si j |2 = |1− S2
i i |, (5.18)

subtracting off the flux scattered elastically with no energy
exchange between the electron and the ion. The incident
flux, or the number of particles crossing unit area in unit
time, is normalized to unity. The elastically scattered flux
is then given by 1 − S, whereas the inelastically scat-
tered flux is given by S. We may define the transmission
matrix T = 1 − S. Then, noting that the unit marix
is diagonal, both the elastic and inelastic scattering are
described by

|T|2 = |1− S|2. (5.19)

In terms of the real reactance matrix K (Eq. 3.53), and
the case of weak scattering when the K -matrix elements
are small compared with unity, we can write

T = 1− S = −2iK(1− iK)−1 ≈ −2iK. (5.20)

Although the above equation violates unitarity, it has
been used in the weak-coupling case, such as for highly
charged ions where the Coulomb potential is dominant
and the K -matrix elements are small.

For inelastic scattering for excitation of level i to j the
EIE collision strength corresponding to a given symmetry
SLπ is

 SLπ (Si Li�, S j L j�
′)

= 1

2
(2S + 1)(2L + 1)|SSLπ (Si Li�, S j L j�

′)|2, (5.21)

where Si Li and S j L j are the initial and final levels
of the ion and � and � ′ are the incident and scattered
partial waves of the free electron. This is, however, the
partial collision strength. The total collision strength for
the excitation i → j is the sum over (i) all partial waves
of the free electron, and (ii) all contributing total symme-
tries SLπ of the (e + ion) system, expressed in shorthand
notation simply as

 i j =
∑
SLπ

∑
�,�′
 SLπ (Si Li�, S j L j�

′)

= 1

2
(2S + 1)(2L + 1)

∑
SLπ

∑
�,�′

|SSLπ (Si Li�, S j L j�
′)|2

. (5.22)

Eq. 5.22 is the partial wave decomposition of the
collision strength in terms of the S-matrix elements,
which characterize the quantum numbers of all channels
included in the collision problem.

5.2.3 Multi-channel quantum defect theory

As defined, the S-matrix refers to open channels, at free
electron energies capable of exciting an ion from one level
to another. But in a multi-level collisional excitation, some
channels may be open and some closed, depending on
whether the energy of the incident free electron, relative
to the level being excited, is higher or lower. As discussed
in Chapter 3, (e + ion) resonances are due to coupling
between open and closed channels. In a closed channel,
the asymptotic wavefunction is an exponentially decay-
ing, (quasi-)bound-state type with an effective quantum
number νc, such that the resonances occur at energies

E = Ec − z2

ν2
c
, (5.23)

where νc is the effective quantum number relative to the
threshold Ec of an excited level of the ion. A series of
Rydberg resonances thus corresponds to a closed channel;
the infinite series of resonances is characterized by νc. We
may now define the resonance-averaged S-matrix

<|Si j |2> =
∫ νc+1

νc

|Si j |2dν. (5.24)

The resonance integrated value in Eq. 5.24 is over unit
effective quantum number interval (νc, νc+1). We can use
analytical expressions from multi-channel quantum defect
theory (MCQDT), given in Section 3.6.5, to obtain reso-
nance structures and averaged collision strengths or cross
sections without having to compute the S-matrix in the
region of resonances at a large number of energies. First,
we compute the S-matrix (or, usually, the K -matrix which
is real, Eq. 3.56) at a few energies above all target lev-
els considered in the collision problem. In that case, all
channels are necessarily open and the S-matrix is properly
defined. In this region, the S-matrix elements may be fit-
ted to a simple analytic function at a few energies. Often
a linear or a quadratic fit is sufficient. The fitting func-
tion is then extrapolated to energies below threshold(s)
in the region of some channels open and some closed.
We then write this analytic continuation as the partitioned
S-matrix

S =
(

Soo Soc

Sco Scc

)
, (5.25)

where the sub-matrices refer to open–open, open–closed,
closed–open and closed–closed channels. The most useful
relation derived from MCQDT now relates the S-matrix
elements for the open channels, Soo, in terms of the other
sub-matrices. We divide open and closed channels accord-
ing to energies below threshold E < Ec, designated by
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superscript S<, and above threshold E > Ec, designated
as S>, i.e.

S<oo = S>oo − S>oc[S>cc − exp(−2πνc)]−1S>co. (5.26)

The matrix elements S> are computed in the region
of all channels open above threshold Ec. As mentioned,
it is easier to work with the real reactance matrix K, for
which the analogous MCQDT expression (we omit the
superscripts for convenience) is

Koo = Koo −Koc[Kcc + tanπνc]−1Sco. (5.27)

The closed–closed matrices Scc or Kcc are diagonal-
ized matrices. The resonance-averaged S-matrix elements
are, then,

<|Sii ′ |2> = |Si i ′ |2 +
∑
n,m

SinSni ′S∗imS∗mi ′
1− SnnS∗mm

, (5.28)

where i , i ′ refer to open channels and n, m to closed
channels. The physical interpretation of this equation
may be seen simply for only one closed channel n, in
which case

<|Sii ′ |2> = |Si i ′ |2 +
|Sin |2|Sni ′ |2∑

i ′′ |Sni ′′ |2
, (5.29)

where we have used the fact that the S-matrix is unitary,
i.e., for any incident channel i∑
i ′′
|Si i ′′ |2 = 1. (5.30)

In Eq. 5.29, |Sin |2 is the probability of capture of
the incident electron in open channel i into a resonance
state with closed channel n, and |Sni ′′ |2 is the probabil-
ity of break-up of that resonance with the electron going
away in an open channel i ′′. The fraction ending up in
the final channel i ′ is |Sni ′ |2/

∑
i |S

′′
n |2. The resonance

averaging procedure outlined above is known as Gaili-
tis averaging [96, 97]. The Gailitis resonance averaging
procedure for electron impact excitation was illustrated in
Fig. 5.3. It may also be employed for photoionization and
recombination (see Chapters 6 and 7).

The MCQDT sketched here is a powerful analytical
tool that can, in some instances, obviate the necessity of
computing cross sections at a very large number of ener-
gies in order to delineate Rydberg series of resonances,
resulting in great saving in computing time. However,
it must be mentioned that the rigourous derivation of
MCQDT is based on the rather drastic approximation that
long-range potentials Vi i ′ (r) may be neglected beyond a
finite r0, i.e., Vi i ′ (r) = 0 for r > r0. As a consequence, the
energy range of application of MCQDT is limited, though

approximate procedures may be devised to extend its
range of validity. Also, as mentioned earlier in Chapter 3,
there are computer codes (e.g., within the R-matrix pack-
age, Fig. 3.9, such as JAJOM and STGFJ, which not only
implement MCQDT with algebraic transformation from
LS coupling to pair-coupling to incorporate fine structure,
but also to include relativistic effects in the target ion
[10, 38, 72].

5.3 Excitation rate coefficients

Given Eq. 5.5, the cross section Q is expressed in terms of
the collision strength by Eq. 5.22. However, for practical
applications, the quantity of interest is the cross section
averaged over the distribution of velocities of all scatter-
ing electrons <v Q(v)>, or <E Q(E)> in terms of the
distribution of kinetic energy E = 1

2 mv2. As discussed
in Chapter 1, the electron distribution most often encoun-
tered in astrophysical environments is a Maxwellian, char-
acterized by a kinetic temperature Te (or simply T in the
discussion below). Since we find it computationally more
convenient to use the collision strength, the equivalent
quantity of interest is the Maxwellian averaged collision
strength, sometimes referred to as the effective collision
strength, given by

ϒ(T ) or γ (T ) =
∫ ∞

0
 i j (ε j )e

−ε j /kT d(ε j/kT ). (5.31)

Now we can define the excitation rate coefficient, or
the number of excitations per unit volume per second, as

qi j (T ) = 8.63× 10−6

gi T 1/2
e−Ei j /kTϒ(T ) cm3s−1, (5.32)

with T in K and Ei j = E j − Ei in Rydbergs (1/kT ) =
(157885/T ).

It follows from detailed balance that the de-excitation
rate coefficient (Ei < E j ) is given by

q ji = qi j
gi

g j
eEi j /kT . (5.33)

We have seen that, in general,  is an energy depen-
dent function, which consists of a slowly varying part, the
background or non-resonant  , and a rapidly varying part
due to myriad series of autoionizing resonances, which
can significantly affect the Maxwellian averaged value
or the (de-)excitation rate. One of the main points that
makes it necessary to compute collision strengths with
resonances accurately is that the energy dependence of the
collision strength (cross section) introduces a temperature
dependence in the rate coefficient, according to Eqs 5.31
and 5.32.
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Exercise 5.1 Use the program from Exercise 1.1, and
assuming that Q(E) = C/E (C is a constant), compute and
plot the Maxwellian rate coefficient q(Te) at log T = 4–7
(K). What is the physical interpretation of the behaviour
of q(Te)?

5.4 Atomic effects

The determination of environmental conditions in astro-
physical objects, primarily temperature, density and
abundances, depends on spectral analysis discussed in
later chapters. At low temperature–density conditions,
electron impact collision strengths and radiative transi-
tion decay rates are of prime importance: electron impact
excitation followed by radiative decay in an atom. Since
most of the excitation data used in spectral models is the-
oretically obtained, it is of prime interest to know what
factors determine the accuracy of computed parameters.
These factors, in turn, depend on the physical effects
incorporated in the calculations. Since they also help us
understand the underlying excitation process, we discuss
some of the most important effects below, with a rel-
atively complex atomic system, Ne-like Fe XVII, as an
example.

5.4.1 Target ion representation

An accurate representation for the wavefunctions of the
target ion is essential to obtain accurate cross sections.
Any error in the target wavefunctions propagates through
as a first-order error in derived parameters, such as exci-
tation cross sections. The reason is not hard to find.
The total (e + ion) wavefunction expansion in the cou-
pled channel (CC) framework described in the preceding
chapter (Eqs 3.24, 3.42 and 3.77) assumes that the tar-
get ion is exactly represented. Let us rewrite wavefunction
expansion, Eq. 3.24, as

�(e+ ion) = A
n f∑
i

�i (ion)θi , (5.34)

where the target ion eigenfunctions � are assumed to be
exactly determined a priori, and the electron wavefunc-
tion θ is the freely varying parameter in accordance with
the Kohn variational principle, Eq. 5.7. That is the rea-
son that the first step in any collision calculation is the
determination of an accurate target representation, usu-
ally through elaborate configuration interaction (CI) type
calculations for the ion (see Chapter 2).

For complex atomic systems, such as the low ioniza-
tion stages of iron Fe I–Fe V [98], it is necessary to include

a large CI basis in order to obtain the proper wavefunc-
tions for states of various target (angular + spin) symme-
tries SLπ . The accuracy may be judged by comparing the
calculated eigenenergies and the oscillator strengths (in
the length and the velocity formulations) with experimen-
tal or other theoretical data for the states of interest in the
collision. The advent of increasingly powerful serial and
massively parallel supercomputers has enabled some very
large atomic systems to be dealt with. Particular attention
has been paid to the important ion Fe II, whose emission
lines are prevalent in the spectra of most classes of astro-
nomical object. The largest such calculation is a 262-level
representation of the Fe II ion, including relativistic effects
in the Breit–Pauli R-matrix approximation [58].

To circumvent the problem of computer memory
restrictions, the target state expansion may include pseu-
dostates with adjustable parameters in the eigenfunction
expansion over the target states for additional CI, i.e.,
in the first sum on right-hand side of the CC expansion
in Eqs. 3.42 and 3.77. Transitions involving target ion
pseudostates themselves are ignored. Single-configuration
calculations, to be found in older works, are generally less
accurate than the ones including CI.

5.4.1.1 Target eigenfunctions for Fe XVII
Table 5.1 is a target ion representation [99] typical of mod-
ern calculations on supercomputers.3 As the first step, the
target eigenvalues of Fe XVII are computed prior to the
CC calculations using the Breit–Pauli R-matrix (BPRM)
codes (Fig. 3.9). The ground configuration 1s22s22p6 is a
closed shell neon-like system with 1S0 ground state. One-
electron excitations from the 2s, 2p subshells to the 3s, 3p,
3d orbitals give rise to 37 levels up to the n = 3 configura-
tions. The eigenfunctions for these levels included in the
CC expansion, and the configurations that dominate their
composition,4 are from CI calculations using the code
SUPERSTRUCTURE (SS) shown in Fig. 3.9. The Fe XVII

configurations employ a one-electron basis set Pnl (r)
optimized with individual orbital scaling parameters in
the Thomas–Fermi–Dirac–Amaldi type central potential

3 These calculations, like many others reported by the authors and

collaborators throughout the text, were carried out at the Ohio

Supercomputer Center in Columbus Ohio.
4 The word ‘dominate’ here applies to those few configurations with the

largest coefficients in the CI expansion (Eq. 2.113), which together

constitute most of the wavefunction components for a given level.

These chosen few configurations are often used to represent each level,

as opposed to those that are left out and do not contribute significantly.

Note that the CC expansion refers to the target levels included in the

wavefunction expansion for the (e + ion) system, whereas the CI

expansion refers to the configuration expansion for each level.
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TABLE 5.1 Energy levels of Fe XVII included in a coupled channel BPRM calculation [99]. The calculated and observed energies are
in Rydbergs. ‘OBS’ signifies observed values from the NIST website [100], ‘SS’ and ‘MCDF’ are results from SUPERSTRUCTURE and
GRASP atomic structure codes, respectively. The index i serves as a key for referencing levels.

i SL J j j OBS SS MCDF

1 2s22p6 1S0 (0,0)0 0.0 0.0 0.0
2 2s22p53s 3Po

2 (3/2,1/2)o2 53.2965 53.3603 53.1684
3 3s 1Po

1 (3/2,1/2)o1 53.43 53.5025 53.3100
4 3s 3Po

0 (1/2,1/2)o0 54.2268 54.2847 54.0957
5 3s 3Po

1 (1/2,1/2)o1 54.3139 54.3772 54.1851
6 3p 3S1 (3/2,1/2)1 55.5217 55.5685 55.3963
7 3p 3D2 (3/2,1/2)2 55.7787 55.8397 55.6606
8 3p 3D3 (3/2,3/2)3 55.8974 55.9463 55.7791
9 3p 3P1 (3/2,3/2)1 55.9804 56.0338 55.8654

10 3p 3P2 (3/2,3/2)2 56.1137 56.1597 56.9950
11 3p 3P0 (3/2,3/2)0 56.5155 56.5820 56.4050
12 3p 1P1 (1/2,1/2)1 56.6672 56.7288 56.5495
13 3p 3D1 (1/2,3/2)1 56.9060 56.9499 56.7855
14 3p 1D2 (1/2,3/2)2 56.9336 56.9817 56.8135
15 3p 1S0 (1/2,1/2)0 57.8894 58.0639 57.9308
16 3d 3Po

0 (3/2,3/2)o0 58.8982 58.9407 58.7738
17 3d 3Po

1 (3/2,3/2)o1 58.981 59.0188 58.8454
18 3d 3Po

2 (3/2,5/2)o2 59.0976 59.1651 58.9826
19 3d 3Fo

4 (3/2,5/2)o4 59.1041 59.1821 58.9901
20 3d 3Fo

3 (3/2,3/2)o3 59.1611 59.2240 59.0498
21 3d 3Do

2 (3/2,3/2)o2 59.2875 59.3513 59.1797
22 3d 3Do

3 (3/2,5/2)o3 59.3665 59.4471 59.2598
23 3d 3Do

1 (3/2,5/2)o1 59.708 59.7865 59.6082
24 3d 3Fo

2 (1/2,3/2)o2 60.0876 60.1439 59.9749
25 3d 1Do

2 (1/2,5/2)o2 60.1617 60.2179 60.0344
26 3d 1Fo

3 (1/2,5/2)o3 60.197 60.2627 60.0754
27 3d 1Po

1 (1/2,3/2)o1 60.6903 60.8225 60.6279
28 2s2p63s 3S1 (1/2,1/2)1 63.3289 63.2125
29 3s 1S0 (1/2,1/2)0 63.7908 63.6986
30 3p 3Po

0 (1/2,3/2)o0 65.7339 65.6346
31 3p 3Po

1 (1/2,1/2)o1 65.601 65.7688 65.6676
32 3p 3Po

2 (1/2,3/2)o2 65.9300 65.8380
33 3p 1Po

1 (1/2,3/2)o1 65.923 66.0724 65.9782
34 3d 3D1 (1/2,3/2)1 69.0163 68.9221
35 3d 3D2 (1/2,3/2)2 69.0352 68.9323
36 3d 3D3 (1/2,5/2)3 69.0674 68.9518
37 3d 1D2 (1/2,5/2)2 69.282 69.4359 69.3247

discussed in Chapter 2. The computed eigenenergies are
compared with laboratory data where available [100], as
well as theoretical calculations using other codes, such
as the fully relativistic code GRASP [11]. Table 5.1 also
displays the equivalence between fine-structure designa-
tions SL J in an intermediate coupling scheme, and the

fully relativistic j j coupling scheme. The close agreement
among the various calculations and the experimentally
measured energies for observed levels is an indicator of
the accuracy of the target ion representation.

Figure 5.4 is a Grotrian diagram of (a) even parity and
odd parity configurations and transitions of astrophysical
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FIGURE 5.4 The Grotrian diagrom of Fe XVII energy levels and transitions [99].

interest [99] and (b) important transitions among low-
lying levels.5 Some of the X-ray transitions are labelled
as ‘3C’, ‘3D’, etc., whose excitation cross sections have
been measured in the laboratory [99]. Line ratios 3C/3D,
3E/3C, and others [101] are used as diagnostics of astro-
physical plasmas in the temperature range around a few
million K, such as in the solar corona (see Chapter 8).
The unusual transition 2s22p6 1S0 − 2s22p53p1 1S0 has
been of great interest in X-ray laser research. Since both
the initial and the final levels have identical symmetry
SL J→1S0, radiative decays are strictly forbidden. There-
fore, collisional ‘pumping’ of the upper level can bring
about population inversion, and hence laser action via
fast dipole transitions to other lower levels as shown in
Fig. 5.4.6

Apart from a comparison of computed energy levels
of the target ion, the accuracy of the wavefunctions may
be ascertained by a comparison of the oscillator strengths

5 A Grotrian diagram is a graphical representation of energies of an

atom, sorted according to angular-spin symmetries and transitions in

L S or L S J coupling scheme.
6 Such a mechanism using high-Z Ne-like ions was proposed as a driver

for a space-based X-ray laser system to be deployed for antiballistic

missile defence, part of the erstwhile Strategic Defense Initiative

popularly known as the ‘Star Wars’ scenario.

for transitions among the levels included in the colli-
sion problem.7 In the asymptotic region, the coupling
potentials (c.f. Eq. 3.100) are proportional to

√
f , where

f is the corresponding oscillator strength. It is there-
fore particularly important that the wavefunctions used
should give accurate results for these oscillator strengths.
It is standard practice in most coupled channel calcu-
lations to establish first the accuracy of the target ion
by a detailed comparison of the energies and oscilla-
tor strengths. Table 5.2 compares the SUPERSTRUCTURE

(SS) results for f -values with other available data for
some dipole allowed transitions among the Fe XVII levels
(indexed) in Table 5.1.

Table 5.2 compares results from two different atomic
structure codes (Fig. 3.9): SUPERSTRUCTURE [10] in
a semi-relativistic intermediate coupling Breit–Pauli
scheme, and the fully relativistic multi-configuration
Dirac–Fock (MCDF) code GRASP [11]. Comparison is
also made with a combination of experimental and

7 The different types of radiative transitions prevalent in

astrophysics, and related quantities such as oscillator strengths, are

covered in Ch. 4. Here it suffices to recall that strong transitions

between two levels are usually connected by a dipole moment, and the

associated radiative rate is large, of the order of 109 s−1 for neutrals

and increases with Z or ion charge z.
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TABLE 5.2 Comparison of statistically weighted Fe XVII oscillator strengths gf for selected dipole allowed transitions in the length
form (L) and the velocity form (V). ‘SS’ indicates SUPERSTRUCTURE calculations; ‘MCDF’ results are obtained with GRASP; ‘NIST’
recommended values are taken from the NIST website.

SS MCDF NIST

i j L V L V

3 1 0.124 0.112 0.125 0.121 0.122
5 1 0.102 0.100 0.106 0.101 0.105

17 1 8.70× 10−3 8.11× 10−3 1.01× 10−2 9.35× 10−3 9.7× 10−3

23 1 0.590 0.558 0.628 0.590 0.63
27 1 2.571 2.450 2.503 2.357 2.31
31 1 3.15× 10−2 3.20× 10−2 3.57× 10−2 3.59× 10−2 2.95× 10−2

33 1 0.280 0.296 0.282 0.283 0.282
6 2 0.252 0.232 0.256 0.242 0.248
7 2 0.260 0.261 0.260 0.271
8 2 0.812 0.824 0.825 0.990 0.819
7 3 0.284 0.341 0.287 0.362
9 3 0.322 0.303 0.327 0.350

10 3 0.281 0.244 0.283 0.295
11 3 0.102 7.43× 10−2 0.102 8.70× 10−2

15 3 7.93× 10−2 3.90× 10−2 7.98× 10−2 6.18× 10−2

14 5 0.589 0.562 0.595 0.671
15 5 0.133 7.82× 10−2 0.134 0.104

theoretical values reported from the NIST compilation
[100]. Another instructive comparison is between the
length (L) and the veloctiy (V) forms of the dipole matrix
element (Chapter 4), with transition operators r and ∂/∂r ,
respectively. Since exact wavefunctions yield identical
results in the length and velocity formulations, it follows
that the agreement between the L and V values for the
transition strength should indicate the accuracy and self-
consistency of the wavefunctions of initial and final levels.
However, the discrepancy between the L and V values
may not necessarily reflect actual uncertainties. That is
because the length operator r, and the velocity operator
∂/∂r , sample different parts of the radial wavefunction;
the former dominates at large r and the latter at short r
(closer to the origin). As such, the fL -values are to be
preferred because they are dominated by the long-range
part of the wavefunction where the interaction potentials
are less complicated than in the inner region.

5.4.2 Channel coupling

Owing to the fact that coupling among collision chan-
nels is often strong, it needs to be included in general.
However, its importance varies with collision energy, ele-
ment (Z), and ionization state. At low incident electron

energies near excitation threshold(s), and for low stages of
ionization with energetically closely spaced energy levels,
electron scattering may couple the probabilities of excita-
tion of several levels. Fine structure is important for all
but the light elements, and coupling among those lev-
els is often substantial. When the coupling between the
initial and the final levels is comparable to, or weaker
than, the coupling with other levels included in the target
expansion, then the scattered electron flux is diverted to
those other states, and affects the excitation cross section.
The S-matrix elements obey Eqs. 5.17 and 5.18 and gov-
ern the scattering process. The inelastic cross section
corresponding to channels i and j is given by |Si j |2.

The weak-coupling approximations such as the Born
or the Coulomb–Born tend to overestimate the cross sec-
tions, since the unitarity condition, Eq. 5.17, implies
that the scattering flux into neglected channels must be
accounted for. As the ion charge increases, the nuclear
Coulomb potential dominates the electron–electron inter-
action, and correlation effects, such as coupling of chan-
nels, decrease in importance. For neutrals and singly or
doubly charged ions, coupling between closely spaced
low-lying levels (the energy level separation depends
on both Z and the ion charge z), is usually strong,
and only a CC calculation may yield accurate results.
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square are values in the DW approximation without resonances. (b) The line ratio 3F/3C depends significantly on the resonances,
as indicated by the large temperature variation, since the spin-forbidden intercombination transition 3F is enhanced much more by
resonances than the dipole allowed transition 3C: 2s22p6 1S0 − 2s22p53d1 1Po

1. The ratio 3F/3C is a good temperature diagnostic

since it is relatively independent of variations in electron density; the solid and dashed curves correspond to ne = 109 and
1013 cm–3, respectively. The experimental and observed values are shown with error bars; the filled squares are line ratios obtained
using DW collision strengths.

But for multiply charged ions and at relatively high
energies, a distorted wave treatment may be sufficient (see
Chapter 3). Strong dipole transitions are often not affected
by channel coupling since the dipole potential between
initial and final levels, and associated channels, dominates
the transition.8

5.4.3 Resonances

As mentioned in Chapter 3, resonances arise from cou-
pling between open (or continuum) and closed (or bound)
channels. Collision strengths from a BPRM calculation
for electron impact excitation of a spin-forbidden inte-
combination transition in Fe XVII are shown in Fig. 5.5(a).
In the previous chapter, we discussed various theoretical
methods, in particular the coupled channel (CC) and the
distorted wave (DW) methods. The extensive resonance

8 But there are exceptions, such as in Li-like ions with the lowest levels

2s, 2p, 3s, 3p, 3d. The 2p–3s transition is considerably influenced by

the stronger coupling between the 2p and the 3d. In such cases,

resonance contributions to the cross sections for 2p–3s transition are

large, from resonances lying in the energy region between 3s and 3d

[102].

structures in the CC collision strengths considerably
enhance the effective collision strength ϒ(T ) (Eq. 5.31)
or the rate coefficient q(T ) (Eq. 5.32), compared with
distorted wave (DW) results without resonances includ-
ing just the background values. In fact, the distorted wave
values are found to lie close to the background, shown
at a few energies in the region where the background
is discernible in Fig. 5.5(a). The practical importance of
including resonances is highlighted by the line ratio in
Fig. 5.5(b), which is a sensitive temperature diagnostic.
The pronounced variation in resonance-averaged collision
strengths seen in Fig. 5.5(a) implies corresponding varia-
tion in the rate coefficient with temperature. In Chapter 8,
we shall develop emission-line diagnosis based on line
ratios, which depend primarily on the electron impact
excitation rates computed from collision strengths, such
as in Fig. 5.5(a), leading to Fig. 5.5(b).

5.4.4 Exchange

The exchange effect stems from the fact that the total
(e + ion) wavefunction should be an antisymmetrized
product of the N + 1 electron wavefunction in the system,
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with N electrons in a bound state of the target ion and
one free electron in the continuum (Eq. 3.24). Almost all
present-day calculations fully include electron exchange.
However, there are still many older sources of data in the
literature that are from calculations neglecting exchange
[103]. It has been shown that apart from spin-flip transi-
tions, which proceed only through electron exchange, it
may be necessary to include exchange even for optically
allowed transitions when the low �-wave contribution is
significant, e.g., 11S − 21 P in He-like ions where neglect
of exchange leads to an error of about 50% [103].

The exchange integrals in Eq. 3.45 are, however, dif-
ficult to evaluate. But it is only necessary to account
for exchange when the free electron wavefunctions over-
lap significantly with the bound electron wavefunctions.
In other words, for large partial waves, exchange may
be neglected. It is sometimes the case that, for exam-
ple, in R-matrix calculations exchange is neglected for
sufficiently high angular momenta �.

5.4.5 Partial wave expansion

Theoretically, the cross section (collision strength) is
decomposed in terms of the partial wave expansion
according to Eq. 5.22. It follows then that (a) all partial
waves � of the free electron, and (b) all partial spin and
angular symmetries SLπ of the total (e + ion) system,
should be included to obtain the total cross section. In
practice, however, this criterion is not easily satisfied. A
combination of methods is needed to ensure convergence
of the partial wave expansion. This is because differ-
ent partial waves interact differently with the target ion,
and different approximations are then appropriate. For
low-� waves the (e + ion) interactions are strong and the
CC method is best employed. For high-� waves, how-
ever, that is not necessary, particularly since exchange
terms are not important and coupled integro-differential
equations (Eq. 3.45) need not be solved. Then, sim-
pler weak-coupling methods, such as the distorted wave,
Coulomb–Born, or Coulomb–Bethe approximations may
be employed, as discussed in Chapter 3. However, the
practical problem lies in the fact that different types
of transition have different crossover limits, where it is
safe to switch over to weak-coupling approximations. For
dipole allowed transitions the cross section is dominated
by high partial waves, owing to the long-range Coulomb
potential. In such cases, the CC method is best for low-�
waves that give rise to resonances. Weak-coupling approx-
imations, particularly the distorted wave method, may
otherwise yield accurate cross sections for the higher �.
On the other hand, for some forbidden transitions only

a small number of �-waves may be needed for com-
plete convergence of the total cross section; the oft-used
value, though by no means universally valid, is �0 = 10.
This is certainly true for the forbidden spin-flip transitions
brought about by electron exchange, which requires close
interactions between the free electron and ion. Gener-
ally, however, forbidden transitions of interest are usually
among low-lying levels of the same parity, and of the mag-
netic dipole (M1) and the electric quadrupole (E2) type.
But some E2 forbidden transitions may require a large
number of �-waves, � > 50, for full convergence.

5.4.6 Relativistic effects

Relativistic effects in electron–ion scattering are taken
into account in several ways. However, the necessity to
include these and the method to be employed, depends on
the ion and transition(s) under consideration. Generally,
for heavy elements, or as the ion charge increases, rela-
tivistic effects become prominent and have to be consid-
ered explicitly. But there are many cases where relativistic
effects per se are not too important, but fine-structure
lines are still resolved in practical observations. In those
cases, the transition can be described within LS coupling,
such for low-Z or low-z ions, and the cross sections
may be obtained by a pure algebraic transformation from
the LS to LSJ, or in an intermediate-coupling scheme.
Within the context of theoretical methods discussed in
Chapter 3, computer programs, such as JAJOM or STGFJ
offer such solutions as part of the R-matrix package of
codes (Fig. 3.9, [38]).

In general, the ratio of the fine structure collision
strengths to multiplet collision strengths depends on the
recoupling coefficients, but for the particular case of
Si = 0 or Li = 0 we have

 (Si Li Ji , S j L j J j )

 (Si Li , S j L j )
= (2J j + 1)

(2S j + 1)(2L j + 1)
. (5.35)

For example, consider the transitions in p3 open-shell
ions, such as O II or S II with ground configura-
tions 2s22p3 and 3s23p3, respectively, where the
terms dominated by the ground configuration are: 4So

3 2
,

2 Do
3 2,5 2

,2 Po
1 2,3 2

. The ratio

 
(

4S0
3 2
−2 Do

3 2

)
/ (4So −2 Do) = 4/10,

and

 
(

4So
3 2
−2 Do

5 2

)
/ (4So −2 Do) = 6/10.

These forbidden transitions are of great importance in
emission line diagnostics, as described in Ch. 8.
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As the relativistic effects become larger, one may
employ three different approaches with increasing levels
of sophistication (the approximations refer to the descrip-
tion in Chapter 3). The first approximation to incorporate
relativistic effects in the target ion is to generate term
coupling coefficients <Si Li Ji |
i Ji>, which diagonal-
ize the target Hamiltonian including relativistic terms
(Breit–Pauli Hamiltonian); 
i Ji is the target state repre-
sentation in intermediate coupling. These coefficients are
then used together with the algebraic transformation pro-
cedure mentioned above to account for relativistic effects
(as in JAJOM or STGFJ).

The second approximation entails intermediate cou-
pling, say using the Breit–Pauli R-matrix (BPRM) method
[38, 55]. It extends the close-coupling R-matrix method
to treat the entire electron–ion scattering process in the
Breit–Pauli scheme (and not just the target ion, as in
the JAJOM or STGFJ approach). All BPRM scattering
calculations thus far use only the one-body operators of
the Breit interaction – mass–velocity, Darwin and spin–
orbit terms (Section 2.13.2). The two-body terms, usually
not too important for (e + ion) scattering, are neglected.
However, as mentioned in Chapter 3, recently the BPRM
method has been extended to include the two-body Breit
terms and is referred to as the ‘Full’ BPRM approxi-
mation, shown in Fig. 3.9. The BPRM method appears
particularly well suited for elements up to the iron group
(Z ≤ 30) to account for both the electron correlation and
the relativistic effects accurately. Third, for even heavier
systems and highly charged ions, high-Z and z, a fully
relativistic treatment has been developed based on the
Dirac equation, and a package of codes (DARC) has been
developed by P. H. Norrington and I. P. Grant [53].

A comparison of the various relativisitic approxima-
tions, the Dirac R-matrix, BPRM and term-coupling, for
electron scattering with Boron-like Fe XXII shows that
the term-coupling approximation may not be very accu-
rate, but that there is good agreement between the DARC
and the BPRM calculations, including the fine struc-
ture resonances that are important for several transitions
[104, 105].

5.5 Scaling of collision strengths

It is often useful to adopt scaling procedures and exam-
ine systematic trends in the collision strengths. Transitions
may be classified according to the range of the poten-
tial interaction (Vii ′ ± Wii ′ ) in Eq. 3.45. Spin change
transitions depend entirely on the exchange term Wii ′ ,
which is very short range since the colliding electron must

penetrate the ion for exchange to occur. Therefore, only
the first few partial waves are likely to contribute to the
cross section, but these involve quite an elaborate treat-
ment (e.g., close-coupling). For allowed transitions, on the
other hand, a fairly large number of partial waves con-
tribute and simpler approximations (e.g., Coulomb–Born)
often yield acceptable results. The asymptotic behaviour
of the collision strengths for allowed and forbidden tran-
sitions is as follows (x is in threshold units of energy
x ≡ E/Eth, for a transition i → j , Eth = 
Ei j ):

(a)  (i, j)∼
x→∞

constant, for forbidden (electric

quadrupole) transitions,
L �= 1,
S = 0,

(b)  (i, j) ∼
x→∞

x−2, for spin− change transitions,


S �= 0,

(c)  (i, j) ∼
x→∞

a ln (4x), allowed transitions,
L = 0,

± 1,
S = 0.

The slope a in the last equation (c) is proportional
to the dipole oscillator strength. The above forms are
valid for transitions in LS coupling. For highly charged
ions, where one must allow for relativistic effects, through
say an intermediate coupling scheme, sharp deviations
may occur from these asymptotic forms particularly for
transitions labelled as intercombination type, e.g., the
transition 11S − 23 P in He-like ions (Eq. 4.167). For
low-Z ions (Z < 15) when LS coupling is usually valid,
 (11S− 23 P) behaves as (b). With increasing Z, the
fine-structure splitting between 23 P(J = 0, 1, 2) becomes
significant and the collision strength  (11S0 − 23 P1)

gradually assumes form (c).
A useful fact for isosequence interpolation, or extrapo-

lation, is that Z2 (i, j) tends to a finite limit, as Z →∞,
as a function of k2/Z2; i.e., at the Z2 reduced inci-
dent electron energy,  (i, j) is constant or a slowly
varying function for large Z. For highly ionized atoms
(e.g., H-like, He-like) the Z2 behaviour is valid even for
Z < 10, but for many-electron ions (e.g., Ne-like) one
needs to go to much higher values of Z.

An elaborate procedure to fit and extrapolate or inter-
polate effective (Maxwellian averaged) collision strengths
ϒ(T ) has been enabled in a computer program called
OMEUPS [86]. The limiting expression of Eq. 5.31 at low
energies is

limT→0 ϒ(T ) = limε→0 (ε), (5.36)

in terms of the threshold collision strength. As we have
discussed, in the high-energy limit, simpler approxima-
tions may be employed to compute the collision strengths,
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say in the Coulomb–Born or the Coulomb–Bethe approx-
imations (Chapter 3). Although useful in many cases, the
limiting values (i.e., E or T → ∞) adopted in this
approach may not always be accurate, particularly for
non-dipole transitions where coupling effects, such as the
appearance of high-n resonance complexes, may atten-
uate the collision strengths even to very high energies,
and the Coulomb–Born or Coulomb–Bethe limits may not
be applicable. Nonetheless, the scaled collision strength
data can be visualized in a systematic manner, for exam-
ple along isoelectronic sequences [74]. Deviations from
the fits may be investigated to explore possible errors,
the presence of resonances, convergence of partial wave
expansion, etc.

Whereas we have not considered electron scatter-
ing with neutral atomic species in this text, excitation
of several atoms is quite important, viz. C I, N I, O I

and Fe I. However, calculation of neutral excitation cross
sections is more difficult, owing to the absence of the
Coulomb potential. In that case, long-range potentials,
particularly dipole polarization, dominate the scattering
process. Theoretically, the threshold collision strength 0
for the excitation of neutral atoms is governed by the
Wigner law,

 (E → 0) = El+1/2, (5.37)

where l is the dominant partial wave. As part of the Iron
Project, electron impact excitation of neutral Fe I has been
studied [106]. Another form of the Wigner threshold law
applies for electron impact ionization, as described in
Section 5.8.

5.6 Comparison with experiments

Although experimental measurements of electron–ion
scattering cross sections are difficult, a number of
advances have been made in recent years. The advent of
merged-beam techniques, synchrotron ion storage rings
and electron-beam ion traps have made it possible to
measure the cross sections to unprecedented accuracy.
Experiments are now also capable of the high resolu-
tion necessary to resolve resonances up to fairly high-n,
approaching Rydberg series limits.

In nearly all cases, the experimental results agree with
the most sophisticated coupled channel calculations to
within the typical experimental uncertainties of 10–20%
– the range of uncertainty often quoted for such theo-
retical calculations. However, it needs to be emphasized
that the details of resonance structures in the experimental
data are subject to beam resolution; the theoretical data are

convolved over the FWHM beam width in comparing with
experiments. A few of the merged-beam cross sections
and corresponding theoretical works are presented
below.

The cross sections for C II in Fig. 5.6 are for the three
lowest transitions from the ground state to different LS
states of the next excited configuration: (a) the intercom-
bination transition 1s22s22p 2Po → 1s22s12p2 4P, and
the next two dipole allowed transitions to (b) 2D and
(c) 2S (see Figs 6.10 and 6.6 for energy level diagrams).
The latter two final states, 2D and 2S, lie relatively close
together in energy and are strongly coupled. This is indi-
cated by the fact that their collision strengths may not
be accurately obtained by simple approximations such as
the Coulomb–Bethe method, which essentially treats the
collision process as an an induced radiative transition.
Hence, in the Coulomb–Bethe approximation the collision
strength is related to the oscillator strength (Chapter 3).
The proportion of threshold collision strengths for the
2 Po − 2S,2 D,2 Po transitions in Fig. 5.6 is about 1:3:3,
quite different from that of the oscillator strengths which
is about 1:1:5 [72]. It follows that simple formulae such
as the Van Regemorter formula, or the ‘g-bar’ approx-
imation – based on the idea that collision strength can
be estimated from the oscillator strength – gives incorrect
collision strengths.

All three cross sections in Fig. 5.6 show considerable
resonance structures. Therefore, approximations neglect-
ing channel couplings, such as the distorted wave, are
also likely to yield inaccurate collision strengths in cor-
responding energy regions.

The measured cross sections [107] in Figs 5.6(b) and
(c) for C II are for dipole allowed transitions. Weaker
intercombination or L S forbidden transitions are more
sensitive to coupling and resonance effects, since the
transitions are not dominated by a strong dipole
moment but, rather, mediated by weaker non-dipole
coupling potentials. Therefore, the background cross
section for direct excitation is small, and indirect excita-
tion via resonances assumes greater importance. Recent
experimental work has also been carried out for the
L S-forbidden transitions in nebular ions such as O II

and S II (both ions have the same L S-term structure,
see Chapter 8). For example, the measured cross sec-
tions for the total 4So − 2 Do transition in Fig. 5.7
agrees very well with the BPRM calculations in the CC
approximation [108].

As the electron impact energy increases, the behaviour
of collision strengths differs, depending on the type
of transition. For allowed transitions, the collision
strengths increase logarithmically, according to the Bethe
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theoretical R-matrix cross sections for C II

convolved with a 250 meV FWHM resolution
[107]; solid line (experiment), dashed line
(theory) [72]; (a) excitation of the
intercombination transition 2Po −4 P, (b)
allowed transition 2Po −2 D and (c) allowed
transition 2Po −2 S.

asymptotic form  (E) ∼ ln(E). Figure 5.8 presents
the measured and theoretical collision strengths for the
dipole allowed transtion 3s – 3p in Mg II [109, 110].
The theoretical CC R-matrix results are shown as the
solid line, computed using a 10CC approximation includ-
ing the 10 Mg II states corresponding to the outer orbital

configurations 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p and 5d. The
dashed line is a 5CC calculation including only the first
five states [111]. All experimental points except the last
one agree with theoretical 10CC R-matrix results [109]
within experimental uncertainties [110]. The agreement
holds true even at energies that span a number of excited
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n = 4 and n = 5 thresholds out to high energies, as shown
in the inset in Fig. 5.8. The R-matrix results fitted to
the Bethe form above, and extrapolated to high energies,
show a much better agreement with experiment than the

Coulomb–Bethe results, which significantly overestimate
the cross sections.

Many electron impact excitation cross sections
for multicharged ions have been measured using the
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merged electron-ion beams energy loss (MEIBEL) tech-
nique [113]. Measured cross sections include: C3+ 2s
2S− 2p2P, O5+ 2s2S− 2p2P, Si2+ 3s2 1S− 3s3p1P,
Si2+ 3s2 1S− 3s3p 3P,Si3+ 3s 2S− 3p 2P,Ar6+
3s2 1S− 3s3p 1P,Ar6+ 3s2 1S− 3s3p 3P,Ar7+3s 2S
− 3p 2P, and Kr6+4s2 1S− 4s4p 3P. References to the
experimental works and comparisons with theory may be
obtained from: www.cfadc.phy.ornl.gov/meibel/. There is
good agreement, usually within experimental uncertain-
ties, between experimental values and theoretical close
coupling calculations using the R-matrix method. It might
be noted that the measured transitions are the lowest
dipole allowed or intercombination transitions. Some dis-
crepancies between theory and experiment are evident in
the figures given, although the overall structures agree.

In summary, the most elaborate theoretical calcula-
tions for up to the third row elements generally agree with
experiments for the low-lying transitions that have been
experimentally studied.

5.7 Electron impact excitation data

Faced with the huge volume of atomic data, calculated
with different methods, it is important to analyze, evalu-
ate, compile and disseminate the diverse sets of data in
efficient ways. A number of databases and sources are
listed in a review of atomic data by A. K. Pradhan and
J.-P. Peng [116]. A revised version of their recommended
data for a number of ions containing the Maxwellian aver-
aged or effective collision strengths ϒ(T ), wavelengths
and transition probabilities is given in Appendix E.

Two other data sources are also available. First, there
are evaluated compilations of theoretical data sources
since 1990 by A. K. Pradhan and H. L. Zhang [117], and
by A. K. Pradhan and J. W. Gallagher [103] for sources
before 1990, and, second, effective collision strengths for
all iron ions, for a large number of transitions, taken
from the recent Iron Project work or relativistic distorted
wave calculations, available from www.astronomy.ohio-
state.edu/∼pradhan. Other collisional data from data
sources, such as the Iron Project database, consisting of
high-accuracy R-matrix data, may also be accessed from
this website.

5.8 Electron impact ionization

Collisional ionization by electron impact differs funda-
mentally from collisional excitation. Electron impact ion-
ization (EII) becomes a three-body problem in the final
state, as opposed to a two-body (e + ion) problem for

excitation. Considering EII of a singly charged ion for
simplicity, we have

e(E1)+ X+ → e
(
E ′1

)+ e(E2)+ X2+. (5.38)

First of all, energy conservation implies

E1 = E ′1 + E2 + EI, (5.39)

where the right-hand side is the sum of the kinetic energies
of the two electons, the scattered electron and the ejected
electron after EII, and EI is the ionization energy of the
initially bound electron.

The two electrons in the continuum final state inter-
act strongly at low energies, with each other and with the
residual ion. These post-collision interactions lead to the
behaviour of the cross section at near-threshold energies,
which is non-linear and given by the so-called Wannier
form σ ∼ Ea , where the exponent a = 1.127 for EII
of neutral atoms and the energy E is the excess energy
carried away by the two free electrons. The general form
of the threshold behaviour of the cross section, with two
electrons in the presence of an ion (such as in double
photoionization), is based on Wigner’s theorem and is
given by

σ0 ∝ E(2μ−1)/4, (5.40)

where

μ = 1

2

[
100z − 9

4z − 1

]1/2
. (5.41)

For z = 1, the exponent has the Wannier value
1.127 [118]. However, experimentally, deviations from the
Wannier threshold law are observed for many systems and
ions.

As in EIE, The direct process of EII in Eq. 5.38 is
supplemented by indirect processes involving (e + ion)
resonances. We can write both processes as

e1 + X+ → e′1 + e2 + X2+

→ e′1 + [X+]∗ → e′1 + e′2 + X2+, (5.42)

where [X+]∗ denotes the autoionizing resonance, and
e2 and e′2 distinguish different final electron energies.
The indirect steps above are referred to as excitation–
autoionization, or EA, corresponding to the formation of a
resonance in the intermediate step and subsequent break-
up in the last step. It may also happen that the final step
above may still leave the ion on the right-hand side in
another doubly excited resonant state which would again
autoionize

[X2+]∗ → e3 + X3+. (5.43)
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This double autoionization process is sometimes referred
to as resonant excitation double autoionization (REDA).
Many short-lived intermediate autoionizing states may be
involved in the double-ionization REDA process. It is easy
to visualize, though difficult to compute or measure, the
various pathways that may exist for multiple-ionization
via resonant states. These are the Auger processes, which
involve many inner-shell transitions leading not only to
electron ejections but also to radiative cascades, as dis-
cussed at the end of the chapter.

5.8.1 Collisional ionization cross sections

In this section, we describe some theoretical and experi-
mental studies. Let us confine ourselves to single EII
leading to two free electrons in the final state. Theoret-
ically, the study of EII is more complicated than EIE,
since two-body correlations of the two outgoing electrons
must be accounted for in the presence of the residual ion,
instead of one continuum electron in the (e + ion) sys-
tem. That requires, in principle, a double wavefunction
expansion for the system

�[e1 + ψ(e2 + X2+)]. (5.44)

The (e2 + X2+) term may be regarded as the same
as for the EIE problem discussed extensively in earlier
chapters. However, now we have the additional contin-
uum electron e1 interacting with the (e2 + X2+) sys-
tem. Such a double-continuum wavefunction expansion in
the coupled-channel approximation is very involved, and
although methods have been developed to implement such
expansions, calculations are very difficult. The reason is
that (e + ion) channels corresponding to an infinite number
of final states are strongly coupled at each incident elec-
tron energy. Among the few close coupling approaches,
albeit with limited applications, that have been attempted
are in [119] and using the convergent close coupling
method (e.g., [94, 120]). On the other hand, a large num-
ber of calculations using the distorted wave approximation
without channel coupling, have been made to compute EII
cross sections (e.g., [121]).

Fortunately, experimental measurements of total EII
cross sections are easier than EIE measurements. This
is because excitation experiments are state-selective. For
EIE, information is needed on both the initial and the
final states, requiring the measurement of the electron
energy and (often in conicidence), the photon energy from
radiative decay of the excited ion. Whereas relatively
few measurements have been made for EIE transitions, a
considerable body of experimental cross sections for EII

have been measured, for nearly all ions of astrophysical
importance. Much of the experimental work has also been
motivated by applications in fusion plamsa sources [121].
Another factor that makes EII a relatively easier process
from a modelling point of view is that only the total colli-
sional ionization cross sections are needed, unlike the EIE
cross sections, which are required for all levels of an ion
likely to be excited in spectral formation.

Resonant phenomena are fundamentally different, and
much more complex, in EII than EIE. Resonances in EIE
cross sections occur at definite incident electron ener-
gies in the (e + ion) system; the EIE cross section rises
rapidly as the resonance energy is approached and then
falls equally rapidly once it is crossed. However, in the
EII process, resonances are formed with two active(free)
electrons and an ion core. One may view the EII resonant
process as a function of the incident free electron energy
e1(E1),

9 corresponding to the energy needed to form a
resonance in the (e + ion) system (e2(E2)+X2+). The key
point is that once the incident electron e(E1) approaches
the energy needed to form a resonance at E1 = Eres, then
that particular resonance can be formed at all energies
E1 > Eres. If the EII cross sections are plotted against the
incident energy E1, then the resonance contribution mani-
fests itself at Eres, not as individual resonance profiles but
as steps where the ionization cross section increases and
remains as a plateau, since that resonance (enhancement)
can be affected for all higher energies. In short, reso-
nance enhancements of EII cross sections are generally
much larger than in the EIE case. Also, compared with the
backgound non-resonant EII cross section, the resonant
contributions are often orders of magnitude higher.

As we have mentioned, the DW method does not,
in principle account for resonant phenomena inherent in
the coupled-channel approximation. However, for EII,
the DW method may be extended in a step-wise man-
ner to incorporate resonant excitation-autoionization pro-
cess. Figure 5.9 shows a comparison of the DW results
with experiments for electron impact ionization of Fe13+
[121]. The excitation–autoionization resonant contribu-
tions included in the the total DW cross sections are
clearly seen.

5.8.2 Semi-empirical formulae

Historically, there have been a number of analytical for-
mulae to estimate the EII cross sections for near-threshold
cross sections (e.g., [24]), and many calculations using

9 Recall that cross sections are given as functions of the incident particle

energy.
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FIGURE 5.10 Electron impact ionization of Fe15+

(experimental data from Fig. 5 in [121]). Note the step-wise
resonant contributions due to ionization of successive
electronic subshells. The difference between the theoretical
lower and upper curves (hatched) [125] shows the extent of
these REDA contributions. The dashed line is the Lotz fitting
formula for direct ionization alone.

relatively simple scaled hydrogenic Coulomb–Born meth-
ods and related fitting formulae (e.g. [122]). Owing to
the availability of experimental EII cross sections, sev-
eral other attempts have been made to compile and fit
analytical expressions to obtain semi-empirincal formu-
lae. One of the most widely known expression is the Lotz
formula [123], which includes only direct excitation and
does not consider the excitation autoionization or indi-
rect resonant excitations. A. Burgess and M. Chidichimo
[124] provided a fitting formula, including fits to resonant
excitation–autoionization contributions.

The basic physics of EII is discernible in Fig. 5.10
[121]. The first electron impact ionization occurs due to

the ionization of the outer valence 3s subshell, starting at
EI = 489 eV (not shown)

e1 + Fe15+(1s22s2p63s1)

→ e′1 + e2 + Fe14+(1s22s22p6). (5.45)

The EII cross section (experimental points) rises
smoothly until the onset of the ionization of the inner
2p subshell at 735 eV, where it rises abruptly, due to the
opening of the much larger ionization cross section of
the 2p electrons. The step-wise contributions are mani-
fest in the theoretical results. These lie between the lower
solid curve in the shaded region in Fig. 5.10, and the
upper solid curve, with contributions explicitly added in.
The histogram-type contributions are from different sub-
shells that correspond to the ionization of the 2p electrons
of sodium-like Fe15+, into not only the ground config-
uration of neon-like Fe16+, but also the various excited
levels of Fe16+ corresponding to the 2p5(3s, 3p, 3d, ...)
configurations. In analogy with similar dipole radiative
transitions, the 2p–3s and 2p–3d excitations are found
to be particularly strong. Taking account of the different
angular and spin symmetries associated with these config-
urations, and fine structure, would obviously give rise to
much more structure, but would make relatively little con-
tribution to the total EII cross sections. Finally, note that
the Lotz formula, including only direct ionization process,
is inaccurate by large factors.

5.8.3 Collisional ionization rate coefficients

It is always desirable to employ accurate theoretical or
experimental data. The EII rate coefficients used in astro-
physical models are usually obtained from semi-empirical
fits that have the advantage of analyticity, if not always of
accuracy. More useful and accurate are a number of com-
pilations and fits to experimental (and some theoretical)
data. Among the recent ones are those by G. S. Voronov
[126], and the extensive database at the National Institute
for Fusion Science (https://dbshino.nifs.ac.jp).

5.9 Auger effect

High-energy ionization of inner shells leads to resonant
phenomena. We have already seen that in addition to
radiative transitions there are non-radiative or radiation-
less transitions. Electronic transitions involving inner
shells are governed by the Auger effect: a vacancy cre-
ated by inner-shell ionization can be filled via a downward
transition from an outer shell, accompanied by the ejection
of an electron from the same outer shell, or a higher one.
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Such electronic transitions involving closed inner-shells
are also referred to as Auger processes. Fig. 5.11(a) dis-
plays the ionization of an electron from an inner-shell
creating a vacancy. The resulting electronic configuration
is then in a highly excited atomic state, and undergoes
autoionization or radiative decay, or fluorescence. The
photon emitted by radiative decay may ionize an elec-
tron, which then carries away the excess energy as kinetic
energy; it is then a radiation-less transition. The Auger
processes can take several pathways with which the atom
(or ion) relaxes to lower states. A schematic representation
of Auger processes is given in Fig. 5.11(b).

We first illustrate in the top panel (Fig. 5.11(a)) the ion-
ization of an electron from the K-shell, creating a vacancy
or a hole, which is filled by radiative decay of an L-
shell electron, e.g., a 2p → 1s transition. The three types
of Auger transition are illustrated in the bottom panel
(Fig. 5.11(b)). The first Auger transition corresponds to
an inter-shell transition, with energy carried away by
the an ejected L-electron. The second type of transition,
called the Coster–Kronig (CK) transition (middle figure in
Fig. 5.11(b), corresponds to an intra-shell transition, with
energy carried away by an electron ejected from a higher
(M-)shell. The third type of transition, referred to as the
Super-Coster–Kronig (SCK) transition, correponds to an
intra-shell transition, as well as electron ejection, from the
same (N-)shell.

In a radiation-less Auger transition L→K , the energy
of the ejected electron


Ee = hν(L − K )− EIP(L), (5.46)

where the right-hand side is the difference between
the energy of the downward L→K transition, minus
the energy needed to ionize from the L-shell (ionization

potential, IP). This also implies that the kinetic energy
of the ejected electrons via an Auger transition is bound
to be less than the photon energy in a radiative transi-
tion, oftentimes considerably so, resulting in a plasma
with low-energy free electrons. On the other hand, the
competing process of radiative transitions corresponds to
fluorescence due to photon emission. The fluorescence
yield may be written as

ωL K = Ar(L − K )

Ar(L − K )+ Aa(L)
. (5.47)

It is clear that Auger processes involve both radiative
and autoioniztion probabilities, Ar and Aa, in a compet-
itive manner. For deep inter-shell Auger transitions in
high-Z atoms, the radiative probability may exceed the
autoionization probability, such as for the aforementioned
L→K transition. But for the higher shells, M-shell and
higher, the autoionization rates are more likely to domi-
nate radiative transmission, i.e., CK and SCK processes
become increasingly more important in heavy elements,
as one goes to higher Z along the periodic table. These
processes can be better understood quantitatively for a
complex high-Z atom, for example, gold. The ionization
energies EI of the subshells of gold are [127] as given in
Table 5.3.

It is clear from the values of EI that a Kα photon, with
energy due to the transition
EI(L1− K ) = 66 373 eV is
sufficient to ionize any other subshell (except the K-shell
of course), emitting an Auger electron via a radiation-
less transition. An example of a CK transition would
be the radiative decay, say, 
EI(L3 − L1) = 2433 eV,
which could ionize any of the subshells higher than
M4(EI = 2295 eV), as depicted in the middle of
Fig. 5.11(b). Now, for a SCK process, both the radiative
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TABLE 5.3 Electronic shell ionization
energies EI for gold atoms.

Shell E (eV)

K 80 729
L1 14 356
L2 13 738
L3 11 923
M1 3 430
M2 3 153
M3 2 748
M4 2 295
M5 2 210
N1 764
N2 645
N3 548
N4 357
N5 339
N6 91
N7 87
O1 114
O2 76
O3 61
O4 12.5
O5 11.1
P1 9.23

decay transition and the ionizing electron, are within the
same shell. Thus, an example of a SCK transition would
be
EI(N3−N1) = 216 eV, sufficient to ionize subshells
N6 and N7, with EI = 91 and 87 eV, respectively, as on
the right-hand side of Fig. 5.11(b).

Intuitively, one can see that if a deep inner-shell
vacancy is created in a heavy atom with several n-shells,
then Auger cascades may yield many ejected electrons.
Each downward transition from outer- to inner-shells
would result in Auger electrons. As seen in Fig. 5.11,
the ionization of an inner-shell electron, or the creation
of one inner-shell vacancy, may lead to the creation of
two vacancies in higher or the same electronic shells

owing to radiation-less ejection of electrons. Therefore,
for each inner-shell vacancy, caused by primary ioniza-
tion by X-rays or electron impact, several electrons will
be emitted at a spectrum of energies. For primary inner-
shell ionization energies in the X-ray keV range, most of
the Auger electrons will have relatively low energies of
the order of ∼100 eV or less. Given that autoionization
timescales are extremely short, the Auger cascades may
take only about 10−(14−15) s, or in the femtosecond range
for high-Z atoms.

Because the inner-shell transitions at high energies are
involved, the Auger processes relate to short-wavelength
transitions, often X-ray transitions involving the L-shell
and K-shells in low-Z atoms, and the M-and higher
shells in high-Z atoms. We have discussed the Auger
effect rather heuristcally in terms of overall inter-shell or
intra-shell transitions. Of course, a formal computational
treatment must take account not only of the electronic
configurations, but also of the individual energy levels,
partaking in the myriad of transitions that may ensue
following inner-shell ionization. Furthermore, the depen-
dence on the atomic number and the ion charge is crucial,
since all detailed radiative and autoionization rates depend
on both Z and z. Auger fluorescence yields have been
computed in a variety of approximations (e.g., [128]).

5.9.1 Z-dependence of X-ray transitions

As mentioned, inner-shell transitions often correspond
to X-ray energies. The earliest expression for the wave-
length and energies of X-ray transitions due to inner-shell
ionization is the semi-empirical Moseley’s law

E(K ) = 1.42× 10−2(Z − 1)2

E(L) = 1.494× 10−3(Z − 1)2 (5.48)

E(M) = 3.446× 10−4(Z − 1)2 (keV).

More precise values than those given by Eq. 5.48 are
available from measurements and calculations. Tables of
K, L, M,...-shell ionization energies are given in [127],
and Kα1, Kα2 transition energies, for all elements of the
periodic table, are available from on-line databases.



6 Photoionization

Most of the observable matter in the Universe is ionized
plasma. The two main sources of ionization are colli-
sional ionization due to electron impact as discussed in
Chapter 5, and photoionization due to a radiative source.
Among the prominent radiation sources we discuss in later
chapters are stars and active galactic nuclei. The nature
of these sources, and physical conditions in the plasma
environments activated by them, vary considerably. The
photoionization rate and the degree of ionization achieved
depends on (i) the photon distribution of the radiation field
and (ii) the cross section as a function of photon energy.
In this chapter, we describe the underlying physics of
photoionization cross sections, which turns out to be sur-
prisingly full of features revealed through relatively recent
experimental and theoretical studies. Theoretically, many
of these features arise from channel coupling, which most
strongly manifests itself as autoionizing resonances, often
not considered in the past in the data used in astronomy.
The discussion in this chapter will particularly focus on
the nearly ubiquitous presence of resonances in the cross
sections, which later would seen to be intimately coupled
to (e + ion) recombination (Chapter 7).

The interaction of photons and atoms inducing tran-
sitions between bound states has been discussed in
Chapter 4. Here we describe the extension to the bound–
free transitions. We first revisit a part of the unified picture
of atomic processes in Fig. 3.5. When a photon incident on
an atom X imparts sufficient energy to an electron for it
to be ejected from the atom, leaving it with one additional
charge, the bound–free process is called photoionization,
i.e.,

X + hν → X+ + e(ε). (6.1)

The ejected free electron, often termed as photoelec-
tron, is said to be in the continuum with positive energy
ε = 1/2mv2, which is equal to the difference between

the photon energy hν and the ionization potential or the
electron binding energy,

hν − EIP = 1

2
mv2. (6.2)

Indirect or resonant photoionization occurs through an
autoionizing state as

X+(n−1) + hν ↔ (X (+n−1))∗∗ ↔ e + X+n
c . (6.3)

The autoionizing resonant state forms when the photon
energy is equal to the energy of the compound (e + ion)
system given by the Rydberg formula ERes = Ec−z2/ν2,
where Ec is an excited state of the residual ion Xc, also
referred to as the ‘core’ ion, left behind as the doubly
excited autoionizing state (indicated by double asterisks)
breaks up. With reference to the unified picture in Fig. 3.5,
it is clear that detailed balance implies that the photoion-
ization cross section should contain the same resonances
as the related or inverse processes of electron impact
excitation or (e + ion) recombination.

For a proper treatment of the photoionization process,
a number of approaches of increasing sophistication have
been adopted over the years. Photoionization cross sec-
tions calculated mainly in the hydrogenic or central-
field approximations accounted for the background cross
section, but not resonances. Many coupled channel
calculations included autoionizing resonances in a lim-
ited manner. The most thorough and systematic study
for photoionization was carried out under the Opacity
Project [37], using extensions of the R-matrix codes
(Chapter 3). However, relativistic effects and fine structure
were not considered in the Opacity Project work. More
recent calculations under the Iron Project [38], and other
works,1 employ the Breit–Pauli R-matrix method to com-
pute photoionization cross sections, including relativistic
effects with fine structure. Concurrently, sophisticated

1 The authors’ websites refer to many of these up-to-date calculations.
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experiments, using accelerator based photon light sources,
have enabled high-resolution measurements that reveal
resonances in great detail for photoionization of the
ground state and low-lying excited levels (e.g., [129, 130,
131, 132]).

Starting with examples of hydrogen and helium, we
outline the basic relation between the photoionization
cross section and the transition probability. As throughout
the text, we shall endeavour to present a unified frame-
work for atomic processes. In that spirit, the emphasis in
this chapter is on generalization of the radiative transi-
tions framework developed in Chapter 4, with analogous
formulation.

6.1 Hydrogen and helium

We begin with a heuristic depiction of photoionization of
hydrogen and helium. The point is to illustrate the differ-
ences due to resonances that exist in the photoionization
of all non-hydrogenic systems. Figure 6.1 compares the
photoionization cross sections of H I and He I. Whereas
an analytic formula yields the hydrogenic cross section

given in Section 6.4.2, the three-body helium problem is
not amenable to an exact solution. But it is the physical
features that make non-hydrogenic cases far more inter-
esting.

The photoionization cross section for H I, σPI(HI),
in Fig. 6.1 is feature-less. Photoionization of the hydro-
gen atom in the ground state 1s1 2S, or in an excited
state n� 2L , leaves a bare ion (proton) with monotoni-
cally weakening interaction as a function of the energy
of the ejected photoelectron. The threshold value of the
ground state σo(1s) = 6.4 ×10−18 cm2 or 6.4 megabarns
(Mb), the usual units for photoionization and recombi-
nation cross sections. For excited ns levels, σo(HI; ns)
decreases in value and begins at lower threshold ionization
energies with increasing n.

But the photoionization process starts to show rich
resonant features for systems with more than one elec-
tron. This is because autoionization can occur, i.e., the
formation of a two-electron doubly excited resonant state
via photo-excitation, followed by break-up and ionization.
The lower panel of Fig 6.1 shows σPI(HeI), the photoion-
ization cross section of the ground 1s2(1S) state helium
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FIGURE 6.1 Photoionization cross section σPI of
the ground state and excited states, ns1(2S), of H I

(top) [133], and the ground state 1s2(1S) of He I

[134] (bottom).
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[134]. The two electrons in helium can form a Rydberg
series of resonances Ecνl, where Ec is the energy of the
excited core state of the residual H-like ion He II n�(2L).
The resonances occur at energies given by the Rydberg
formula Eq. 2.66, E = Ec − 1/ν2

c . The series of autoion-
izing resonances is 2pn� shown in Fig. 6.1, corresponding
to the excited state 2p of the H-like core, and the sec-
cond electron also in an excited orbital. To wit: the lowest
resonance is 2s2p, whose eigenvalue is above the ion-
ization energy of He I and which therefore autoionizes.
The resonances become narrower and denser, converg-
ing on to the excited n = 2 core level(s) (marked in
Fig. 6.1). The overall cross section follows a monotonic
pattern: at the ionization threshold σPI is high and decays
smoothly with higher photon energy. However, the smooth
background changes with the appearance of autoioniz-
ing resonances that considerably affects the high energy
region, particularly below the ionization threshold(s).

6.2 Photoionization cross section

Since the bound–free process involves an initial bound
state and a continuum state, the physical quantity that
describes photoionization is a cross section σ as a continu-
ous function of incident photon energy hν, or equivalently,
the outgoing photoelectron energy ε.2 Recall that the cor-
responding quantity for bound–bound transitions is the
oscillator strength for discrete bound states.

In nature, a radiation field is generally characterized
by a distribution of frequencies. Let a single photon fre-
quency or wave vector be k, and an infinitesimal interval,
k + dk. Consider a cubic enclosure of volume V = L3

with a periodic boundary condition eikx (L+x) = eikx x ,
indicating that eikx L = eiky L =eikz L = 1. Hence, we have
kx = 2π

L nx , ky = 2π
L ny , kz = 2π

L nz where nx , ny , nz are
integers. The number of modes with a given polarization
in the interval k and k+ dk is

dn = V

(2π)3
d3k = V

(2π)3
k2dkd = V

(2π)3
ω2

c3
dωd ,

(6.4)

where  is the solid angle. If the incident radiation is
isotropic and naturally polarized, the total number of
modes is multiplied by two independent polarizations
within the solid angle,

dn = 2V

(2π)3
ω2

c3
dωd . (6.5)

2 Having examined (e + ion) scattering in the Chapter 5, photoionization

or (e + ion) recombination may also be viewed as a half-scattering

process [31].

The energy per unit volume for photons in the interval
dω and ω + dω is,

udω = 1

V
nω�ω

∫
dn

= 2nω�

(2π)3
ω3

c3
dω

∫
d = nω�ω3

π2c3
dω. (6.6)

The incident energy crossing unit area per unit time in the
frequency interval dω and ω + dω is

I dω = cUdω, i.e., I = nω�ω3

π2c2
, (6.7)

where I is the intensity of radiation,

I = n�ω3

2π2c2
. (6.8)

If dTi j is the probability per unit time that one quantum
of energy in the solid angle element d is absorbed in
transition between states i and j , then the energy (power)
absorbed by the atom is

dP = �ωi j dTi j . (6.9)

The differential cross section dσ/d is the ratio of energy
absorbed dP to the incident flux (I/4π)d in the solid
angle element d , i.e.,

dσ

d 
= dP

(I/4π)d 
= 4π3c2

nωω2
i j

dTi j

d 
. (6.10)

The total integrated cross section relates the absorbed
energy (power) to the incident flux as,

σ = P

I
= π2c2

nωω2
i j

Ti j . (6.11)

6.3 Bound–free transition matrix
element

Following Chapter 4, leading up to Fermi’s golden rule,

Eq. 4.52, the transition probability Ti j =
∫ |a j (t)|2

t dn can
be written as,

Ti j =
∫

2π

�
A2

0

∣∣∣< j
∣∣∣ e

mc
ê.peik.r

∣∣∣ i >
∣∣∣2 δ(Ei j − �ω)dn.

(6.12)

If there are nω number of photons of energy �ω, then the
total energy is (classically, see Eq. 4.55),

V

2πc2
ω2 A2

o = nω�ω. (6.13)

This gives Ao =
√
(2πc2�nω/(Vω). Hence (see

Eq. 4.48),



6.3 Bound–free transition matrix element 123

Ti j = nωe2

2π�m2c3

∫
|< j |ê.peik.r|i > |2δ(ωi j− ω)ωdωd 

= nωe2ωi j

2π�m2c3

∫
| < j |ê.peik.r|i > |2d . (6.14)

The transition probability for absorption of a photon
polarized along ê in the solid angle d is then given by

dTi j =
nωe2ωi j

2π�m2c3
| < j |ê.peik.r|i > |2d . (6.15)

Similarly, it can be shown that for a photon with wave vec-
tor k in the interval between k and k+dk, and polarization
ê, energy �ωi j being emitted in the solid angle d is

dTi j =
(nω + 1)e2ωi j

2π�m2c3
| < j |ê.peik.r|i > |2d , (6.16)

where nω is the average number of photons in k and
k + dk and polarization ê. Equations 6.15 and 6.16 refer
to absorption and emission, respectively. Note the factor
(nω + 1) in Eq. 6.16. The factor with unity is indepen-
dent of the intensity of radiation (number of photons nw)
before emission; it gives rise to spontaneous emission
(i.e., analogous to the A-coefficient), which is different
from zero even if nω = 0. However, the term nω in the
factor gives rise to stimulated or induced emission of
radiation (analogous to the B-coefficient).

We employ the dipole approximation as for bound–
bound transition, retaining only unity from the expansion
of the radiation operator eik.r (Eq. 4.61). For photoioniza-
tion, it is generally not necessary to consider higher-order
non-dipole terms. Using, as in Eq. 4.67, the length and
velocity forms of the transition matrix < j

∣∣ e
mc

∣∣p|i >
= 2iπ

c ν j i < j |er|i >, the transition probability for absorp-
tion is

dTi j =
nωe2ωi j

2π�m2c3
| < j |ê.p|i > |2d 

=
nωe2ω3

i j

2π�c3
| < j |ê.r|i > |2d , (6.17)

where the polarization components are summed over in
the integral. The direction of polarization ê is perpen-
dicular to k. Let the angle between k and r be θ . One
component of ê, say ê1, can be in a direction perpendic-
ular to both k and r. Hence, this component contributes
nothing (ê1.r = 0) to the transition matrix. The other com-
ponent ê2 then lies in the plane formed by k and r, and at
an angle (π/2−θ ). We then have |ê2.r|2 = |r|2 sin2 θ , and,
therefore for the length form

Ti j =
nωe2ω3

i j

2π�c3

∫
| < j |r|i > |2 sin2 θd . (6.18)

Using∫
d sin2 θ = 2π

∫ π

0
sin3 dθ = 8π

3
, (6.19)

we get

Ti j =
4nωe2ω3

i j

3�c3
|< j |r|i > |2=

4nωαω3
i j

3c2
|< j |r|i > |2,

(6.20)

where α, as usual, is the fine-structure constant. The
photoionization cross section is then

σL = π2c2

nωω2
i j

Ti j =
4π2αωi j

3
| < j |r|i > |2, (6.21)

in the length formulation. Similarly, for the velocity form
we obtain

Ti j =
4nωαωi j

3m2c2
| < j |p|i > |2, (6.22)

and the corresponding photoionization cross section,

σV = π2c2

nωω2
i j

Ti j = 4π2α

3m2ωi j
| < j |p|i > |2. (6.23)

As shown in Section 4.7 for bound–bound oscillator
strengths, both the length and velocity forms should give
the same value if the wavefunctions are exact [77], i.e.,
σL = σV . However, the wavefunctions for an atomic
system beyond hydrogen are all computed approximately
with formulations of varying accuracy. Nevertheless, most
approximations provide wavefunctions that are accurate in
the region beyond the dimensions of the residual core ion.
Since the length form of the transition matrix depends on
r , it falls off slower than the velocity form (the derivative
∂/∂r of the wavefunction), giving a larger contribution
from the region farther away from the residual ion. It
follows that the length form is generally more accurate
than the velocity form of the transition matrix for both the
bound–bound as well as the bound–free.

In the calculation of the transition probability Ti j ,
and the photoionization cross section σPI, one signifi-
cant difference between the bound–bound transition and
a bound-free transition is that a continuum wavefunction
expansion representing the final free photoelectron needs
to be computed in the latter case. Those are, in fact, the
continuum wavefunctions we encountered in the (e + ion)
collision problem (Chapter 5), and computed by various
methods. We first study the relatively simple but illustra-
tive example of the central-field approximation. Although
we carry through the formal derivations with both the
length and velocity operators, it is generally the length
form that is used for photoionization cross sections. Also,



124 Photoionization

higher-order multipole potentials responsible for bound–
bound forbidden transitions are not usually important in
astrophysical applications of bound–free cross sections,
and are not considered.

6.4 Central potential

A suitably constructed radial potential may be employed
to obtain the transition probability Ti j , Eq. 6.20. The
central-field approximation allows us to express an atomic
state by independent (i.e., in separable coordinates) radial
and angular functions as Rnl (r)Ylm(r̂). We consider the
length form of Ti j , and the derivation of the dipole transi-
tion matrix in the central-field approxination in Chapter 4.
The angular algebra remains the same, given initial bound
and final (e + ion) symmetries, and selection rules: 
m =
m j − mi = 0 ± 1, 
l = l j − li = ±1. Also, the radial
integrals have a similar form, i.e.,

R
n j l j
ni li

=
∫ ∞

0
Rn j l j (r)Rni li (r)r

3dr. (6.24)

However, the initial wavefunction is bound but the final
wavefunction represents a free electron in the continuum.
As before, for a l j = li + 1 transition,

∑
m j

<ψn j ,li+1,m j |r|<ψni li mi > |2=
li + 1

2li + 1

∣∣∣Rn j ,li+1
ni li

∣∣∣2,
(6.25)

and, for a l j = li − 1 transition,

∑
m j

<ψn j ,li−1,m j |r|<ψni li mi> |2=
li

2li + 1

∣∣∣Rn j ,li−1
ni li

∣∣∣2.
(6.26)

The total probability for transitions to allowed states
with 
l = ±1 and 
m = 0,±1, without regarding the
polarization of radiation field, is

Ti j =
4nωαω3

i j

3c2 | < j |r|i > |2

= 4nωαω3
i j

3c2
1

2li+1

[
li
∣∣∣Rn j ,li+1

ni li

∣∣∣2
+ (li + 1)

∣∣∣Rn j ,li−1
ni li

∣∣∣2] .
(6.27)

This gives the length form of the photoionization cross
section,

σL =
4π2αωi j

3

1

2li + 1

[
li
∣∣∣Rn j ,li+1

ni li

∣∣∣2
+(li + 1)|Rn j ,li−1

ni li
|
]
. (6.28)

The velocity form is similar to that for radiative transi-
tions from Chapter 4;

Ti j =
4nωαωi j

3m2c2
< j |p|i > |2

=4nωα�
2ωi j

3c2m2

1

2li + 1

{
(li + 1)

∣∣∣∣
∫ ∞

0
Pn j l j

×
[dPn j ,li+1

dr
+ (li + 1)

Pn j ,li+1

r

]
dr

∣∣∣∣
2

+ li

∣∣∣∣
∫ ∞

0
Pni li

[dPn j ,li−1

dr
− li

Pn j li−1

r

]
dr

∣∣∣∣
2}
,

(6.29)

where Pnl = r Rnl . If we define

(R+)
n j ,li+1
ni li

= ∫∞
0 Pn j l j

[
dPn J,li+1

dr + (li + 1)
Pn j ,li+1

r

]
dr,

(R−)
n j ,li−1
ni li

= ∫∞
0 Pni li

[
dPn j ,li−1

dr − li
Pn j li−1

r

]
dr,

(6.30)

then the velocity form of the photoionization cross
section is

σV =4π2α�
2

3m2ωi j

1

2li + 1

[
(li + 1)

∣∣∣(R+)n j ,li+1
ni li

∣∣∣2

+li
∣∣∣(R−)n j ,li−1

ni li

∣∣∣2] . (6.31)

An interesting physical feature of photoionization is
evident from the bound–free transition matrix element
Ti j . It involves an exponentially decaying initial bound
state wavefunction, and an oscillating continuum wave-
function of the (e + ion) system. That may lead to
destructive interference in the integral with initial and
final wavefunctions, and thence a minimum in the other-
wise monotonic photoionization cross section. According
to the selection rules, the orbital angular momentum in
the dipole matrix element must change by unity between
initial and final state, i.e., �→�+1 or �→�−1. These min-
ima are prominently seen in photoionization cross section
of the ground state of alkali atoms. For example, Na I has
a ground configuration 1s22p63s1 (to be consistent with
the discussion in this section we need not consider the
LS term designation of the ground state 2S). The final
(e + ion) system following outer-shell photoionization is
Ne-like Na II, and a free electron e(εp), with a change
in the � value of the photoionizing electron from s to
p. Owing to a different number of nodes in the radial
functions ns and εp, integration leads to destructive inter-
ference and cancellation in the 3s→εp matrix element,
resulting in a large dip in the cross section referred to as
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FIGURE 6.2 Alkali photoionization cross section of Na I

showing a Cooper minimum (solid line), owing to cancellation
between the bound state 3s wavefunction and the εp continuum
wavefunction. The effect of high plasma density with Debye
length λD = 20 is also demonstrated (see Section 9.2.3.5); the
3s orbital becomes more diffuse and the minimum moves
outward in energy. (Courtesy, Y. K. Ho, adapted from [136].)

the Cooper minimum [135], where it almost approaches
zero [136].3 The solid curve in Fig. 6.2 also shows the
effect of Debye screening in a dense plasma [136]. The
solid line refers to an isolated sodium atom with Debye
length λD = ∞, when the Cooper minimum appears very
close to the threshold ionization energy. The dashed line
in Fig. 6.2 is with λD = 20 in a heavily screened plasma
(i.e., high density), when the 3s orbital becomes quite
diffuse, owing to the influence of intervening free elec-
trons within the Debye radius, and the Cooper minimum
shifts away from the threshold ([136]; plasma effects and
Debye screening are discussed in Chapter 9). More com-
plex examples manifest themselves in the multi-channel
treatment of photoioization, as demonstrated later in this
chapter.

Historically, several methods have been employed to
construct the central potential. They approximate the
‘exact’ Hartree–Fock non-local electron-electron interac-
tion through a local radial potential Vnl (r). Some of these
methods are referred to as the Hartree–Slater (e.g., [139]),
or the Hartree–Fock–Slater (e.g., [140]) approximations.
The central-field methods have a serious drawback, indi-
cated by the subscript nl in the formulation above. Since
only the averaged radial potential is available, they yield
the cross section for photoionization of an electronic

3 The existence of such a minimum was known in the earliest days of

photoionization calculations, viz. D. R. Bates [137] and M. J.

Seaton [138].

subshell σnl , and not for the individual states due to the
LS term structure.4

6.4.1 Energy dependence

Continuing with the introduction to basic features of
photoionization, it is useful to examine the energy depen-
dence. Most of the earlier studies on photoionization
of many-electron systems were carried out using sim-
ple methods, such as the quantum defect method, and,
of course, the central-field approximation discussed pre-
viously, which yield a relatively featureless background
cross section. For many atoms and ions, astrophysical
models used the Seaton fitting formula,

σPI= σT

[
β

(
ν

νT

)−s
+ (1− β)

(
ν

νT

)−s−1
]
, (ν > νT),

(6.32)

where σT and νT are the threshold photoionization cross
section and photon frequency, respectively. The fitting
parameters β and s are deduced from computed points at
several energies. Typically, the cross section first rises in
accordance with the first term in Eq. 6.32, and then falls
off with a value of s ∼ −3, which indicates the behaviour
of σPI ∼ 1/ν3 at high energies.

This high-energy dependence is given explicitly by the
Kramer’s formula. A Rydberg series of levels, below an
ionization threshold where the series converges, becomes
denser with increasing n and behaves hydrogenically. The
photoionization cross section can then be approximated
using hydrogenic wavefunctions that yield the Kramer’s
formula (e.g., [76]),

σPI =
(

8π

31.5c

)
1

n5ω3
. (6.33)

Equation 6.33 is sometimes used to extrapolate photoion-
ization cross sections in the high-energy region, where
other features have diminished contribution with a rel-
atively smooth background. However, it is not accurate.
At high photon energies, inner electronic shells and sub-
shells are ionized, and the inner-shell contribution must be
included, to obtain total photoionization cross sections. At
the ionization energy of the inner (sub)shells there appears
a sharp upward jump or edge resulting in sudden enhance-
ment of the photoionization cross section. Figure 6.3

4 Although many modelling codes still employ central-field cross

sections, they are no longer needed, since more accurate cross sections

have been computed under the Opacity Project [37], the Iron Project

[38] and improved calculations beyond these two projects (e.g., S. N.

Nahar: www.astronomy.ohio-state.edu:∼nahar) for nearly all

astrophysical atomic species.
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FIGURE 6.3 Photoionization cross section σPI of the ground
state of C I, 1s22s22p2 3P, computed using the relativistic
distorted wave (RDW) approximation [69], compared with the
Kramer’s hydrogenic formula, Eq. 6.33. The large jump is due to
photoionization of the inner 1s-shell or the K-edge. The
resonance structures at very low energies are obtained from
the coupled channel R-matrix calculations in the Opacity
Project. (Courtesy, H. L. Zhang.)

shows results from a relativistic distorted wave (RDW)
calculation [69], as compared with the Kramer’s formula,
Eq. 6.33. The RDW results do not include resonances,
and in that sense are akin to the central-field model. Also
shown in Fig. 6.3 are the Opacity Project results for res-
onances in the low-energy near-threshold region hν < 5
Ry, merged with the RDW results. Resonance phenomena
are discussed in detail later.

6.4.2 Hydrogenic ions

The simplest example of photoionization is that of hydro-
gen or hydrogenic ions. Because of a bound s-electron in
the ground state, the selection rule li → li +1 implies that
photoionization must be an s → p transition. The radial
integral involves the bound 1s wavefunction and a contin-
uum wavefunction of an electron with l = 1 in a Coulomb
field ul (ν, r) (e.g., [76]),

u1(ε, r) = 2

3

[
ε(1+ ε2)

1− exp(−2π/ε)

]1/2

r2e−iεr

× F

(
i

ε
+ 2, 4, 2iεr

)
, (6.34)

where the energy of the continuum electron is ε =√
ν
ν1
− 1, F(α, γ, x) is the confluent hypergeometric

function and hν1 = Z2hνo = 13.6Z2 eV is the thresh-
old ionization energy. Substituting in the radial integral,
one gets

Rε(l=1)
10 = 8

√
2π√

ε(1+ ε2)5

e−(2/ε) tan−1 ε√
1− e−2π/ε

. (6.35)

Photoionization cross section of the ground state of hydro-
gen is then

σPI = σ0

Z2

(ν1

ν

)4 e4−(4/ε) tan−1 ε

1− e−2π/ε
, (6.36)

where the threshold value is

σ0 = 28π2α

3e4
a2

0 = 6.4× 10−18cm2. (6.37)

A general expression for the photoionization cross
section of level n of a hydrogenic system is [141]

σn =
64παa2

0

3
√

3

(ωn

ω

)3 ng(ω, n, l, Z)

Z2
, (6.38)

where

ω > ωn = α2mc2

2�

Z2

n2
, (6.39)

and g(ω, n, l, Z) is the bound–free Gaunt factor, which
is approximately unity at near-threshold energies. A more
detailed expression [82] for photoionization of a state nl is

σnl = 512π7m10
e

3
√

3ch6

g(ω, n, l, Z)Z4

n5ω3
. (6.40)

Numerical values of photoionization cross sections for
the ground and excited states of hydrogen and hydrogenic
ions are available from various sources (e.g., S. N. Nahar
[142] and a FORTRAN program by P. J. Storey and D. G.
Hummer [143]).

6.5 Generalized bound–free transition
probability

To obtain a general form for the cross sections we
specify states with their complete quantum designa-
tions. Following the formulation in Chapter 4, we define
the initial and final states as ln(α1L1S1)ni li Li Si and
ln(α1L1S1)n j l j L j S j , with degeneracies gi = (2Si + 1)
(2Li + 1) and g j = (2S j + 1)(2L j + 1). Following
the generalized formulation in Appendix C, the transition
probability in the length form is,
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Ti j =
4nωω3

i j

3�c3

1

(2Si + 1)(2Li + 1)

×
∑

MSi ,MS j

∑
MLi ,ML j

∑
l j

∑
L j ,S j

×
∣∣∣< ln(α1L1S1)n j l j L j S j ML j MSJ |D|

×ln(α1L1S1)ni li Li Si MLi MSi>
∣∣2 . (6.41)

And in terms of the line strength Si j ,

Ti j =
4nωω3

i j

3�c3

1

(2Si + 1)(2Li + 1)

∑
l j

∑
L j ,S j

Si j . (6.42)

(It is necessary to guard against the often inevitable confu-
sion between the total spin Si , which has a single subscript
referring to a given atomic level i , and the line strength
Si j , which has a double subscript referring to the transi-
tion i→ j .) For the bound–free photoionization process,
or the inverse free-bound (e + ion) recombination pro-
cess, the line strength may be called the generalized line
strength with essentially the same form as bound–bound
transitions. Since the dipole operator D is independent of
spin, we have

Ti j =
4nωω3

i j

3�c3
2S j+1

(2Si+1)(2Li+1)

∑
l j

∑
L j

Si j . (6.43)

Since the spin does not change in a dipole transiton, and
Si = S j , the angular algebra remains the same for both the
bound–bound and bound–free transitions. So we have the
same selection rules for photoionization (Appendix C),


L = L j − Li = 0,±1; 
M = ML j − MLi = 0,±1;
×
l = l j − li = ±1. (6.44)

With substitution of the line strength, as in the bound–
bound case,

Ti j =
4nωω3

i j

3�c3

∑
l j=li±1

∑
L j

(2L j + 1)
(li + l j + 1)

2

×W 2(li Li l j L j ; L11)| < n j l j |D|ni li > |2,
(6.45)

where we use lmax = (li + l j + 1)/2. The length
photoionization cross section is, then,

σL = π2c2

nωω2
i j

Ti j

= 4π2α
3 ωi j

∑
l j=li±1

∑
L j

(2L j + 1)
(li + l j + 1)

2

×W 2(li Li l j L j ; L11)| < n j l j |r |ni li > |2.

(6.46)

With α = e2/(�c) the cross section is in units of
a2

0 and the constant in the equation is 4π2a2
0α/3 =

2.689 megabarns, abbreviated as Mb = 10−18 cm2. The
radial integral,

< n j l j |r |ni li >=
∫ ∞

0
Rn j l j r Rni li r

2dr, (6.47)

involves an exponentially decaying initial bound-state
wavefunction and an oscillating continuum free-electron
wavefunction as a plane wave. The bound-state wave-
functions are normalized to |< i |i>|2= 1, and free state
wavefunctions are normalized per unit energy in Rybergs
as < E ′′ j

∣∣ E ′j> = δ(E ′ − E ′′). The velocity form of
the cross section σV may be obtained in a straightfor-
ward manner, noting that it involves the derivative of the
final wavefunction, and hence an energy-squared factor in
the denominator. But it is worth re-emphasizing that we
generally utilize σL in practical applications. While the
formal equivalence between σL and σV is a useful check
on internal consistency and accuracy of the particular
calculation, σL is more reliable.

Similar expressions for photoionization cross section
can be obtained in intermediate coupling (or j j-coupling)
for total angular momentum of atomic states designated
as SL J . The corresponding dipole selection rule is 
J =
0,±1, with change of parity; other selection rules are as
given in Table 4.4, including those for spin-flip intercom-
bination radiative transitions.

6.5.1 R-matrix photoionization calculations

We have formally outlined the theoretical framework in
the preceding sections. But practical computations are
more involved, owing to the necessity of considering
atomic structure precisely, particularly as manifest in
channel coupling and resonances. A central potential is
inadequate in accounting for these effects, as we illus-
trate later. The close coupling wavefunction expansion,
Eq. 3.42, includes several states of the atomic system.
As discussed in previous chapters, the R-matrix method
enables channel coupling for both the bound and the
continuum (e + ion) states. In analogy with the calcula-
tion of bound–bound transition probabilities, the transi-
tion matrix for the bound–free process involves an initial
bound state wavefunction �a , which is exponentially
decaying, and a continuum free-electron wavefunction
�b(E), which oscillates as a plane wave. Generally in
astrophysics we need only consider the dipole approxima-
tion since higher-order radiation is insignificant to cause
photoionization in astrophysical environments. The tran-
sition matrix element with the dipole operator can be
reduced to the generalized line strength defined, in either
length or velocity form, as
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SL =
∣∣∣∣∣∣
〈
�b

∣∣∣∣∣∣
N+1∑
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r j
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2

, (6.48)

SV = ω−2

∣∣∣∣∣∣
〈
�b

∣∣∣∣∣∣
N+1∑
j=1

∂

∂r j

∣∣∣∣∣∣�a

〉∣∣∣∣∣∣
2

, (6.49)

where ω is the incident photon energy in Rydberg units,
and �a and �b are the wavefunctions representing the
initial and final states, respectively. The photoionization
cross section (σPI) is proportional to the generalized line
strength (S);

σPI = 4π

3c

1

ga
ωS. (6.50)

where ga is the statistical weight factor of the initial state
and

∑
i ri ≡ D is the dipole operator.

In the R-matrix method, the reduced dipole matrix is
written as the sum of two contributions, as in the case of
bound–bound radiative transition (Chapter 4),

< a||D||b >= Di(a, b)+ Do(a, b), (6.51)

where Di represents the contribution from the inner region
(r ≤ a), and Do from the outer region (r ≥ a). In the outer
region, antisymmetrization (i.e., exchange) is neglected.
As before, D = R+r, where R is the operator for a transi-
tion in the target, and r for a transition by the outer (active)
electron. The computation for the bound–free transitions
are similar to that of the bound–bound transitions,

Do(a, b) =
∑
i i ′
αi i ′ (Fia |Fi ′b)+ βi i ′ (Fia |r |Fi ′b), (6.52)

where

αi i ′ =< �||R||� >, βi i ′ =< �||r||� >, (6.53)

� is the target (ion core) wavefunction in the close cou-
pling wavefunction expansion and Fia, Fi ′b are contin-
uum channel functions, discussed further in Chapter 5 in
the context of (e + ion) collisions.

Most of the results presented in this chapter are
obtained using the R-matrix method to exemplify a vari-
ety of physical effects associated with the photoioniza-
tion process, and relevant to astrophysical and laboratory
plasmas.

6.6 Channel coupling and resonances

Resonance phenomena require a multi-channel descrip-
tion of the atomic system (Chapter 3). In general, it is
necessary to include resonances in atomic processes for
adequate accuracy. The limitations of the central-field

model without consideration of spin and angular momenta
(multiplet structure) can be severe, and become apparent
when channel coupling, resonances and other electron–
electron interactions, are dominant. This is particularly
the case for neutral and low ionization stages in the near-
threshold energy region, where the ejected electron has
low kinetic energy and interacts strongly with the residual
ion. Large complexes of resonances appear, due to excita-
tion of core electrons. Coupling between photo-excitation
of inner-shell electrons and outer-shell electrons is often
strong and gives rise to huge enhancements in the effective
cross section.

A striking example of these effects is the photoion-
izaton of neutral iron, shown in Fig. 6.4. A compari-
son is made between the coupled channel cross sections
computed using the R-matrix method (solid line), and
two sets of central-field cross sections (dotted line and
squares). It is instructive to study it in some detail.
The ground state and electronic configuration of Fe I is
1s22s22p63s23p63d64s2 (5D) – note the open 3d inner
subshell, in addition to the closed 1s,2s,2p,3s,3p sub-
shells. The 4s subshell ionizes first. The central-field
cross section σ(4s), predictably, drops rapidly from its
value at the ionization threshold (dashed line). However,
at the photon energy of ∼1.05 Rydbergs, the 3d sub-
shell also ionizes, and the total cross section σ(4s) +
σ(3d) exhibits a sharp jump, due to photoionization
of the 3d, whose cross section is larger than that of
the 4s.

However, taking explicit account of the energy level
(LS term) structure, and channel coupling, changes the
picture dramatically. The R-matrix calculations include a
large number of LS states coupled together, but in the dis-
cussion below we omit the designation of LS terms and
refer only to configurations (Fig. 12.5 shows a partial Gro-
trian diagram of Fe II energy-level structure). The coupled
channel cross sections show quite a different behaviour. In
addition to resonances, the R-matrix results show no sig-
nificant decrease in the cross section througout the energy
range under consideration, lower or higher than the 3d
threshold(s). We consider the total (e + ion) system, pho-
toionization of the ground state of Fe I 3d64s2(5D), and
the residual ion Fe II in several excited configurations,
i.e.,

hν + Fe I(3d64s2 5D)→Fe II(3d64s1, 3d7, 3d6

× (4s, 4p, 4d), 3d54s2, 3d54s4p) + e. (6.54)

The first three configurations of Fe II on the right corre-
spond, in a straightforward way, to the photoionization of
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FIGURE 6.4 Photoionization cross sections of Fe I. The coupled channel cross sections with resonances (solid curve) [98, 144], in
contrast to those in the central-field approximation without inter-channel coupling (dashed line and solid squares) [140, 139], are
up to 1000 times higher (note the log-scale for σ ).

the valence subshell 4s, whereas the last two imply pho-
toionization of the 3d. But this straightforward division
is complicated by resonances that are superimposed
throughout, below the energies of the excited 3d config-
urations 3d54s2, 3d54s14p1. The difference between the
R-matrix and the central-field values below and at the 3d
threshold energies is particularly remarkable. Whereas σ
(Fe I, 5D) in the central-field model, shows a sudden jump
or edge, the R-matrix cross section is slowly varying and
interspersed with resonances. Consequently, the total Fe I

photoabsorption cross section remains relatively constant,
once all coupling amongst levels of the residual ion Fe II

are accounted for.

Thus channel coupling includes physical processes
not inherent in the central-field model, or that would
not be considered in a single-channel treatment. The
total photoabsorption below the 3d ionization threshold(s)
is effectively coupled to the excited 3d configurations.
The magnitude of the discrepancy can be very large;
the R-matrix cross sections are up to a factor of 1000
higher than the central-field results in the low-energy
region, although the two converge reasonably at higher
energies. Later, we show that the effect of channel cou-
pling and resonances is found to continue up to high
energies, not yet generally considered in astrophysical
models.

6.6.1 Partial cross sections

Whereas we omitted the energy level structure in the
discussion above for convenience, it is, of course, con-
sidered in actual calculations. After photoionization, the
residual or core ion may be left not only in the ground
state but also in an excited state. As the photon energy
approaches an excited core state or threshold, the atomic
system can be ionized, leaving the residual ion in that
excited state as well as any other lower states. The cross
section for leaving the residual ion in a particular state is
called the partial cross section. The partial cross sections
at any given energy must add up to the total cross section.
These partial cross sections are useful in astrophysical
models, since they may affect the level populations via
photoionization.

Figure 6.5 shows an example of partial cross sections
for photoionization of O I ground state 1s22s22p4 (3P)
into the ground and excited states of the core ion O II, e.g.,

hν + (2p4 3P)→e+ O II[(2s22p3 4So, 2Do, 2Po),

+ (2s12p4 4P, 2D, 2S, 2P). (6.55)

Partial photoionization cross sections of O I, shown in
Fig. 6.5, contain resonances that can be seen to be con-
verging onto excited states of the residual ion O II. Note
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2s2p4(3P) ground state of O I leaving the
residual ion O II in the ground state
2s22p3(4So) (lowest panel), and various
excited core states, 2s22p3(2Do,2 Po),
2s2p4(4P,2 D,2 S,2 P). The threshold cross
section of each panel moves to higher energy,
corresponding to the respective excited core
state energy. At any given photon energy, the
total photoionization cross section of the O I

ground state 3P is the sum of all partial cross
sections [145].

that although each panel corresponds to only one ion-
ized state, resonances belonging to other states can still
form. Partial photoionization cross sections have another
valuable application. Total cross sections are necessary to
determine ionization balance, or distribution among ions
of an element (Chapter 12), photoionized by a radiation
source. But partial cross sections are related, via detailed
balance, to (e + ion) recombination cross section from a
particular state of the residual core ion, as discussed in the
next chapter (Chapter 7).

6.6.2 Types of resonance

To study myriad resonant features in photoionization, we
need to examine the process in more detail. It is also
useful to identify distinct types of resonances and how
they manifest themselves. We begin by recapitulating
some essential features of the theoretical framework. Res-
onances are due to coupling of channels, which include

core excitations, or the residual ion in excited states. A
coupled channel calculation begins with a wavefunction
expansion to represent the residual core ion in a num-
ber of states. The close coupling methodology entails
consideration of the bound and continuum states of the
(electron + core ion) system, with as many states of the
core ion as is computationally feasible. A resonance is
formed as a short-lived doubly excited autoionizing state,
where (i) the core ion is an excited state, (ii) a loosely
bound electron is ‘attached’ in another excited level and
(iii) the total energy of the (e + ion) system is above the
ionization energy into the ground state of the residual ion.
The symmetry of the resonance is determined by the final
continuum state of the (e + ion) system. An initial bound
state of a given parity can only be photoionized into an
(e + ion) continuum of opposite parity.

The first large-scale and systematic study of photoion-
ization, employing the close coupling R-matrix method,
was carried out under the Opacity Project [37] for
nearly all astrophysically abundant atoms and ions from
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hydrogen to iron. The Iron Project [38] and subsequent
works (e.g. [146]) extended the treatment to include fine
structure. The different groups of resonances that have
been found to occur are as follows.

6.6.2.1 Rydberg series of resonances
Resonances typically occur in a Rydberg series, and
become narrower and denser as they approach a series
limit of an excited core state Ec. The energy of the
resonance is then given by

Eres = Ec − z2/ν2
c = Ec − z2

(n − μl )
2
, (6.56)

where μ� = n − νl is the quantum defect with a given �,
which is almost constant for all n along the series. Con-
sider the photoionization of the odd-parity ground state
2s22p(2Po) of singly ionized carbon C II, with energy
levels as in Fig. 6.6.

The Rydberg nature of the resonances is evident from
the characteristic pattern illustrated in Fig. 6.7, which
shows resonances in photoionization of the C II ground
state 2s22p(2Po). Two sets of results are presented, in LS
coupling (top panel), and with fine structure (lower panel).

C II: 2s22p
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2s2p2

2s2p2
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C III: 2s2 1S0
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J
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3/2

3/2

FIGURE 6.6 Low-lying fine structure energy levels 2S+1LJ of
C II and C III.

Now the ground state of C II has two fine structure com-
ponents; 2Po

3/2 and 2Po
1/2. Hence, while there is a single

curve in LS coupling, there are two corresponding curves
with fine structure, essentially a doubling of resonances.

Both panels of Fig. 6.7 show the pattern due to
Rydberg series, denoted R1, R2 and R3 in the lower
panel. The two series R2 and R3 are common to both
panels, and belong to autoionizing states of the type
2s22p(3Po)np(2D) and 2s22p(3Po)np(2S), respectively.
The parent core state is 2s22p(3Po), and the first reso-
nances corresponds to n = 4. A Rydberg series can be
identified by the quantum defect μl = n − ν, obtained
from the effective quantum number. The resonant energy
Eres gives ν= z(E − Ec)

−1/2, and the first n is typically
approximated by the integral value of n that gives a pos-
itive μ. For C II the μl ≈ 0.6 for an s-electron, ≈ 0.4 for
a p-electron, ≈ 0.1 for a d-electron and ≈ 0.0 for � > 2.
Resonances of similar shape yield approximately the same
quantum defect, while νl increases by unity for each suc-
cessive resonance. Closely spaced core levels may give
rise to overlapping Rydberg series of resonances, and may
be difficult to identify in practice.

The lower panel of Fig. 6.7 shows one promi-
nent but narrow resonance series R1, corresponding
to 2s22p(3Po)np(2P) states, which are missing in the
upper panel. This series is not allowed in LS coupling,
but is allowed to form with fine structure. As men-
tioned above, in LS coupling the even parity autoionizing
states 2s22p(3Po)np(2P) cannot decay into the odd parity
[2s2(1S)+ εp] continuum with the same symmetry as the
initial C II ground state 2Po (Fig. 6.7). However, all three
Rydberg series of resonances, 2s22p(3Po)np(2S,2 P,2 D),
converging on to 2s22p(3Po), are allowed to decay to
the core ground state if relativistic mixing and fine struc-
ture coupling are considered. Through fine structure, the
J = 1/2 level of 2P mixes with 2S1/2, and the J = 3/2
level mixes with 2D3/2, which decays via autoionization.

6.6.2.2 Resonances below threshold in L S
coupling

An important effect of inter-channel coupling is that pho-
toionization may occur through autoionizing channels at
energies below the threshold for ionization of the optical
(active) electron. This has the interesting consequence
that there is negligible background, i.e., direct photoion-
ization, which then proceeds indirectly via autoionizing
levels only. Figure 6.8 shows the photoionization of the
3s3p3(3So) excited state of S III (or S2+): (a) the total
cross sections with positions of various core states of
the residual ion S IV are marked by arrows and (b)
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FIGURE 6.7 Photoionization cross section of
C II, in (a) LS coupling and (b) SLJ intermediate
coupling. The resonance series are denoted
by Rni, where n is a series number and i is the
resonance number of the series [147].

an expanded version of the region between the ioniza-
tion threshold 3s23p(2Po), and the first excited threshold
3s3p2(4P) of S IV. Since ionization by the 3p optical
electron corresponds to leaving the residual ion in the
excited 4P state, without inter-channel coupling the cross
section is identical to zero below this threshold. On the
other hand, a coupled channel (R-matrix) calculation
finds this region to be filled with high-peak and large
autoionizing resonances, with practically no background
cross section. The resonances of the 4Pnp series are
identified in Fig. 6.8b.

6.6.2.3 Resonances below threshold due to fine
structure

As shown in Fig. 6.7, fine structure recoupling can
introduce narrow resonances below the ionization thresh-
old that are not allowed in pure LS coupling. Let us
again examine C II, with energy level diagram as in
Fig. 6.6, and the photoionization of the excited metastable

2s2p2(4P1/2,3/2,5/2) levels, shown in Fig. 6.9. The LS
coupling cross sections are given in the topmost panel,
and the three fine structure levels J = 1/2, 3/2 and 5/2
in the lower three panels. In LS coupling, the excited state
photoionization process must follow the dipole selection
rule with parity change,

hν + 2s2p2 (4P)→e(d, s)+ 2s2p3(4So,4 Po,4 Do).

(6.57)

But the quartet (e + ion) symmetries 4So, 4Po and
4Do do not couple to the singlet ground state 2s2 1S of
the residual ion C III 2s2(1S). That is, they cannot be
formed by adding an s- or a d-electron to the 1S state.
Hence, the L S cross section is zero between the ground
state of C III and the first excited state 2s22p(3Po) at
1.872 Ry. Now considering fine structure, the σPI for
the fine structure levels 4P1/2,3/2,5/2 show extensive res-
onance structure, although narrow and with almost no
background. These resonances are formed by relativis-
tic mixing of levels that allow coupling among channels.
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FIGURE 6.8 Photoionization of an excited 3s3p3(3So) state
of S III [148]. The top panel (a) shows the total cross sections
for leaving the residual ion S IV in various excited states,
marked by arrows. The lower panel (b) shows the expanded
region between the first ionization threshold, the ground
state of S IV 3s23p 2Po, and the excited state 4P; in this region
photoionization proceeds not via direct photoionization,
which is disallowed by symmetry considerations, but through
autoionizing channels. The cross section therefore consists of
resonances with hardly any background. Autoionizing
resonances of the 4Pnp series are demarcated.

For example, fine structure recoupling allows Jπ=(1/2)o

and (3/2)o autoionizing levels of 2s2p(3Po)nd(4Do) to
decay into the 2s2(1S)εp(2Po

1/2,3/2) continua. The ion-
ization thresholds for the 2s2p2 (4PJ ) levels of C II lie at
∼ 1.4 Ry (pointed by the arrow in Fig. 6.9); the ionization
energy of the ground state 2s22p (2Po) state is ∼0.48 Ry
below the 4P.

The dipole selection rule l j = li ± 1 allows the outer
2p electron to be photo-excited only into an even-parity
(e + ion) continuum εs or εd. Hence, the photoionized
(e + ion) continua could be: even-parity 2s2 [1S] εs(2S)
and 2s2 [1S] εd(2D) (the parent ion L S term is often des-
ignated within square brackets). However, no even-parity
2P (e + ion) continuum can form in LS coupling, since that
would require an εp electron and would result in an odd-
parity continuum when coupled with the 2s2 [1S] core
state, which is disallowed.

In summary: photoionization alters significantly with
the inclusion of fine structure due to relativistic mix-
ing. The selection rule 
J = 0,±1 not only allows the
same LS terms, but also associated fine structure levels
not possible in LS coupling. For photoionization of the
C II ground state discussed here, the 2Po continuum may
indeed form through coupling of fine-structure channels.

This state then autoionizes, that is, goes through radiation-
less ionization, during which the total (e + ion) symmetry
remains unchanged.

6.6.2.4 Highly-excited core (HEC) resonances
Most existing works (e.g., the Opacity Project [37]),
include resonances due to relatively low-lying core exci-
tations, often only the ground configuration n-complex of
the residual ion. For example, C-like ions have ground
configuration 1s22s22p2, which gives rise to the L S
term structure shown in Fig. 6.10 (it is the same as the
O I ground configuration, 1s22s22p4, discussed before).
Therefore, photoionization of C-like ions may be consid-
ered with a similar wavefunction expansion, including the
states

hν + 2s22p2(3P)→e + [2s22p(2Po) + 2s2p2

× (4P,2 D,2 S,2 P) + 2p3(4So,2 Do,2 Po)]. (6.58)

On the right the expansion is restricted to only the n= 2
ground complex of the residual C II-like ion. The Opac-
ity Project R-matrix calculations mainly used such ground
complex expansions.

It might appear that consideration of high-excited core
(HEC) resonances, due to core excitations of multiple
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allowed in LS coupling shown in the top panel
[147].

n-complexes, may be ignored since the series of reso-
nances belonging to those might be weak. However, recent
studies since the Opacity Project work (see [146]) and ref-
erences therein), have found that these resonances may be
stronger and more prominent than those belonging to the
low-lying excited thresholds, especially in highly charged
ions. The effect of HEC resonances may also be very
important, since highly charged ions exist in high temper-
ature astrophysical plasmas, where excited n-complexes
are largely ignored in astrophysical models.

An example highlighting HEC resonances is the pho-
toionization of highly charged C-like iron Fe XXI, shown
in Fig. 6.11. The coupled channel R-matrix eigenfunction
expansion for the core ion, B-like Fe XXII, includes 29 L S
terms (or 29 CC) up to the n = 3 complex of configura-
tions: 2s22p, 2s2p2, 2p3, 2s2p3s, 2s2p3p, 2s2p3d, 2s23s,
2s23p, 2s23d. Including only the n = 2 complex of config-
urations gives an eight-term (8CC) expansion, as shown in
the energy level diagram in Fig. 6.10. These calculations

are very extensive; including photoionization cross sec-
tions of 835 L S bound states of Fe XXI [146]. It is par-
ticularly noteworthy that the same resonance complexes
appear quite differently in photoionization of states with
different angular and spin symmetries SLπ . Figure 6.11
shows that resonances belonging to core excitations of the
n = 3 levels are much stronger than those of n = 2 levels.

The HEC resonances particularly affect high-tempe-
rature recombination rates, discussed in Chapter 7. While
in general the HEC resonances are due to multi-channel
couplings to excited-n complexes, there is a particular
type of core excitation, which gives rise to huge reso-
nances, described next.

6.6.2.5 Photo-excitation of core (PEC) resonances
The most prominent resonance features in photoioniza-
tion occur via strong dipole allowed photo-excitations for
the core ion levels. We refer to these as PEC or Seaton
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Configuration
2S+1Lπ

Energy levels FIGURE 6.10 Low-lying LS terms of C I and C II, and respective C-like and
B-like ions (see Fig. 6.11).
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FIGURE 6.11 Photoionization cross sections for
two excited states of C-like Fe XXI, with highly
excited core (HEC) resonances belonging to the
higher n=3 core excitations that dominate over
those due to the low-lying n=2 excitations [146].
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FIGURE 6.12 Seaton resonance due to
photo-excitation-of-core (PEC) in the photoionization cross
section of the excited state 3d5[6S]7p(5Po) of Fe III. The
resonance is due to core excitation 3d5[6S] → 3d44p[6Po] in
the residual core ion Fe IV. It is seen centred around the final
state energy of the 6Po state at 1.73 Ry (marked by the
arrow) [133].

resonances [149].5 A PEC resonance forms when the inci-
dent photon excites the core via a dipole allowed transtion.
But the outer electron(s) remains a ‘spectator’ in the
photo-excitation process, i.e., unchanged in its quantum
numbers, corresponding to an excited level. This doubly
excited state autoionizes, as the outer electron leaves, and
the core ion drops back to the ground state. Figure 6.12
shows an example of the Seaton PEC resonance in pho-
toionization of Fe III in an excited state. The resonant
excitation process is:

hν + FeIII (3d5[6S] 7p[5Po]
→e+ Fe IV(3d44p[6Po]7p), (6.59)

corresponding to the strong [6S]→[6Po] dipole allowed
transition in the S IV ion core. Evidently, Seaton PEC
resonances are seen in photoionization cross sections at
photon energies corresponding to dipole allowed core

5 M. J. Seaton first explained the general importance of the nearly

ubiquitous PEC features in the photoionization work under the Opacity

Project [149].
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FIGURE 6.13 Photoionization cross section of the ground state
3d5(6S) of Fe IV. The broad resonance spanning the region from
the threshold up to about 4.7 Rydbergs corresponds to the
quasi-bound equivalent-electron state 3p53d6(6Po) [98]
of Fe IV.

transitions. Other usual features of these resonances are:
(i) PECs are much wider than the Rydberg resonances
discussed previously, (ii) PECs enhance the effective pho-
toionization cross section by several orders of magnitude
and (iii) PECS become more prominant for photoion-
ization of increasingly higher initial bound states of the
photoionizing ion along a Rydberg series. The signifi-
cance of PEC resonances has been discussed in studies
of high-energy photoionization features, and their relation
to the (e + ion) recombination of atoms and ions (e.g.,
[150, 151]), and described in Chapter 7.

6.6.2.6 Equivalent-electron quasi-bound
resonances

This type of resonance is not common but can form
in some atomic systems with photo-excitation of a
quasi-bound equivalent-electron state that lies above the
ionization threshold. It is quite wide, and larger than Ryd-
berg resonances. An example is the photoionization cross
section of the ground state 3d5(6S) of Fe IV shown in
Fig. 6.13. The large resonance just above the threshold
is identified as 3s23p53d6(6Po), an equivalent-electron
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autoionizing state. The extent of the resonance is in stark
contrast to the weak and narrow Rydberg series of res-
onances 3s23p53d5[7Po]nd(6Po) at higher energies. Such
a resonance, given its position in the cross section, may be
identified through an atomic structure calculation includ-
ing excited electronic configurations of the photoionizing
system itself, in this case Fe IV.

6.7 Experimental measurements

Whereas we have focused largely on a theoretical under-
standing of photoionization, and the framework used to
describe it in detail, new advances have also been made
in recent years in measurements of photoionization cross
sections with unprecedented resolution by several exper-
imental groups (e.g. [129, 130, 131, 132]). These exper-
iments employ synchrotron-based photon light sources
capable of the high resolution necessary to resolve much
of the resonance structure. These experiments are essen-
tial to benchmark the accuracy of advanced theoretical
methods, such as the extensive R-matrix results discussed
in the preceding sections.

However, comparison between experiment and theory
requires a certain amount of analysis. Most often, the ions
in the experimental beam are not simply in the ground
state, or pre-specified excited states. Rather, they have
a somewhat uncertain population distribution among the
ground state and a few low-lying (usually metastable)
levels; high-lying levels are ruled out, since they would
rapidly decay to lower levels. Therefore, the observed
features in photoionization correspond to a combination
of those found in the cross sections of ions in several
levels. So, theoretical computations require consideration
of all such states accessible within the energy range of
the experiment, and level-specific cross sections need to
be computed at a sufficiently fine mesh to resolve all
outstanding features.

Two additional factors are considered for a proper
comparison between experiment and theory: (i) the beam
width, which determines resolution, and a functional form
for convolution of theoretical results, and (ii) estimates
of the distribution among excited states in the ion beam,
which determine the stength of observed resonances and
the background. Figure 6.14 shows a sample comparison
between theory and experiment for the photoionization of
the ground state 2s22p2(3P) of O III, as well as a few low-
lying excited states (O III is also C-like, with energy levels
as in Fig. 6.6). The experimental results are given in the
topmost panel f of Fig. 6.14. The bottom three panels
show the individual theoretical cross sections for the three

LS terms of the ground configuration 2s22p2(3P,1 D,1 S).
It is natural to expect that these three low-lying and long-
lived metastable states would be present in the ion beam
(as indeed in many astrophysical environments). The ion-
ization thresholds for the excited metastables 1D and
1S are lower than that of the ground state. Successively
higher levels ionize with less energy than those lying
lower. Consequently, the beginning of the cross section
moves to the left on the energy scale with increasing
excitation in (b) and (c), compared with (a), in Fig. 6.14.

However, it turns out that the combined features in
an admixture of the three states, σ(3P +1 D +1 S), are
still not adequate to explain all those observed in the
experiment. In particular, the experimental cross section
in panel (f) shows features below those for photoion-
ization of any of the three metastable states. It was
then recognized [132] that another metastable state of
the next excited configuration is present in the beam,
2s1p3(5So). Its signature, the lowest energy resonance,
manifests itself when it is included in the theoretical cal-
culations for comparison. Fig. 6.14(d) is a combined sum
of the four level-specific photoionziation cross sections
σ(3P+1 D+1 S+5 So), convolved over the known exper-
imental beam width. Finally, all theoretical cross sections
are assigned statistical weights in (e), for a full interpre-
tation of the experimental results in (f). Such studies are
of considerable importance in practical applications in
laboratory and astrophysical plasmas, where metastable
levels, and possibly higher levels, may be significantly
populated.

6.8 Resonance-averaged cross section

Rydberg series of resonances converging on to a given
level become narrower as their autoionization width
decreases as 1/ν3. Resolution of these resonances
becomes computationally difficult, as it requires a finer
and finer energy mesh. It is therefore desirable to obtain
an analytic average in the region just below the thresh-
old of convergence. In many calculations (such as in the
Opacity Project) the detailed σPI are computed to resolve
resonances up to ν = 10 in a Rydberg series, and are then
averaged over for 10 ≤ ν ≤ ∞. The Gailitis averaging
procedure [96, 97, 153], discussed in Chapter 5 in con-
nection with multi-channel quantum defect theory applied
to (e + ion) scattering resonances (Section 5.2.3), is also
implemented for photoionization resonances [154].

Figure 6.15 shows two examples of Gailitis averag-
ing of resonances in the photoionization of the ground
state 2s22p2(3P) C I, in the small energy regions below
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FIGURE 6.14 Photoionization cross sections σPI of O III [152]. (a–c) the level-specific cross sections of the three states
2s22p2(3P,1 D,1 S), (d) the convolved cross sections of 3P,1 D,1 S,5 So states over the experimental beam distribution, (e) the
weighted sum of all four convolved cross sections, (f) the experimental cross sections measured using the photon light source at
the University of Paris-Sud [131].

the first two excited thresholds 2s2p2(4P) and 2s2p2(2D)
of C II (see the energy level diagram in Fig. 6.6). The top
panel of Fig. 6.15 presents the partial σPI, leaving the C II

core ion in the ground state 2s22p(2Po), in the 2Po–4P
energy range. The resonance series 4 Pnl is fully resolved
by direct compuation of cross sections up to ν = 10 (top
panel), and then averaged using the Gailitis method. The
cross section marked ‘averaged resonances’, expressed as
<σ(4 Pnl)>, is roughly constant until the Rydberg series
limit 4P (top panel). Then the 4Pεl channels open, leav-
ing the ion in the excited 4P state. That loss of flux in the
4P channels manifests itself as a sharp downward Gailitis

jump (denoted as G.J. in Fig. 6.15). The drop is due to
opening up of excited photoionization channels, as most
of the photon energy is used up for excitation of the ion
core to the 4P. The magnitude of the Gailitis jump in pho-
toionization is precisely equal to the partial cross section
for photoionization to the excited state of the residual ion.
These jumps are observed only in partial photoionization
cross sections, and not in the total cross section, which is
a sum of all partial contributions.

The situation in the bottom panel of Fig. 6.15 is rather
different. It shows the partial cross section for ionizing
into the excited state 4P of C II; the resonances in the
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FIGURE 6.15 Partial photoionization cross
sections σPI of the ground state of C I

leaving the residual ion C II in the ground
2s22p(2Po) state (upper panel) and in the
first excited 2s2p2(4P) state (lower panel).
They illustrate Gailitis averaging of
resonances in the regions below the first
excited threshold 2s2p2(4P) and the
second threshold 2s2p2(2D) and Gailitis
jumps (G.J.) at the thresholds [155].

4P–2D region are shown. Following the resolved res-
onances, Fig. 6.15 shows the averaged resonant cross
sections below the 2D threshold. As can be seen, the
resonance-averaged cross section contains a broad peak
in the region just below the 2D. This is because, whereas
the 2 Dnl resonances are averaged over, resonances con-
verging on to higher levels still appear, superimposed
on the averaged <σ(2 Dnl)>, i.e., Gailitis averaging has
been carried out only for the resonances that converge
onto the immediate next excited state. Since resonances
correspond to closed channels, this marks the difference
between weakly closed channels, viz. 2 Dnl, and strongly
closed channels that belong to excited levels higher than
the 2 D, and remain closed even as the 2 Dεl channels open
up [155].

6.9 Radiation damping of resonances

We know that an autoionizing resonance has com-
bined characteristics of a bound state and a continuum

state coupled together (Ch. 3, also discussed later in
Section 6.9.3). Therefore, an autoionizing state has a finite
probability of breaking up either by decaying into the
(e + ion) continuum as a radiation-less transition, with
the energy taken up as the kinetic energy of the ejected
photoelectron, or emission of a photon via a radiative tran-
sition to a bound (e + ion) state. But if the formation of a
photo-excited resonance is followed by a radiative transi-
tion back to the initial state, then the total autoionization
rate is commensurately reduced. This results in radiation
damping of the resonance profile. In practice, including
radiation damping results in a decrease in the height of
resonances.

However, radiation damping of resonances is of practi-
cal importance only for highly charged ions or close to the
series limit (high n). This is because the radiative decay
rates then compete effectively with autoionization rates.
Damping is more prominent in autoionizing states with
high effective quantum number when resonances become
narrower with longer lifetime. For low-n resonances, the
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autoionization rates are much larger than radiative decay
rates. The total resonance width is given by (Ar + Aa).
While typical radiative rates vary over a wide range
depending on Z and z, i.e., Ar = 106–1014 s−1, autoion-
ization rates are roughly the same and generally high, i.e.
Aa = 1013–1014 s−1. So Aa(n) � Ar(n) for low-n
resonances. But Ar corresponds to core transitions and
remains constant, and therefore must exceed Aa ∼ n−3

for sufficiently high n.
In addition, for high-z ions, Ar for allowed E1

transitions are themselves large, and radiation damping
manifests itself even for low-n resonance profiles. It is
especially significant for photoionization of He-like and
Li-like ions. This is because the radiative decay rates
of the respective H-like and He-like ion cores are very
high, competing effectively with autoionization rates. For
these systems, the A-coefficient for the 2p → 1s and
the 1s2p 1Po → 1s2 1S dipole transitions, respectively,
is of the order of 1013–1014 s−1, approaching typical
autoionization rates.

Radiation damping may be taken into account pertur-
batively [156]. It is applicable to low-n resonances, which
can be fully resolved to obtain the undamped autoioniza-
tion rate. The procedure entails fitting the dipole matrix
element (as in Eq. 6.20) < j |r|i> ≡ D. Since D is a com-
plex quantity, we represent it is as a functional form with
a background and a resonance term, as

D(E) = D0(E)+ C

E − Z∗ ;
(

Z = E0 − i

2
�a

)
,

(6.60)

where D0 represents the background, and the second term
is a pole in the complex plane with residue C and reso-
nance energy E0; �a is the autoionization width in Ry.
The radiative width �r is then obtained by

�r = 4π2 | C |2
�a

. (6.61)

The second-order radiative effects can then be included
by considering

D(E) −→ D(E)

1+ L(E)
, (6.62)

where the operator L(E) is given [157] by

L(E) =π2 | D0(E) |2 +2π2 C∗D0(E)

E − Z

+ 2π2 | C |2
(E − Z)(Z − Z∗) . (6.63)

Figure 6.16 shows the effect of radiation damping in the
form of reduced peak values of resonance profiles in cross
sections computed using the R-matrix method [158].
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FIGURE 6.16 Undamped (dotted curve) and radiatively damped
(solid curve) resonances in photoionization cross sections of
Li-like Fe XXIV [158]. There is a large reduction in peak values
due to radiation damping (note the log-scale on the y-axis). The
resonances are labelled according to an identification scheme
for the corresponding emission lines observed in (e + ion)
recombination spectrum (discussed in Chapter 7).

While Fig. 6.16 shows photoionization cross sections
including radiation damping, the damping contribution to
the cross section can also be obtained from the photo-
excitation cross section from a level k to a doubly excited
level j , absorption radiative rate Ar

k j = ��k j ,

σk j =
4π2a2

0

α2 E2
�k j δ(E − E jk), (6.64)

where E jk is the transition energy, a0 is the Bohr radius
and α is the fine-structure constant.

6.9.1 Differential oscillator strength

In the discussion above we have described the ‘absorp-
tion line’ nature of a resonance in photoionization. In
fact, the bound–bound and the bound–free may both be
viewed as a continuous process of photoabsorption. We
may extend the generalization to treat absorption in lines
and the continuum using the same physical quantity, anal-
ogous to the oscillator strength. The ionization threshold
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is the Rydberg series limit for bound–bound transitions
from a given initial state to final states with increasing n.
The total photoabsorption cross section must then con-
tinue smoothly across the ionization threshold into the
photoionized continuum. Line absorption below the ion-
ization threshold can be related to the photoionization
cross section, by extending the concept of the oscillator
strength as follows.

From the usual Rydberg formula, E = Ec − z2/ν2,
where Ec is the ionization threshold in the core ion and ν
is the effective quantum number, dE = (2z2/ν3)dν. We
define the differential oscillator strength as

d f

dE
= d f

dν

dν

dE
= fi j

ν3

2z2
, (6.65)

where dν is taken to be unity for discrete line absorption.
The photoabsorption cross section was defined (Eq. 6.11)
as the ratio of the rate of photon absorption to the flux of
incoming photons in a given frequency range. It can also
be shown that

σabs = 4π2α
d f

dE
a2

0 . (6.66)

Substituting for dE , we get

σabs = 4π2α
ν3

2z2
fi j a2

0 . (6.67)

Now both the line and the continuous photoabsorption
can be expressed in terms of the differential oscillator
strength.

d f

dε
=

⎧⎨
⎩

ν3

2z2 fline , ε < I,
1

4π2αa2
0
σPI , ε > I,

(6.68)

where fline is the line absorption oscillator strength, σPI
the photoionization cross section, and I the ionization
energy. Figure 6.17 illustrates the continuty of photoab-
sorption from the bound–bound, and into the bound–free,
for three lithium-like ions, C IV, O VI and Fe XXIV. The
Rydberg series for discrete line absorption is for tran-
sitions 2s→np; as n increases towards the series limit,
d f/dE merges smoothly into the photoionization cross
section σPI(2s→εp). The oscillator strengths for the
2s→np series, and the photoionization cross sections,
are computed using the R-matrix method in indepen-
dent calculations, but with the same coupled channel
wavefunction expansion.

6.9.2 Resonance oscillator strength

We now complete the equivalence between absorption
lines and resonances by defining and computing oscillator

strengths for resonances. As Eq. 6.68 implies, differen-
tial oscillator strengths are related to photoionization cross
sections. The integrated d f/dε over the entire autoion-
izing resonance yields the effective photoabsorption in
terms of σPI, i.e., the resonance oscillator strength fr is
defined to be

f̄r(Ji → J f ) =
∫

Er

(
d f (Ji → J f )

dε

)
dε

=
(

1

4π2αa2
0

)∫
σPI(ε; Ji → J f )dε,

(6.69)

where Ji, Jf are total angular momenta of the initial bound
level and the final bound or continuum (e + ion) system.

Let us consider again the right-hand side of the
Fig. 6.17. The d f/dE for Fe XXIV shows six resonances

identified as 1s2p(3Po)2s
[

4Po
1/2,3/2,

2 Po
1/2,3/2

]
and

1s2p(1Po)2s
[

2Po
1/2,3/2

]
(see Table 7.1 for the labels

v, u, r, q, t, s). It is found that the sum over the f̄r
equals 0.782 for all six resonances. That agrees well
with the sum of the line absorption oscillator strengths
for the E1 transitions in the He-like core ion Fe XXV:
f
(

1s2 1S0 − 1s2p (3,1)Po
1

)
, which equals 0.772 [158].

The theoretical calculations for the resonance oscilla-
tor strengths need highly resolved profiles to enable accu-
rate integration over σPI. Photoabsorption by resonances
manifests itself as absorption ‘lines’ in the observed spec-
trum. In Chapter 13, we describe a particular application
of resonant and line absorption in the X-ray spectra of
active galactic nuclei.

6.9.3 Resonance profiles

We have highlighted the prominent role of resonances
in atomic processes, and their astrophysical implications,
throughout the text. As explained above, resonances are
inherent in photoionization for any atomic system with
more than one electron. They can affect the background
cross section that cannot generally be expressed as an ana-
lytic expression or a fitting formula. It is also useful to
look at certain physical features that characterize shapes
of individual resonances.

The intrinsic line width of a spectral line due to a
bound–bound transition is subject to the uncertainty prin-
ciple; the lifetime is governed by the Einstein decay rates
and therefore results in a corresponding energy width.
However, a resonance state in the bound–free continuum
has an additional broadening mechanism: the autoioniza-
tion decay rate Aa ∼ 1013−14 s−1, which is much larger
than most bound–bound A-values. The autoionization
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FIGURE 6.17 The differential oscillator strength df/dE for radiative transitions in Li-like ions C IV, O VI and Fe XXIV [158]. The
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photoionization cross section (solid line) on the right (ε > I). The matching point between the bound–bound transitions on the left
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width is �a = �/τa, where τa is the autoionization
lifetime.

Resonance profiles assume various shapes depending
on the interplay between the bound state character of the
wavefunction, and the continuum wavefunction. Recalling
the discussion in Section 3.1, we rewrite Eq. 3.3 as

�res(Er) = �b(Eb)+�c(E), (6.70)

where Er, Eb, E represent the resonance position, the
bound state energy and the continuum energies respec-
tively. Operating with the interaction potential in the
Hamiltonian,
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VE =< E |H |b > (6.71)

couples the bound and continuum states to yield a reso-
nance width �a = 2π |VE |2. The resonance profile may
be parametrized [159] according to the function

(q + ε)2
1+ ε2

, (6.72)

known as the Fano profile (also called the Beutler–Fano
profile [159]), where

ε ≡ E − Er

Aa/2
, (6.73)

and q is a profile parameter, which can assume a range of
values describing the shape of the resonance. For large q ,
Eq. 6.72 approaches the Breit–Wigner profile

1

ε2 + (�a/2)2
(q→∞), (6.74)

which has a Lorentzian shape, as discussed in Chapter 9.
Using the Fano profile Eq. 6.72, the cross section with a
single resonance may be expressed as

σ(ε) = σbg + σa
(q + ε)2
1+ ε2

, (6.75)

where σbg represents the background, non-resonant cross
section and σa is the interacting continuum. The Fano pro-
file, Eq. 6.72, is especially useful in fitting isolated and
well resolved resonances often seen experimentally; the
q parameters derived from the fit can be compared with
those computed theoretically. However, resonance fitting
becomes more complicated when dealing with overlap-
ping Rydberg series of resonances due to interference
effects, such as those encountered often in theoretical
calculations for complex systems. In addition, modern
computational methods and computer codes discussed
in Chapter 3 render resonance fitting largely unneces-
sary, except in specialized cases. Further physical insight
may be gained by applying multi-channel quantum defect
theory to the analysis of resonances along a Rydberg
series.6

6.9.4 Shape and Feshbach resonances

In atomic or ionic photoionization one has an (e + ion)
system, with an electron in the continuum. We have

6 A review article on quatum defect theory by M. J. Seaton deals

extensively with resonance phenomena and profiles, including Rydberg

series [153]. A resonance fitting algorithm for complex poles in the

scattering matrix elements was implemented in a computer code

RANAL for (e + ion) scattering (M. J. Seaton and A. K. Pradhan,

unpublished), and for photoionization amplitudes in the code PHOTAL

(H. E. Saarph and A. K. Pradhan, unpublished).

already seen Rydberg series of resonances for myriad
atomic species converging onto excited states of the ion.
They arise from the strong attractive Coulomb potential
between the electron and the ion, which can support an
infinite number of (quasi-)bound states. These resonances
are relatively narrow. From basic scattering theory, they
correspond to a rapid change in phase shift by π . The rela-
tion for the reactance matrix K = tan δl (Eq. 3.59), then
leads to a sharp change (rise and fall) in the corresponding
scattering matrix or the cross section. Furthermore, using
Seaton’s theorem (Eq. 3.128) δl = πμnl , it follows that
there are an infinite series of such resonances converging
on to a higher state or threshold of the ion. Resonance
energies are given by the Rydberg formula with quantum
defect μnl , and the series corresponds to a closed channel
with respect to the threshold of convergence.

But in general, as noted in Chapter 3, resonances occur
because of superposition or interaction of bound-state
wavefunction(s) and continuum state wavefunction(s).
And they can be just as prominent when the continuum
state involves a neutral atom (or a molecule), and not
an ion. In that case the photoionizing ion is a negative
ion, and the bound–free process is referred to as pho-
todetachment. It is physically distinct from the excitation–
ionization processes described hitherto for atomic or ionic
photoionization, where the Coulomb potential dominates.
An example of great relevance to astrophysics is the pho-
todetachment of the negative ion H−; a free electron may
attach itself to the neutral H I atom with an electron affin-
ity or binding potential energy of about 0.055 502 Ry
or 0.755 eV [161, 160]. The photodetachment process
of H− is similar to photoionization of the two-electron
helium atom, with ground state 1s2 1S and final (e + ion)
symmetry 1Po, with a p-electron in the continuum (e.g.,
[162, 163]), i.e.,

H−(1s2 1S))+ hν→ H(1s 2S)+ e(p), (6.76)

with the H− electron affinity as the threshold ionization
energy. The photodetachment cross section reveals two
distinct resonances shown in Fig. 6.18 close to the n = 2
threshold energy of H I. The narrow resonance just below
the n = 2 threshold is called a Feshbach resonance with
peak value at 0.748 Ry. It is similar to the ones discussed
above for atomic or ionic photoionization, corresponding
to a discrete doubly excited state lying in the continuum
(such as in a closed channel). In the case of H I the excited
state of the core is H I (n = 2), i.e., hν + H I→H(n =
2)+e. On the other hand, the broad resonance in Fig. 6.18
above the n = 2 threshold (shaded area) is referred to as a
shape resonance, on account of the form or shape of the
potential in the final state (electron and a neutral atom),
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FIGURE 6.18 Bound–free
photodetachment cross section of the
negative ion H−, with a Feshbach and a
shape resonance near the n =2 threshold
[162]. The shaded area approximates the
resonant oscillator strength (Eq. 6.69)
fr ∼ 0.03 for the broad shape resonance
(see Section 6.9.1).

and is related to the quantum mechanical probability of
the continuum electron tunnelling through the potential
barrier (which is otherwise repulsive). Shape resonances
are therefore quite different in character from Feshbach
resonances, and are usually found to lie close to threshold
photodetachment energies. For H−, there are also other
Feshbach and shape resonances, corresponding to higher
thresholds of H I [164], such as at ∼11 eV [163].

The H− resonances are a manifestation of two-electron
correlation effects mediated by weak attractive poten-
tial(s). In the absence of a dominant Coulomb potential,
the two-electron interaction assumes greater importance
than for (e + ion) processes hitherto considered. There-
fore, very elaborate close coupling calculations, including
large basis sets to represent short-range interactions, are
necessary (e.g., [160, 162, 165, 166]). In Ch. 10 we will
further discuss the importance of the bound–free detach-
ment process of H− as a source of radiative absorption in
rather surprising situations.

6.10 Angular distribution and
asymmetry

In addition to the total cross section, a topic of consider-
able interest in experimental studies of photoionization is
the angular dependence manifest in the differential cross

section. The outgoing flux is measured at a single energy,
but at different angles to reveal details of the potential
interactions embedded in otherwise unobserved param-
eters. Ejected photoelectrons can be measured experi-
mentally at various angles relative to the incident photon
beam. The resulting angular distribution provides addi-
tional details of the photoionization process. These fea-
tures are observed in the differential cross section dσ/d ,
since the solid angle (θ, φ) depends on the polar angle θ
and azimuthal angle φ. We assume a geometrical arrange-
ment with azimuthal symmetry independent of φ, and
study the angular asymmetry as a function of θ .

Using the expression given earlier for the differential
cross section, Eq. 6.10,

dσ

d 
=

(
4π3c2

nωω2
i j

)
dTi j

d 
, (6.77)

the differential transition matrix element dTi j is given by
< j |ê.r|i>, as in Eq. 6.20. Taking the polarization of radi-
ation along the z-axis, and the position vector r of the
photoelectron at an angle θ with the z-axis, < j |ê.r|i> ≡
< j |r cos θ |i>. Let i be the intitial bound state, and
assume j to be the final continuum state in a central
potential V (r), satisfying the Schrödinger equation
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[∇2 + k2 −U (r)]ψ j = Eψ j , (6.78)

where k2 = √
2m E and U (r) = 2mV (r)/�2. The

solution of this equation is

| j >= 4π
∑
l,m

il e−iδl Gkl (r)Y
∗
lm(k̂)Ylm(r̂), (6.79)

where Gkl (r) is the radial wavefunction jl (kr)/kr , and
δl is the phase shift of the lth partial wave. This formu-
lation eventually yields (e.g. [166]) the differential cross
section as

dσ

d 
= σtotal

[
1+ βP2(cos θ)

]
. (6.80)

The Legendre polynomial term

P2(cos θ) = (3 cos2 θ − 1)/2

β is known as the asymmetry parameter, describing the
angular distribution of the photoelectron with initial angu-
lar momentum l as

β = l(l − 1)R2
l−1,l + (l + 1)(l + 2)R2

l+1,l

(2l + 1)
[
l R2

l−1,l + (l + 1)R2
l+1,l

]
× −6l(l + 1)Rl+1,l Rl+1,l cos(δl+1 − δl−1)

(2l + 1)
[
l R2

l−1,l + (l + 1)R2
l+1,l

] . (6.81)

Since dσ/d ≥ 0, the limiting values of β are
determined from the physical condition

1+ βP2(cos θ) ≥ 0, (6.82)

which gives βmin = −1 for cos2 θ = 1, and βmax = 2
for cos2 θ = 0. For an s-photoelectron, β = 2, and the
angular distribution is cosine-squared such that it peaks
along or about the polarization vector of the radiation. For
a photoelectron with l �= 0, the anisotropy of the angular
distribution depends on the interference between the two
competing l+1 and l−1 outgoing channels, and the phase
difference, δl+1 − δl−1. For the limiting case of β = −1,

dσ/d = σtotal

(
3
2 sin2 θ

)
, with an angular distribution

sin2 θ that peaks at right angles to the polarization vector.
Trivially, for the case of β = 0, the angular distribution is
isotropic.

For an atomic system, in general the derivations are
rather involved. Consideration of angular mementa in L S
or intermediate L S J coupling yields general expressions
for the differential cross section dσ/d , and the asymme-
try parameter β [168, 169]. Let us choose an ion X with
total angular momentum Ji and parity πi being ionized
by a photon ω of angular momentum Jω = 1 and parity
πω = −1, i.e.,

X(Ji, πi)+ ω(Jω, πω)→ X+
(
J ′c, πc

)+ e(lms, πe).

(6.83)

To simplify the derivation, U. Fano and D. Dill [168]
introduced a momentum transfer vector Jt for the unob-
served reactants as

Jt = J′c + s− Ji = Jc − Ji = Jω − l, (6.84)

in which the unobserved photoelectron spin s is added to
J′c to get Jc. The allowed values of Jt are consistent with

J = Ji + Jω = J′c + s+ l, π = πiπω = πcπe,

i.e., −πi = (−1)lπc. (6.85)

Hence, the differential cross section is a sum,

dσ

d 
=

∑
Jt

dσ(Jt, k)

d 
. (6.86)

Further defining the transition matrix in terms of the
scattering matrix S,

< Jcmc, lm|S|Ji mi , Jωmω >= (−1)Jω+mω−Jc+mc

×
∑

Jt

(Jc − mc, Jimi|Jt,mi − mc)

× (Jt,mc − mi|l − m, Jωmω) < Jcl|S̄(Jt)|Ji Jω >

× δmc+m,mc+mω . (6.87)

In the dipole approximation with operator D,

< Jcl|S̄(Jt)|Ji Jω >

= n(λo)
∑

J

(−1)Ji−J−Jω Ĵ

{
l Jc J
Ji Jω Jt

}

× < Jcl, J ′|D|αi Ji Jω > (6.88)

where n(λo) = (4πα�ω)/
(

3λ2
o

)
, λo is the wavelength

of the incident radition divided by 2π , Ĵ = (2J + 1)1/2;
the αi denotes the set of quantum numbers necessary to
specify the initial state uniquely. The notation J ′ is such
that the final state is normalized according to the incoming
wave boundary condition. Defining the components of the
matrix S̄(Jt) as

S̄0(Jt) for Jt = l, S̄±1(Jt) for Jt = l ∓ 1, (6.89)

one obtains,

dσ

d 
= 1

4π

⎡
⎣∑

Jt

σ(Jt )+
∑

Jt (u f )

σ (Jt )β(Jt )P2(cos θ)

+
∑
Jt ( f )

σ (Jt )β(Jt )P2(cos θ)

⎤
⎦ , (6.90)

where the various quantities are

σ(Jt) = πλ2
o

2Jt + 1

2Jc + 1
|S̄0(Jt)|2, β(Jt) = −1, (6.91)
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for the parity-unfavoured (pu) case, since πiπc =
−(−1)Jt , and

σ(Jt) = πλ2
0

2Jt + 1

2Jc + 1
[|S̄+(Jt)|2 + |S̄− + (Jt)|2],

β(Jt) = (Jt + 2)|S̄+|2 + (Jt − 1)|S̄−|2 − 3
√

Jt(Jt + 1)[S̄+ S̄− + S̄+ S̄−]
(2Jt + 1)(|S̄+|2 + |S̄−|2)

,

(6.92)

for the parity-favoured (p f ) case, since (−1)l+1 =
(−1)Jt . Expressing

σ =
∑

Jt(All)

σ (Jt), β =

∑
Jt(p f )

σ (Jt)β(Jt)−
∑

Jt(u f )

σ (Jt)

∑
Jt

σ(Jt)
,

(6.93)

the differential cross section can be written as

dσ

d 
= σ

4π

[
1+ βP2(cos θ)

]
. (6.94)

Here, the net asymmetry parameter β is given by the aver-
age of the β(Jt) values for each value of Jt, weighted by
the cross sections for each Jt. Finally [169], noting that
both J′c and s are unobserved, dσ/d must be summed
over all possible values of |Jc| = |J′c + s|, that is,

σ =
∑
Jc,Jt

σ(Jt), β

=

∑
Jc

⎡
⎣ ∑

Jt( f )

σ (Jt)β(Jt)−
∑

Jt(u f )

σ (Jt)

⎤
⎦

∑
Jc,Jt

σ(Jt)
. (6.95)



7 Electron–ion recombination

The study of (e + ion) recombination has been driven
largely by astrophysical applications. In astronomical
objects, ionized by a sufficiently intense radiation source,
such as a star ionizing a gaseous nebula (Chapter 12), a
state of ionization equilibrium is maintained between pho-
toionization on the one hand and (e + ion) recombination
on the other hand. It is, therefore, necessary to calcu-
late photoionization and recombination cross sections and
rates to obtain the distribution among the ionization stages
of an element.

From a physical point of view (e + ion) recombina-
tion is the inverse of phototionization. A free electron in
the continuum can combine with an ion, resulting in the
emission of a photon, and also form a bound state of the
recombined (e + ion) system with one charge less than
that of the recombining ion. This free–bound electron–ion
recombination process is also called photorecombination.
Recalling Eqs 6.1 and 6.3, we may rewrite

X+ + e(ε)→ X+ hν. (7.1)

As for other atomic processes (Chapter 3), resonances
again play a crucial role. In fact, the probability of recom-
bination via an autoionizing state can be very high. As
discussed in Chapter 3, a resonant state of the recombined
(e + ion) system (Fig. 3.4) can either autoionize, decay-
ing into the continuum where the electron goes free, or
form a bound state via radiative stabilisation or dielec-
tronic recombination. The initially free electron becomes
bound and the excess energy is emitted via emission of a
photon. The two modes are:

e+X+n ↔ (X+n−1)∗∗ ↔
{

e+ X+n AI
X+n−1 + hν DR.

(7.2)

Both pathways of recombination are the inverse of
photoionization, provided we consider the same reso-
nances in a unified and self-consistent formulation. Pho-
toionization and (e + ion) recombination are related by

the principle of detailed balance, and both processes can
occur directly in a non-resonant manner, or resonantly via
autoionizing states. Therefore, the resonant and the non-
resonant parts of (e + ion) recombination are unified and
inseparable, and always occur in nature as such.

However, historically (e + ion) recombination has
been considered as two separate processes: (a) radia-
tive recombination (RR) due to direct radiative capture
and recombination, Eq. 7.1, and (b) dielectronic recom-
bination (DR) due to indirect capture and recombina-
tion through an autoionizing resonance, Eq. 7.2. This
division is a useful approximation for many systems,
such as highly charged few-electron ions. Often, RR
and DR processes are dominant in different energy-
temperature regimes. For example, in low-temperature
plasmas free electrons have low energies that may be
insufficient to excite any doubly excited autoionizing
states (Fig. 3.4). In that case recombination would prob-
ably proceed mainly as the non-resonant RR process.
On the other hand, in high-temperature sources, reso-
nances may be formed by excitation of the recombining
ion to high levels of opposite parity via strong dipole
allowed transitions. In this case, DR becomes dominant.
However, there is no firm division between the low- and
high-energy regimes and both RR and DR must be con-
sidered in general. In addition, the energy distribution of
resonances is not necessarily confined to relatively high
energies; low-energy resonances often occur, leading to
a separate low-temperature DR contribution to (e + ion)
recombination.

The unification of the RR and DR processes has been
explored in previous works (e.g., [170]). In recent years,
a comprehensive unified treatment has been developed
[151, 171, 172] that combines non-resonant and resonant
processes (i.e., RR and DR) in an ab-initio manner, while
ensuring the self-consistency inherent in the detailed bal-
ance between photoionization and (e + ion) recombina-
tion. The unified treatment is preferable to methods that



148 Electron–ion recombination

consider (e + ion) recombination in parts, employing
different approximations in various energy–temperature
regimes of varying accuracy. It is also practically useful
to have a single unified recombination rate coefficient,
rather than separate RR and DR rates from different data
sources. Astrophysical applications and plasma modelling
also require self-consistency between photoionization and
recombination rates that determine the ionic distribution
of elements depending on temperature. Another reason
we begin with a first-principles discussion of the unified
method is because it follows directly from the extensive
coupled channel framework we have hitherto developed
to describe atomic processes in preceding chapters. In
particular, we refer to the schematic diagram of atomic
processes (Fig. 3.5) that presents a unified picture. That
would be followed by approximations that are often made
in computing RR and DR separately.

7.1 Detailed balance

The inverse processes of photoionization and electron–ion
recombination (or photorecombination) are related by the
principle of detailed balance as (Chapter 3)

σPI
g j

p2
e
= σRC

gs

p2
hν

, (7.3)

where g j is the degeneracy (statistical weight) of the
atom being photoionized, or of a given state of the
recombined (e + ion) system, and gs that of the resid-
ual ion, or the recombining ion, usually in the ground
state. The σPI and σRC are cross sections for photoion-
ization and (e + ion) recombination, respectively. The
photon momemtum = hν/c = (I + ε)/c, where I is
the ionization energy and ε is the ejected photoelectron
energy. The photoelectron momentum pe = mv =

√
2mε.

Hence,

σRC = σPI
g j

gs

h2ν2

m2c2v2
= σPI

g j

gs

(I + ε)2
2mc2ε

. (7.4)

This expression is known as the Milne relation [173] – a
generalization of the Einstein B coefficients for bound–
bound absorption to the bound–free regime. Equation 7.4
is the basis for the unified treatment of (e + ion)
recombination, since it holds for both non-resonant RR
and resonant DR processes, which are, in principle,
observationally inseparable. As we shall outline in later
sections, the unified treatment may be implemented in
practice through the close-coupling approximation using
coupled channel wavefunctions, obtained from the R-
matrix method [151].

7.2 Total electron–ion recombination
rate

Since (e + ion) recombination subsumes both non-
resonant and resonant processes, RR and DR, let us denote
the total rate coefficients simply as αR(T ), as a function
of electron temperature (we drop the subscript e and me

for convenience). One may refer to the bound state of the
(e + ion) system as the final or recombined state. In terms
of the photoionization cross section σPI of any bound
state, the Milne relation, Eq. 7.4, yields the recombina-
tion cross section σRC(E). Assuming a given distribution
of electron velocities, σRC(E) may be averaged over to
yield the rate coefficient

αR(T ) = <σRCv> =
∫ ∞

0
vσRC f (v, T )dv, (7.5)

where v = √
(2ε/m) is the velocity of the photoelec-

tron and f (v, T ) is the velocity distribution function.
Typically, in astrophysical plasmas it is the Maxwellian
distribution (Eq. 1.10),

f (v, T ) = 4√
π

[ m

2kT

]3/2
v2e−mv2

2kT . (7.6)

Alternatively, in terms of photoelectron energies the sub-
stitution of explicit expressions for f (v, T ) and using ε =
1
2 mv2, dε = mvdv gives

αR(T ) = 4√
2πm

(
1

kT

)3/2 ∫ ∞
0
εe− ε

kT σRCdε. (7.7)

It is worthwhile here to have an idea of the orders of
magnitude involved in these quantities, and also because
one frequently finds both the atomic units au, or more
often Rydbergs (Ry), and cgs units. We express the cross
section in Mb (10−18 cm2), and the photoelectron energy
in Ry (2.1797×10−11 erg). In terms of cgs units, m =
9.109×10−28 g, k= 1.380 658 × 10−16 erg K−1. These
give

√
2πmk = 8.889 316× 10−22, Ry2Mb = 4.751 09×

10−40 erg2cm2, and therefore

4√
2πm

Ry2Mb

k3/2
= 0.015 484

cm3

s
K3/2. (7.8)

Hence, in cgs units,

αR(T ) = 0.015 484

T 3/2

∫ ∞
0
ε e− ε

kT σRCdε cm3s−1, (7.9)

where T is in K, ε in Ry and σRC in Mb. Note that with
ε in Ry, ε/kT = 157 885ε/T . This expression is often
useful to relate electron energy with kinetic temperature
in a plasma; for instance, in relating the recombination
cross section measured experimentally in a limited energy
range, to the rate coefficient at a given temperature.
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Equation 7.9 introduces some uncertainty at and near
zero photoelectron energy when σRC diverges, accord-
ing to Eq. 7.3. To ensure accuracy, photoionization cross
sections σPI may be used to obtain αR,

αR(T ) =
g j

gs

2

kT
√

2πm3c2kT

∫ ∞
0
(I + ε)2σPI(ε)e

− ε
kT dε

= 1.8526× 104 g j

gs

1

T 3/2

×
∫ ∞

0
(ε + I )2 e− ε

kT σPIdε cm3s−1, (7.10)

where gs is the statistical weight of the recombinig ion,
and g j that of the final recombined state. Equation 7.9,
and similar expressions for αR(T ) above, correspond
not only to the total but to state-specific recombination
rate coefficient of individual recombined states j of the
(e + ion) system, usually from the ground state g of
the recombining ion. The total αR then comprises of the
infinite sum

αR =
∞∑
j

αR( j). (7.11)

Under typical astrophysical conditions the recombining
state is the ground state. Then σPI → σPI( j) corresponds
to the partial photoionization cross section of state j ,
leaving the residual ion in the ground state in accordance
with detailed balance, i.e., the Milne relation, Eq. 7.4, as
described earlier in Chapter 6.

It is also useful to express the total recombination rate
coefficient at a given energy, or averaged over an energy
range, as αRC(E) or < αRC(E) >, with photoelectron
energy E and velocity v, as

αR(E) = vσTot
RC = v

∞∑
i

σRC(i), (7.12)

where σTot
RC is the sum of cross sections of an infinite

number of recombined states i .

7.3 Independent treatments
for RR and DR

It is often computationally convenient to divide the recom-
bination cross sections and rate coefficients into the non-
resonant RR and the resonant DR components. Unlike
the unified method, RR and DR are treated separately
to obtain the RR rate coefficient αRR, and the DR rate
coefficient αDR, to get the total

αR(T ) = αRR(T )+ αDR(T ). (7.13)

The separate treatments of RR and DR are a good approx-
imation for atomic systems when there is no significant
interference between the two. The basic physics is dis-
cussed as outlined in Fig. 7.1, which illustrates a unified
rate coefficient, but with the RR-dominated and the reso-
nant DR-dominated portions for electron recombination
from He-like to Li-like iron, (e + Fe XXV)→Fe XXIV.
The corresponding photoionization cross section for
Li-like to He-like ions is similar to the one shown for
He I in Fig. 6.1, where the resonances occur at energies
far above the threshold ionization energy. The low-energy
photoionization cross sections, and the resulting back-
ground RR component at low temperatures, are feature-
less. In contrast, the DR component adds a significant
‘bump’ in the high-temperature range due to the excitation
of resonances at high energies. As is the case for highly
charged ions where RR and DR contributions are quite
separable, the unified rate coefficient in Fig. 7.1 closely
matches the sum of the RR and DR components.

7.3.1 Radiative recombination

Although unphysical, it is possible to use simple approx-
imations to obtain only the background photoionization
cross section σPI without taking into account resonances,
which otherwise may dominate the cross section. The
Milne relation Eq. 7.4, and Eq. 7.10, then yields the
RR component αRR separately in a straightforward man-
ner. Examples of such photoionization calculations are
those in the central-field approximation, as described
in Chapter 6. It is also possible to use a one-channel
close-coupling approximation, which would not include
resonances, since they arise from channel coupling.
However, as explained in Chapter 6, such background
cross sections do not include any resonant enhance-
ment that can lead to considerable underestimation of the
total rate.

7.3.2 Dielectronic recombination

We recall the discussion in Section 3.1 on electron impact
excitation and autoionization, Figs 3.3 and 3.4. Essen-
tially, an autoionizing state is formed by excitation of an
ion from level g → p by a free electron, where g is the
ground state. But if the incident electron has insufficient
initial kinetic energy ε < (E p − Eg), then it may not
escape the attractive field of the ion, and may become
bound to the excited level p in an autoionizing state (pn�).
The captured or recombined electron may either autoion-
ize back into the continuum state (gε�), or undergo a
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FIGURE 7.1 Radiative and dielectronic
components (RR and DR) of the total
(e + ion) recombination rate coefficient:
solid line – unified rate coefficient [174];
dashed line – RR only [175].

radiative decay to a bound (e + ion) state (gn�) – the DR
process. The captured electron itself remains a ‘spectator’
in the DR process in the sense that its quantum num-
bers n� remain unchanged during the transition from an
autoionizing state to a bound state. In other words, the
radiative transition is between the core ion states g and p.
As such, the dominant contribution(s) to the DR process
stems from strong dipole transitions in the recombining
ion, usually from the ground state to the lowest states
connected by allowed transitions. For convenience in this
discussion, and to avoid carrying the ‘n�’ throughout, we
denote the autoionizing state pn� as i , and the bound state
as gn� as j .

The DR process involves electron recombination via
infinite Rydberg series of resonances that converge on to
an excited level of the recombining ion. The treatment of
the DR process by itself is based on the so-called isolated
resonance approximation introduced by H. S. W. Massey
and D. R. Bates [176], who also named the process as

‘dielectronic recombination’. As mentioned above, it is
in fact a two-step approximation (Fig. 3.5): (i) an ion
X+ in an initial state g undergoes excitation and captures
a free electron into a doubly excited autoionizing state
i , and (ii) the resonant state i undergoes radiative stabi-
lization to a bound (e + ion) state j with emission of a
photon, i.e.,

X+(g)+ e → X∗∗(i)→ X( j)+ hν. (7.14)

This expression embodies more complexity than is appar-
ent at first sight. It involves an infinite number of autoion-
izing levels i , as well as the infinity of final (e + ion)
recombined bound levels j . In addition, the initial state
g of the recombining ion may not always be the ground
state, because the ion may also be present in an excited
metastable level in any moderately dense plasma. Hence,
a large number of possible electron capture and decay
pathways need to be considered.
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The isolated resonance apporoximation for DR may be
expressed without proof [176]; it depends only on detailed
balance and branching between autoionization or radia-
tive decay. Then the DR rate coefficient via autoionizing
level i is

αi
d(T ) =

gi

2gs

h3

(2πmekT )
3
2

exp

(
− Egi

kT

)
Ar(i), (7.15)

where gs and gi are the statistical weights of ground state
g, and the autoionizing level i respectively; the Ar(i) is the
radiative decay rate summed over all final excited recom-
bined state, i.e., all transitions i → j , and Egi is the
energy of doubly excited autoionizing state i relative to
initial state g. The total DR rate is then obtained from
all contributing doubly excited states considered indi-
vidually and independently as isolated resonances, i.e.,
without quantum mechanical interference, which might
occur since, after all, they are coupled to the continuum as
well as amongst themselves. Typically, both Egi and kT
are expressed in Ry or eV, and αi

d (T ) in cm3s−1 as usual
for a rate coefficient. If the density of recombining ions
X+ is n(X+), and the density of free electrons ne, then
nen(X+)αi

d gives the number of resonant DR occuring
via level i per unit volume per unit time.

One may now extend the approximation [177] to
include a factor b(X∗∗), which is a measure of depar-
ture from thermodynamic equilibrium. In thermodynamic
equilibrium, the detailed balance condition gives

nS(X
∗∗)Aa = nen(X+)αc, (7.16)

where αc is the electron capture coefficient, balanced by
the autoionization rate Aa.1 In thermal equilibrium, the
ionization states are distributed according to the Saha
equation (discussed in Chapters 9 and 11), which gives
the equilibrium number density nS(X

∗∗) of the doubly
excited ion X∗∗ as

nS(X
∗∗) = gi

2gs

h3

(2πmekT )
3
2

exp

(
− Egi

kT

)
nen(X+).

(7.17)

Replacing the density in the balance condition, Eq 7.16,
by the non-thermodynamic equilibrium density as [177]

n(X∗∗)(Aa + Ar) = nen(X+)αd, (7.18)

such that

n(X∗∗) = nS(X
∗∗)b(X∗∗) (7.19)

1 Historically, DR was also referred to as ‘inverse autoionization’ [178],

though that is only a partial description since DR is completed

following radiative stabilisation.

defines the departure coefficients

b(X∗∗) = Aa

(Aa + Ar)
. (7.20)

The DR rate is then

nen(X+)αd = nS(X
∗∗)b(X∗∗)Ar. (7.21)

Using Eqs 7.17, 7.18 and the b factor, the DR rate
ceofficient is

αi
d(T ) =

gi

2gs

h3

(2πmekT )
3
2

exp

(
− Egi

kT

)
Ar(i)Aa(i)

Aa(i)+ Ar(i)
.

(7.22)

The isolated resonance approximation has been further
elaborated upon in other works [63, 179, 180]. If the elec-
tron capture rate coefficient into level i from an initial
state g of the recombining ion is αi

c, and Bi is the branch-
ing ratio for decays from state i for radiative stabilization,
then the DR rate coefficient is

αi
d(T ) = αi

c(T )B
i . (7.23)

Assuming a Maxwellian velocity distribution of electrons
at temperature T , the dielectronic capture rate coefficient
(Eq. 7.15) is

αi
c(T ) =

gi

2gs

h3

(2πmekT )
3
2

exp

(
− Egi

kT

)
Aa(i), (7.24)

Aa(i) is the autoionization rate into the continuum with
a free electron, and the residual ion back to the state g.
Now the full branching ratio Bi for all possible decays,
both radiative and autoionizing, need to include a large
number of pathways. But for a particular transition from
an autoionizing i state to an excited recombined bound
state j the branching ratio is

Bi = Ar(i → j)[∑
g′

Aa(i→g′)+
∑

j ′
Ar(i → j ′)

] , (7.25)

where the summations on the right are over all possible
autoionization decays into (e + ion) continuum states g′ε�,
where g′ denotes not only the ground state but also dif-
ferent states of the ion, and ε is the energy of the free
electron. The denominator also includes all radiative tran-
sitions from autoionizing level i to (e + ion) bound states
j ′. Explicitly, we may write the DR rate coefficient αi

d as

α
g→i
d (T ) for recombination from an initial ion state g, via

an autoionizing state i , to a final (e + ion) state j as
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α
g→i
d ( j, T ) = gi

gs

h3 exp
[
− Egi

kT

]
2(2πmekT )

3
2

× Aa(i→g)Ar (i → j)∑
g′

Aa(i → g′)+
∑

j ′
Ar (i → j ′)

.

(7.26)

Usually, the summations on the right in the denomi-
nator include the dominant radiative and autoionization
transitions. The total DR rate coefficient αd(DR; T ) for
recombination with an intital state g of the ion is obtained
from the summed contributions

αDR(T ) =
∑
i, j

α
g→i
DR ( j, T ). (7.27)

The isolated resonance approximation, as in Eq. 7.26,
implies that the radiative and autoionization rates, Ar

and Aa, are computed independently neglecting interfer-
ence between the two. The calculation of bound state
and continuum state wavefunctions needed to compute
Ar and Aa may be carried out using a variety of meth-
ods using atomic structure or distorted wave methods,
such as SUPERSTRUCTURE [10], the Cowan Code [63],
relativistic distorted wave code [68] or varients thereof.
An important point to note is that in the independent
resonance approximation for DR, Eq. 7.26, radiative tran-
sitions are considered as lines, whereas they are actually
between an autoionizing state i and a bound state j of
the (e + ion) system. A consequence of this is that the
autoionization widths or resonance profiles, as functions
of energy, are not considered.

7.3.2.1 Quantum probability
Thus far we have not explicitly invoked the quantum
mechanical framework. Much of it remains the same
as in the previous chapter on photoionization, owing to
the fundamental Milne relation, Eq. 7.4, between pho-
toionization and (e + ion) recombination. Furthermore,
we reiterate the connections between σPI, the differential
oscillator strength, the resonance oscillator strength stated
in Eq. 6.68 and the transition probability, Eq. 6.20, that
enables a quantum mechanical evaluation of all of these
inter-related quantities [181].

In Section 6.9 on radiation damping [178], we consid-
ered an isolated resonance as a single pole in the dipole
transition matrix element D in the complex energy plane.
Rewriting Eq. 6.60 as

D = Do(E)+ C

E − Eo − 1
2 Aa

, (7.28)

where the pole position is Eo − i/2Aa, and the capture
probability is [182],

P(E) = Ar Aa

(E − Eo)2 + 1
4

(
A2

a + Ar

)2
, (7.29)

where

Ar = 4π2|C |2
Aa

. (7.30)

The averaged probability for capture over the resonance
energy is the integral

P =
∫

res
P(E)dE = 2π Ar Aa

Ar + Aa
. (7.31)

This expression reflects the branching between autoion-
ization and radiative decay. In the respective limits when
one rate dominates the other, viz. Aa � Ar, P → Ar,
and when Ar � Aa, P → Aa. Equation 7.29 enables
the computation of the resonance profile, including radia-
tion damping perturbatively, in the independent resonance
approximation (discussed later). We can also express the
cross section for capture of an electron with velocity v by
an ion, with emission of a photon, as

σ = π

2gi

(
�

mv

)2 ∑
J

(2J + 1)PJ (E), (7.32)

where J is the total angular momentum of the electron–
ion system and gi is the statistical weight of the initial ion
level; P(E) is the capture probability as above.

The first successful approximation for total DR rate
coefficient was given by A. Burgess [178, 179, 183],
showing that the dominant contribution to DR is from
high-n levels converging on to the excited level(s), via
dipole allowed transitions in the recombining ion. Assum-
ing a Maxwellian distribution of velocities, the so-called
Burgess formula for the total DR rate coefficient αB

DR may
be expressed as

αB
DR(T ) = 2.5× 10−4 (z + 1)2

T 1.5

×
∑

j

f j E1/2
j 10−4600

E j
T cm3s−1, (7.33)

where z is charge of the recombing ion, E j is the exci-
tation energy in eV of the recombined ion and f j is
the absorption oscillator strength of levels j from the
ground level; the constant factors are as given in [184].
Whereas Eq. 7.33 includes the contribution of high-n lev-
els to DR, the Burgess formula is not sufficiently accurate
for many astrophysical applications (cf. Fig. 7.3), with
uncertainties of factors of two or three, or higher. For-
tunately, more accurate calculations have been made for
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most atomic species in the independent resonance approx-
imation, and in recent years, using the unified method
developed by S. N. Nahar and A. K. Pradhan [151], which
incorporates the precise theory of DR developed by R. H.
Bell and M. J. Seaton [157], as outlined in the next
section.

7.4 The unified treatment

The unified method [150, 151, 171] is based on (i) the
Milne relation, Eq. 7.4, and (ii) the DR formulation in the
coupled channel approximation [157]. The total recombi-
nation cross section is the sum of cross sections for recom-
bination into the set of infinite number of recombined
levels of the (e + ion) system, as illustrated schematically
in Fig. 7.2. Consistent with the theoretical framework, we
divide the infinite number of recombined (e + ion) levels
into two main groups: (A) low-n levels with n ≤ n0 and
(B) high-n levels with n0 ≤ n ≤ ∞. The principal quan-
tum number n0 divides the two groups, and is chosen such
that they are independent and complementary in the sense
described below.2

Level-specific recombination cross sections σRC( j)
for levels in group (A) are obtained from the Milne
relation using coupled channel photoionization cross sec-
tions σPI( j) computed using the R-matrix method, and
thereby including resonance contributions. Therefore,
Eq. 7.4 ensures that the recombination cross sections thus
obtained include both the non-resonant backgruond and
the resonant contributions, i.e., RR and DR processes. The
physical explanation is that for the low-n levels of group
(A), the background cross sections are non-negligible and
non-separable from the superimposed resonances. For suf-
ficiently high-n value of n0, the background contribution
becomes negligible. In other words, for group (B) levels
RR is negligible and DR is dominant for n > n0.

The DR theory used to compute the contribution from
group (B) levels is based on a precise quantum mechani-
cal treatment of electron scattering and radiation damping
due to recombination [157, 181]. Following the discus-
sion in Chapter 5, we denote the scattering matrix for
electron–ion collisions as See. Then we incorporate the
additional probability of electron capture and radiative
decay via emission of a photon by the scattering matrix
Spe. Since the total electron–photon flux due to both pro-
cesses, electron scattering and capture, must be conserved,

2 Both the effective quantum number ν and the principal quantum

number n are used interchangeably for highly excited states with high n

and �. The two quantities are nearly the same large � > 2, when the

quantum defect μ� = n − ν� is very small.

See and Spe are in fact sub-matrices of the total scat-
tering matrix S . The unitarity condition for (electron +
photon) matrix conserves both the incident electron and
the emitted photon flux as

See
†See + S†

peSpe = 1. (7.34)

We write the generalized electron–photon scattering
matrix as

S =
(

See Sep

Spe Spp

)
, (7.35)

where See is the now the sub-matrix for electron scatter-
ing including radiation damping. The radiatively damped
flux, i.e., electron capture leading to photon emisson is
given by Spe. It again follows from detailed balance
that Sep refers to the inverse process of photoionization.
The last sub-matrix Spp refers to photon–photon scatter-
ing process and is neglected. Of course, in the absence
of interaction with the radiation field, See is the usual
radiation-free scattering matrix S for the electron–ion col-
lision process only, without capture and recombination.
Possibility of radiation damping reduces the cross sections
for electron–ion collisions [185, 186]. We can write the
recombination cross section in terms of the generalized
S-matrix just defined as [178],

σDR = π

k2

1

2gs

∑
i

∑
j

|Spe(i, j)|2. (7.36)

Recall that gs is statistical weight of the initial state
g, i is the autoionizing state into which the free electron
is captured, and j is the final recombinated state of the
(e + ion) system.

7.4.1 Rate coefficients

As outlined above, the (e + ion) photorecombination cross
section σRC may be computed using the Milne relation,
i.e., Eq. 7.4 from detailed photoionization cross sec-
tions including resonances due to low-n complexes. For
the high-n complexes, we obtain the DR cross section,
Eq. 7.36. The temperature dependent rate coefficient
αR(T ) is then calculated using Eqs 7.9 and 7.10. Since
resonances lead to the DR contribution, the rate coeffi-
cient is also expected to show enhancement due to the
distribution of resonances in energy. H. Nussbaumer and
P. J. Storey first pointed out that near-threshold low-energy
resonances give rise to a low-T DR bump [187], in addi-
tion to the high-T DR bump shown in Fig. 7.1. Figure 7.3
illustrates the correspondence between the unified rate
coefficient αR(T ) and separate RR and DR contributions,
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FIGURE 7.2 Schematic energy diagram of unified (e + ion) recombination. The infinite series of autoionizing resonances converging
onto the various excited target states are in the positive energy region E > 0, while recombined states are in the negative energy
region E < 0. Broken lines with arrows represent photon emission during recombination: (1) recombination through the ground
state continuum of the recombined ion, i.e., RR-only and (2) through low-n autoionizing resonances as well as the continuum
coupled to excited state(s); processes (1) and (2) are considered as photorecombination via group (A) resonances. Process (3)
considers high-n > n0 group (B) resonances, i.e., DR-only.

the latter further sub-divided into low-T DR and high-T
DR. The high-T DR contribution in Fig. 7.3 is computed
using the Burgess formula (Eq. 7.33) and overestimates
the DR rate, whereas a more recent calculation is in good
agreement with the unified DR rate [188].

7.4.2 Level-specific rate coefficients

The αR(T ) are obtained from level-specific recombi-
nation rate coefficients of given quantum number n
and symmetry SLπ , αR(nSLπ, T ). These are calculated
explicitly from the unified recombination cross sections
σRC(nSLπ) for levels of group (A). However, this is still
incomplete, since the high-n DR contribution must be
added to obtain the total. Before we outline the DR cal-
culation for group (B) recombined levels, it is useful to
illustrate the effect of DR on total level-specific recom-
bination rate coefficients αR(nL Sπ). Fig. 7.4 presents

level-specific recombination rate coefficients of several
levels (L S terms) due to electron recombination with
B-like Fe XXII into C-like Fe XXI, i.e., (e + Fe XXII) →
Fe XXI, discussed in the previous chapter (Fig. 6.11).
The ground state 1s22s22p2 3P, and a few other excited
states of Fe XXI, are shown. The αR(nL Sπ) are com-
puted using level-specific photoionization cross sections
of Fe XXI of the type shown in Fig. 6.11, but for partial
photoionization into only the ground state of the core ion
Fe XXII (1s22s22p 2Po) as required by detailed balance.
The ‘bumps’ in αR(nL Sπ) are from DR, which enhances
the rate when the relatively high-lying resonances are
excited (Fig. 6.11). It is noteworthy that a separate
treatment of RR and DR does not provide total level-
specific recombination rate coefficients, as in the unified
method.

The contributions to recombination from levels with
n ≤ n0 of group (A) are obtained from detailed balance
using σPI with autoionizing resonances, as explained in
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FIGURE 7.3 Unified rate coefficient (solid line) and separate
RR and DR contributions for e+ CIII → C II (after [188]).

Chapter 6, which gives both the non-resonant and resonant
parts of the total recombination rate coefficient (viz. RR
and DR) for each level. However, there is a relatively
minor contribution that needs to be included. Although
the integration over σRC(E) to obtain αR(T ) is carried
over a large energy range, in principle the integration
should be extended up to E → ∞ since the background
cross sections may continue to be non-negligible up to
high energies. The contribution from some high photo-
electron energy εo up to ε →∞ can be added through the
following rapidly convergent form using the high-energy
background photoionization cross sections,

α
ε0→∞
R = − gi

g j

2

c2
√

2πm3kT

∫ 0

xo

[1− kT ln(x)]2σPIdx,

(7.37)

where x = exp(−ε/kT ), with limits between 0 and 1,
and varies slowly for low temperatures and rapidly at
high T . In addition, xo = exp(−εo/kT ) may be set by
choosing an energy εo where resonances are absent, i.e.,
above all thresholds in the recombining ion considered.
So the background σPI can be approximated simply by
Seaton’s fiting formula Eq. 6.32, or the Kramer’s formula
Eq. 6.33.

On a practical note, the unified calculations for pho-
torecombination usually entail all recombined states up

to n ≤ 10. Such a division is necessary, since it is not
practical to calculate photoionization cross sections for
higher-n levels, but it is sufficient to ensure that DR is
a good approximation to the total (e + ion) recombination
rate coefficent for n > 10 (Section 7.5).

7.4.3 DR cross sections

We now discuss DR into the high-n group (B) levels of the
recombined ion (Fig. 7.2). In this region the resonances
are dense and narrow, and the background cross section is
negligible. Hence the unified method employs the coupled
channel theory of DR, and multi-channel quantum defect
theory, which enables not only the computation of detailed
DR resonant cross sections, but also resonance-averaged
probabilities and cross sections [151, 157]. Viewed sep-
arately, in the high-n region DR dominates RR. But
unlike the independent resonance approximation, where
the radiative and autoionization rates Aa and Ar are com-
puted independently of each other, the unified approach
includes multi-channel coupling that accounts for overlap-
ping resonance profiles, and hence interference effects.

As a Rydberg series of resonances approaches a
threshold of convergence, onto an excited state of the
recombining ion as n ≤ ∞, the autoionization widths
decrease as Aa ∼ 1/n3 (strictly speaking as z2/ν3). These
group (B) resonances, with no < n ≤ ∞, lie in a small
energy region below each excited target threshold. Their
lifetimes are correspondingly longer since their radiative
decay rate Ar � Aa.

The coupled channel DR theory [157] partitions the
electron–electron scattering matrix See into sub-matrices
of open and closed channels as χoo, χoc, χco and χcc.
Here ‘o’ denotes open channels and ‘c’ closed channels, as
discussed in Chapter 3. Open channels are those in which
incident electrons have sufficient energy to excite the tar-
get ion. A closed channel refers to those with electron
energies below an inaccessible target level or threshold.
The scattering matrix See is then obtained as [157]

See = χoo − χoc[χcc − g(ν)exp(−2iπν)]−1χco, (7.38)

where g(ν) = exp(πν3 Ar/z2), ν is the effective quan-
tum number associated with the resonance series, z is
the ion charge, Ar is the sum of all possible radiative
decay probabilities for the resonances in a series. The
Ar remain constant, since they correspond to radiative
transitions within the target or the core ion, whereas the
autoionization rates decrease as Aa ∼ z2/ν3.

The factor exp(−2iπν) gives rise to rapid variation in
S, since it introduces functional dependence on the energy
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FIGURE 7.4 State-specific unified
recombination rate coefficits αR(nLS) to (a)
the ground state 2s22p2(3P), and excited
states (b) 2s2p3(3Do), (c) 2s22p3d(3Fo),
(d) 2p4(1D), and (e) 2s2p3(5So) of FeXXI.
The total αR include both the non-resonant
recombination (i.e., RR) and resonant DR
contribution which gives rise to the bumps
shown [146].

E via ν, where resonances occur. Owing to coupled
closed channels, the scattering matrix has poles occuring
at complex energies such that

|χcc − exp(−2iπν)| = 0. (7.39)

Resonances corresponding to pole energies repeat them-
selves serially each time ν increases by unity, with
decreasing resonance widths. The electron flux trapped in
the closed channel resonances may decay radiatively to
bound states of the (e + ion) system. This DR probabil-
ity, for a given entrance or incident open channel α, is
obtained from the unitarity condition as

Pα(DR) = (1 − S†
eeSee)αα . (7.40)

Now, in analogy with the collision strength for electron
impact excitation related to the cross section (Eq. 5.5), we

define the collision strength for dielectronic recombina-
tion  (DR) using Eq. 7.40 as

 (DR) =
∑
SLπ

∑
α

1

2
(2S + 1)(2L + 1)P SLπ

α . (7.41)

The DR are calculated, in a self-consistent manner, using
the same coupled channel wavefunction expansion that
is used for the calculation of σPI, and as discussed in
Chapter 5. The DR cross section (in Mb) is related to the
collision strength  DR as

σDR(i → j)(Mb) = π  DR(i, j)

gi k2
i

(
a2

0 × 1018
)
, (7.42)

where k2
i is the incident electron energy in Ry.

Using multi-channel quantum defect theory the χ

matrix can be diagonalized as χcc N = Nχcc, where χcc

is a diagonal matrix and N is the diagonalizing matrix
with NT N = 1. In terms of N we write χ ′

oc = χoc N
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and χ ′
co = NTχco, where NT is the transpose of N . The

resonance-averaged DR probability [157] is then

<Pα(DR)> = G
∑
γ,γ ′

χ̄ ′αγ χ̄ ′∗
γ ′α(N

T N∗)γ γ ′
G + 1− χ̄γ γ χ̄∗γ ′γ ′

, (7.43)

where the factor G(ν) = g(ν)2 − 1,
For practical computations of < Pα(DR) >, a some-

what more extended formulation yields resonance aver-
aged DR probability [172]

<Pα(DR)> = G(ν)

⎡
⎣∑
γ

|χ̄αγ |2 ∑
i |Niγ |2

G(ν)+ 1− |χγγ |2

+ 2
∑
γ �=γ ′

Re

(
χ̄αγ χ̄γ ′α

∑
i N iγNiγ ′

G(ν)+ 1− χγγ χγ ′γ ′

)⎤⎦,
(7.44)

where the summation over i goes through all the closed
channels. Equation 7.44 shows the division between
direct and interference terms on the right, and gives the
resonance-averaged  (DR) [172].

The expressions derived thus far enable us to calcu-
late detailed and averaged DR cross sections or colli-
sion strengths using the coupled channel approximation.
We illustrate several sets of results obtained using these
expressions leading up to Eq. 7.44 in Fig. 7.5(a) for
(e + S IV → S III). The averaged DR collision strength
< (DR)> is shown in the top panel of Fig. 7.5 (to
display the peak magnitudes, the scale in this panel is
divided into two parts). The DR contributions are shown
in the energy regions (ν ≤ 10 ≤ ∞) below the excited
states of the target ion S IV: 3s3p2(2D,2 S,2 P), 3s23d(2D)
and 3s24s(2S), as noted near the peaks. These excited
states decay to the ground state 3s23p(2Po) of S IV via
dipole allowed transitions. The < (DR)> also shows
negligible contribution at the starting energy of ν= 10
(marked by arrows) from the Rydberg series of autoion-
izing levels below the marked thresholds. But it rises
rapidly as it approaches n→∞, beyond which  (DR)
drops to zero, since the closed channels open up and res-
onance contributions to DR vanish. The physical reason
is that the electrons trapped in doubly excited autoion-
izing resonances below threshold are released into the
contiuum. Therefore, DR goes over to electron impact
excitation (EIE) of the threshold level exactly at the peak
energy. The peak values of DR in Fig. 7.5 agree with the
EIE collsion strengths, shown as dark circles. The close
agreement between independently computed excitation
collision strengths, and the peak DR collision strengths,
indicates the conservation of photon–electron flux implicit

in the unitarity condition of the generalized S-matrix,
Eq. 7.34.

As discussed already, an important aspect of the uni-
fied theory of (e + ion) recombination is the correspon-
dence between the DR process and the electron impact
excitation of the recombining target or the core ion. The
DR collision strength DR rises exactly up to the EIE col-
lision strength at the threshold energy of the core level.
Hence we have the continuity condition between DR and
EIE [151, 186],

lim
n→∞ DR(n) = lim

k2→0
 EIE(k

2). (7.45)

Equation 7.45 is verified by actual computations in
Fig. 7.5(a): the peak DR collision strength < (DR)>
at each resonance series limit of S IV agrees precisely
with  (EIE) at that threshold level. Equation 7.45 also
provides an accuracy check on both DR and EIE calcula-
tions, and the possible importance of long range multipole
potentials, partial wave summation, level degeneracies at
threshold and other numerical inaccuracies.

Formally, the DR probability from the generalized
scattering matrix, Eq. 7.35, used to obtain detailed reso-
nant structures in Fig. 7.5(b), is given by the following
expression [133, 172].

Pα =G(ν)
∑
γ

⎧⎨
⎩
⎛
⎝∑
γ ′
χ ′αγ ′Nγ γ ′

⎞
⎠

×
[

1

χγγ − g(ν)exp(−2π iν)

]

×
[

1

χ∗γ γ − g(ν)exp(+2π iν)

]

×
⎛
⎝∑
γ ′
χ ′∗γ ′αN∗γ γ ′

⎞
⎠
⎫⎬
⎭ . (7.46)

The summations go over closed channels γ γ ′ contribut-
ing to DR. The sum over the diagonal elements of all
open channels, linked to the ground state of the target ion,
gives the probability of DR through radiative transitions
between the excited states and the ground state.

Whereas the high-n levels of group (B) contribute
via DR to the (e + ion) recombination rate coefficient
at high temperatures, there is also their background RR-
type contribution, which arises from photorecombination.
The unified method includes this background contribution
as ‘top-up’, obtained from photoionization cross sections
computed in the hydrogenic approximation, which is
valid for very high-n levels. The background top-up
is generally negligible at high temeratures, compared
with resonant DR, but significant in the low-temperature
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FIGURE 7.5 Dielectronic recombination
collision strengths  (DR) for (e + SIV) → SIII)
[189]. (a) resonance-averaged < (DR)> in
the photoelectron energy regions from ν = 10
(pointed by arrows) where it is negligible, up to
the specified excited states (thresholds) where
they attain peak values; (b) detailed DR
resonances, which become denser as the
energy approaches excited state thresholds; (c)
an expanded region below the first excited
state 2D of the recombining ion SIV to illistrate
the extensive complexity of resonant
complexes contained in the narrow DR
resonances in (b).

range when electrons have very low energies insufficient
for core excitation; in that case the electrons recom-
bine into very high-n levels. For an ion with charge z,
the z-scaled formula in the hydrogenic approximation is
αR(z, T )=αH

R (1, T/z2), in terms of the recombination
rate coefficient for neutral hydrogen. The αR(z, T ), for
levels with n = 10 to 800 have been computed [133] using
H I photoionization cross sections [143], and for levels
n = 801 to ∞ using the difference rule [190]


(n) = αn

(
n

n + 1

)3 (
1+ n

2

)
. (7.47)

7.4.4 Multiple resonant features

The total contribution for recombination to the infinite
number of recombined levels shown in Fig. 7.2 gives the
unified recombination rate coefficients αR(T ), Eq. 7.11.
The basic form of αR(T ) is that it starts with a high value
of the background RR part of the rate coefficient at very
low temperatures, and decreases exponentially until atten-
uated by a large high temperature, ‘DR bump’. At very
high temperatures, αR(T ) decreases exponentially and,

monotonically (linearly on a log scale). An example of
such typical behaviour is seen for recombination of highly
charged He-like ions, such as (e + Si XIV → Si III),
shown in Fig. 7.6 (a) [191].

However, for more complex systems, resonances can
introduce multple bumps, as in recombination of C-
like argon (e + Ar XIV → Ar XIII) [192], shown in
Fig. 7.6(b). The mutliple DR bumps arise from res-
onance complexes (as in Fig. 7.7 at high energies),
spread across several excited core levels of the recom-
bining ion Ar XIV. The first small group of resonances
at 21–25 Ry in Fig. 7.7 gives rise to the first bump in
Fig. 7.6(b). Successively higher resonance groups result
in further enhancement of αR(T ) at corresponding tem-
peratures. The multiple bumps in the unified αR(T )
are particularly discernible when compared with the
DR-only calculations, as shown.

Mutiple Rydberg series of resonances due to several
ion thresholds might contribute to αR(T ) over extended
energy ranges. That, in turn, enhances the energy-
integrated cross sections, and rate coefficients αR(T ),
Eqs 7.9 and 7.10, in specific temperature regions. An
extension of the concept illustrated in Fig. 7.3, with
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FIGURE 7.6 Unified total recombination
rate coefficients αR(T ) (solid curves) for
(a) (e + Si XIV) → Si XIII, [146], and (b)
(e + Ar XIV → Ar XIII) [192]. While
recombination to He-like Si XIII shows a
single DR bump, there are multiple bumps
for Ar XIII. Other curves represent
independently calculated rate coefficients,
such as RR (dashed), for Si XIII [175] and
Ar XIII [195], DR (dotted), for both ions
[196], and (dot-dashed) for Si XIII [197] and
Ar XIII [198].

respect to low-T DR enhancement, is seen if several
groups of resonances are interspersed throughout, from
low to high energies.3

7.4.5 Comparison between experiment
and theory

As for photoionization, the extensive resonance structures
in recombination cross sections can be studied experi-
mentally to verify theoretical results and physical effects.
Detailed measurements with high resolution are now pos-
sible with sophisticated experimental set-ups using ion
storage rings, such as the Test Storage Ring (TSR) in
Heidelberg (e.g., [193]), and CRYRING in Stockholm
(e.g., [194]). In recent years, a number of absolute cross
sections have been measured to benchmark theoretical

3 Though this chapter is aimed at a description of (e + ion)

recombination in toto using the unified framework, it is common to

refer separately to non-resonant and resonant contributions as RR and

DR, when one dominates the other.

calculations. Experimental results naturally measure the
total, unified cross sections, without separation into RR
and DR. That is, of course, also the way (e + ion) recom-
bination occurs in astrophysical and laboratory plasmas.
The measured cross sections are convolved over the inci-
dent electron beam width to obtain an averaged<vσRC>,
as in Eq. 7.12. Although these can be directly compared
with the unified αR(T ), in order to compare them with
the many RR and DR calculations in literature the exper-
imental cross sections are processed to separate out the
DR contribution. We discuss two examples of compari-
son between theory and experiment to elucidate several
physical features.

In Chapter 5 we had pointed out the astrophysi-
cal importance of the Ne-like Fe XVII in many high-
temperature sources, such as the solar corona and active
galactic nuclei. Figure 7.8 demonstrates recombination to
Ne-like Fe XVII from Fe XVIII that was measured exper-
imentally at the TSR facility [199], and theoretically
reproduced using the unified method [200].
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bumps in the temperature-dependent rate
coefficient, as in Fig. 7.6(b).

The ground state of the recombining Fe XVIII core

ion is 1s22s22p5
(

2Po
3 2

)
. The next excited level is the

very low-lying upper fine structure level 2Po
1 2 at 12.8 eV.

Also within the n = 2 ground complex lies the third level
2s2p6 (2S1 2) at 133.3 eV, which has even parity. There-
fore, the Rydberg series of resonances corresponds to
dipole transitions from the lower two odd parity levels
2Po

3 2,1 2→ 2S1 2. The experimental results in Fig. 7.8 (bot-
tom panel) display resonant features up to the excited level
2S1 2. Since a transition between fine structure levels of
the same parity within the ground state are forbidden,
the resonances up to the 2Po

1 2 threshold at 12.8 eV are
weak and narrow, and the background RR contribution
dominates as the photoelectron (or inversely, recombin-
ing electron) energy goes to zero. The remainder of the
observed resonance complexes in Fig. 7.8 correspond to
Rydberg series of autoionizing resonances converging on
to the 2s2p6(2S1 2) threshold. The resonances are clearly

found to be grouped according to n-complexes, which
are identified. They become narrower but denser with
high n (or ν), as the autoionization width decreases as
z2/ν3. The recombination cross section, mainly due to
DR since the background RR is negligible, peaks at the
threshold 2S1 2.

For comparison, the top panel of Fig. 7.8 shows the
detailed unified recombination cross section σRC from
all recombined levels of Fe XVII – photorecombination
into the group (A) levels n ≤ no, as well as the
DR-only resonances of group (B) with no < n ≤ ∞.
For comparison with the experiment (bottom panel) the
theoretical cross sections are convolved over the Gaus-
sian beam width of 20 meV to obtain the averaged
< αR(E) > = < vσRC > (middle panel). While it is
theoretically feasible to resolve individual resonances (top
panel), the monochromatic bandwidth in the experimen-
tal detector is much wider than the resonance widths.
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The unified calculations were carried out using the Breit–
Pauli R-matrix (BPRM) method described in Chapter 3.
The convolved recombination spectrum in Fig. 7.8 shows
very good detailed agreement with measurements. The
temperature dependent αR(T ) may also be computed,
and found to be in good agreement for low temperatures
Te < 106 K. The temperature of maximum abundance of
Fe XVII in collisionally ionized plasmas (discussed later)
is around 5 ×106 K. The experimental results are in the
relatively low-energy range and do not account for the
far stronger resonances resulting from the n = 3 levels
in the core ion Fe XVIII, as has been considered in later
works [201].

Another example of reombination, with an apparently
simple ion (e + C IV)→ C III, again shows that there are
complex physical effects related not only to the energy
distribution of low-n resonances, but also ionization of
high-n levels by external fields in laboratory conditions,
and expectedly in astrophysical plasmas. Figure 7.9 dis-
plays the measured DR cross section on the ion stor-
age ring TSR [202], compared with the unified BPRM

calculations in the relativistic close coupling approxima-
tion with fine structure [203]. The bottom panel in Fig. 7.9
shows the experimental results. Of particular interest in
this case, recombination with Li-like C IV to Be-like C III,
was the presence of the large autoionizing resonance com-
plex 2p4� of Be-like configuration in the near-threshold
region (the inset in the bottom panel). As for Fe XVII dis-
cussed earlier, the top panel in Fig. 7.9 is the detailed
BPRM cross section, and the middle panel shows those
cross sections convolved over the experimental beam
width. The effective integrated value of the unified cross
sections over the resonance complex 2p4� agrees with
the experimental results [194, 202] (not shown). The uni-
fied results lie between the two sets of experiments and
agree with each to about 15%, within the uncertainties in
measurements.

In addition to the high-resolution needed to study
resonances, experimental measurements face another
challenge. There is an infinite number of autoionizing
resonances that contribute to DR. But as n → ∞ reso-
nances are further ionized by external fields present in the
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apparatus (beam focusing magnetic fields for instance).
Therefore, experimental results include contributions only
from a finite set of resonances up to some maximum value
nF corresponding to field ionization. Theoretically, this
implies that a cut-off value of nF must be introduced
to truncate the otherwise infinite sum for comparison
with measured cross sections. The high-n resonances in

Fig. 7.9, converging onto the 1s22p
(

2Po
1 2,3 2

)
thresholds

of the target ion C IV, are found to be in good agreement
with the average measured rate coefficient, with nF ∼ 19.
As shown in the middle panel of Fig. 7.9, the total up to
n = ∞ also agrees well with the experimental results
up to nF ≈ 19, but is further augmented by theoretical
estimates (shaded portion in the bottom panel).
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7.5 Photorecombination and
dielectronic recombination

The unified (e + ion) recombination rate coefficients
αR(T ) are valid over a wide range of energies and
temperatures for all practical purposes. In contrast, sep-
arate calculation of RR and DR rate coefficients are
carried out in different approximations valid for limited
temperature ranges, such as low-temperature DR, high-
temperature DR and RR. Moreover, division is sometimes
made between 
n = 0 and 
n �= 0 transitions in DR.
However, the main problem with separate treatment of
RR and DR is more fundamental. Even if the DR treat-
ment is satisfactory, the calculation of RR rate coefficient
would require the calculation of unphysical photoion-
ization cross sections without resonances, computed in
simpler approximations, such as the central-field method
that does not include resonances, or a ‘one-channel’ cal-
culation. On the other hand, a self-consistent and physical
treatment of (e + ion) recombination is enabled by the use
of coupled channel wavefunctions.

The close-coupling treatment of (electron–ion) recom-
bination is a unified and integrated approach to pho-
torecombination (PR), DR and electron impact excitation
(EIE). Figure 7.10 illustrates the inter-relationships
required by conservation-of-flux and unitarity conditions
for PR, DR and EIE for the (e + C V) → C IV system
[204]. The cross sections for all three processes, computed

independently but with the same close coupling wavefunc-
tion expansion, are continuous functions of energy. The
PR cross sections include the background non-resonant
contribution as well as the resonances (left of the dashed
line in Fig. 7.10), whereas the DR cross sections (right
of the dashed line), computed using the coupled channel
DR theory, neglect the background contribution. The two
cross sections, the PR and DR corresponding to group (A)
and group (B) resonances, respectively, match smoothly
at ν ≈ 10.0, showing that the background contribution is
negligible compared to the resonant contribution at high
n > 10.

Furthermore, the DR cross sections rise exactly up
to the EIE cross section at the threshold of excitation,
in accordance with the continuity equation, Eq. 7.45,
between DR and EIE collision strengths. The DR cross
section in Fig. 7.10 at the series limit 21Po

1 agrees
precisely with the independently determined value of
the electron impact excitation cross section (filled cir-
cle) for the dipole transition 11S0 − 21P1, as required
by the unitarity condition for the generalized S-matrix,
Eq. 7.35, and conservation of flux, leading up to the
continuity condition, Eq. 7.45. The continuous transition
between the PR, DR and EIE cross sections serves to val-
idate the accuracy of the unified theory of PR and DR.
The DR cross sections are, on the one hand, consistent
with an extensively detailed coupled channel treatment
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FIGURE 7.10 Photorecombination (PR), DR, and excitation cross sections [204], as derived from photoionization calculations (left
of the dashed line), and the dielectronic (DR) cross sections (right of the dashed line) for (e + CV) → CIV; the filled circle
represents the near-threshold value of electron impact excitation cross section for the dipole transition 11S0 − 21Po

1 in C V.
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of photorecombination, until an energy region where
background recombination is insignificant, and, on the
other hand, consistent with the threshold behaviour at the
EIE threshold.

The resonances in Fig. 7.10 are radiatively damped
using the perturbative technique outlined in Section 6.9.
Owing to the interaction with the radiation field, the
autoionizing resonances are broadened, smeared and
wiped out (in that order) as n →∞. At sufficiently high-n
the resonant contribution (DR) is very large compared
with the background, non-resonant photorecombination
(PR) cross section. In the unified method of electron–ion
recombination, for n > nmax, we employ Eqs 7.44 and
7.46 to compute the averaged and the detailed DR cross
sections. The agreement and the continuity between the
three sets of data in Fig. 7.10 demonstrate the unification
of the inter-related processes of PR, DR and EIE. This
further underlines the unification of electron–photon–ion
processes illustrated in Fig. 3.5.

7.6 Dielectronic satellite lines

The (e + ion) recombination process involves an infinite
number of resonances. Recombination through a partic-
ular autoionizing state i (Eq. 7.14), gives rise to the
emission of a photon corresponding to the energy differ-
ence 
E (i– j), where j is the final recombined bound
state. There is therefore an infinite number of ‘lines’
due to DR. But while they are indeed observed as lines
in the emission spectrum, in principle these are distinct
from bound–bound transitions that are usually regarded as
line transitions. Generally, the DR lines are very closely
spaced in energy and not easily resolved. However, in
recombination with low-n of highly charged ions the
autoionizing levels, and therefore the final recombined
levels, may be sufficiently far apart to be resolved. The
energy difference between levels with different quantum
numbers increases with z, as does the radiative decay rate,
which must be high compared with the autoionization rate
for radiative emission, rather than autoionization, to occur.

Emission of a sufficient number of photons in such
DR lines may be intense enough to be detected. But what
precisely is the energy or wavelength of these lines? We
recall from Eq. 7.14 that radiative stabilization of the
(e + ion) system from a doubly excited autoionizing state
i , or p(n�), to a stable bound state j , or g(n�), occurs via
a radiative transition between the levels of the core ion,
i.e., p → g; the electron labelled n� remains a spectator
with no change in quantum numbers. Primarily, the energy
of the DR line is the transition energy 
E (p–g), the

principal transition in the core ion, which is usually a
strong dipole allowed transition with large radiative decay
rate. However, it is affected slightly by the presence of the
spectator electron, and the energy is marginally less than
that of the principal core transition. That is because fol-
lowing DR the (e + ion) system has one more electron
than the core ion. For example, the 1s2 − 1s2p dipole
transition in He-like Fe XXV is at 6.7 keV, less energy
than the 1s − 2p transition in H-like Fe XXVI at 6.9 keV.
Conversely, the wavelengths of the DR lines are longer
than the wavelengths associated with the core transitions.
Therefore, they appear as satellite lines to the principal
line in the recombination spectrum. Such DR lines are
referred to as dielectronic satellite lines (DES).

The DES lines are commonly observed in the spectra
of high-temperature sources, such as solar flares or fusion
devices. The most prominent example of DES lines in
astrophysics and many laboratory sources is the Kα com-
plex of lines formed by DR of the two-electron He-like to
three-electron Li-like iron: (e + Fe XXV)→ Fe XXIV. The
DR transitions are between the doubly excited autoioniz-
ing levels 1s2l2l′ and bound states of Li-like configuration
of Fe XXIV. Because there are two electrons in the n =
2 orbitals, and one in 1s, the autionizing configuration
1s2l2l′ is designated as KLL, with both L-electrons in
excited levels. The recombined state is formed with prin-
cipal transitions 1s2l → 1s2s, 1s2p in the He-like core ion
Fe XXV, ending up in final bound states of Li-like Fe XXIV

with configurations 1s2l2l′ → 1s22s, 1s22p, 1s2p2.
There is a total of 22 possible KLL transitions for the

DES lines of Fe XXV, listed in Table 7.1. Including fine
structure, they correspond to dipole allowed and intercom-
bination transitions from the autoionizing levels 1s2l2l′ to

the bound levels 1s22s (2S1/2), 1s22p
(

2Po
1/2,3/2

)
. Fol-

lowing the convention established by A. H. Gabriel and
C. Jordan, who first analyzed the DES spectra [205, 206],
they are designated by the alphabetical notation a, b, ..., v.
All of the KLL DES lines in Table 7.1 are satellites of, and
lie at longer wavelengths than, the He-like w-line due to

the core transition 1s2(1S0) − 2s2p
(

1Po
1

)
at 1.8504 Å.

In addition, an important observational fact is that all 22
DES lines lie interspersed among the other principal lines
x , y, z, which are the well-known intersystem (x ,y) and
forbidden (z) lines discussed earlier in Chapter 4.

7.6.1 Temperature diagnostics

The DES lines turn out to be extremely sensitive to tem-
perature variations. Since KLL DES spectra are formed
in high-temperature plasmas, they are often useful as
temperature diagnostics of sources, such as solar flares
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TABLE 7.1 Dielectronic satelline lines of He-like iron: (e + FeXXV) → FeXXIV. The 22 KLL autoionizing resonance transitions to
Li-like FeXXIV bound levels are labelled a to v [206]. The last four transitions (w, x, y, z) are the principal bound–bound transitions in
the core ion FeXXV. The columns represent the key notation for the DES lines [206], the transition, computed energy E(P) [208],
experimental energy E(X) [209], DES line strength Ss: computed from the unified method S(P) [208] and independent resonance
approximations Sa [210] and Sb [211].

Key Transition E(P) E(X) S(P) Sa Sb

a 1s2p2(2P3/2)→ 1s22p
(

2Po
3/2

)
4685.3 4677.0 6.12 6.40

b 1s2p2(2P3/2)→ 1s22p
(

2Po
1/2

)
4685.2 4677.0 0.21 0.11 0.13

c 1s2p2(2P1/2)→ 1s22p
(

2Po
3/2

)
4666.8 4658.6 0.017 0.02 0.02

d 1s2p2(2P1/2)→ 1s22p
(

2Po
1/2

)
4666.9 4658.6 0.076 0.07 0.07

e 1s2p2(4P5/2)→ 1s22p
(

2Po
3/2

)
4646.6 4639.0 4.85 4.80 4.28

f 1s2p2(4P3/2)→ 1s22p
(

2Po
3/2

)
4638.8 4632.9 0.31 0.20 0.26

g 1s2p2(4P3/2)→ 1s22p
(

2Po
1/2

)
4638.8 4632.9 0.01 4.5× 10−4 4.0× 10−3

h 1s2p2(4P1/2)→ 1s22p
(

2Po
3/2

)
4629.9 4624.6 6.0× 10−3 1.8× 10−4 2.1× 10−4

i 1s2p2(4P1/2)→ 1s22p
(

2Po
1/2

)
4629.9 4624.6 0.08 0.04 0.02

j 1s2p2(2D5/2)→ 1s22p
(

2Po
3/2

)
4672.1 4664.1 27.22 29.15 27.22

k 1s2p2(2D3/2)→ 1s22p
(

2Po
1/2

)
4664.4 4658.1 18.40 19.60 18.60

l 1s2p2(2D3/2)→ 1s22p
(

2Po
3/2

)
4664.4 4658.1 1.44 2.32 1.79

m 1s2p2(2S1/2)→ 1s22p
(

2Po
3/2

)
4704.7 4697.7 2.74 2.91 2.56

n 1s2p2(2S1/2)→ 1s22p
(

2Po
1/2

)
4704.7 4697.7 0.14 0.13 0.09

o 1s2s2(2S1/2)→ 1s22p
(

2Po
3/2

)
4561.5 4553.4 0.89 0.84 0.91

p 1s2s2(2S1/2)→ 1s22p
(

2Po
1/2

)
4561.5 4553.4 0.88 0.85 0.92

q 1s2p1(Po)2s
(

2Po
3/2

)
→ 1s22s(2S1/2) 4624.1 4615.3 0.08 0.11 0.02

r 1s2p1(Po)2s
(

2Po
1/2

)
→ 1s22s(2S1/2) 4612.6 4604.9 3.80 3.13 3.62

s 1s2p3(Po)2s
(

2Po
3/2

)
→ 1s22s(2S1/2) 4639.8 4633.2 1.29 0.15 0.90

t 1s2p3(Po)2s
(

2Po
1/2

)
→ 1s22s(2S1/2) 4637.3 4631.2 5.52 6.35 5.83

u 1s2p3(Po)2s
(

4Po
3/2

)
→ 1s22s(2S1/2) 4577.5 4570.1 0.16 0.17 0.02

v 1s2p3(Po)2s
(

4Po
1/2

)
→ 1s22s(2S1/2) 4572.2 4566.3 0.06 0.03 0.02

w 1s2p
(

1Po
1

)
→ 1s2(11S0)

x 1s2p
(

3Po
2

)
→ 1s2(11S0)

y 1s2p
(

3Po
1

)
→ 1s2(11S0)

z 1s2s(3S1)→ 1s2(11S0)

and laboratory plasmas with Te > 106 K. The reason
that a given DES line is more sensitive to tempera-
ture than, say the principal w-line, is because DES lines
are excited only by colliding electrons that have pre-
cisely the resonance energies corresponding to the DES
autoionizing levels, as shown for Fe XXV recombination

in Table 7.1. On the other hand, the w-line is due to core
excitation of the bound levels, i.e., 11S0 − 11Po

1, which
depends on all electron energies in the Maxwellian distri-
bution above the excitation threshold E(21Po). Therefore,
the DES line intensity decreases with temperature relative
to the w-line. The ratio of a DES line to the w-line is
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a   log (T ) = 6.8

b   log (T ) = 7.0

c   log (T ) = 7.25

d   log (T ) = 7.4

e   log (T ) = 7.6

f   log (T ) = 7.8
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FIGURE 7.11 Theoretically simulated
spectrum of the dielectronic satellite lines
of He-like FeXXV, and the principal lines w,
x, y, z [207].

among the most temperature sensitive diagnostics avail-
able. That is particularly so because the w-line is due to
the strong dipole transition in He-like ions, which can be
excited by electrons out to very high energies (recall that
the collision strengths for dipole transitions increase as
 ∼ ln E , as opposed to those for forbidden or inter-
combination transitions that decrease with energy, see
Chapter 5).

Figure 7.11 shows a theoretically simulated spectrum
[207] of the DES and principal lines given in Table 7.1,
at different electron kinetic temperatures where Fe XXV

is abundant in high-temperature sources. At the lowest
temperature shown, log Te = 6.8 (topmost panel), the
DES lines j and k are much stronger than the princi-
pal w-line. That is because the Maxwellian distribution
of electron energies at Te ∼ 106.8 K is insufficient to
excite the w-line substantially. But as Te increases (from
the top panel down in Fig. 7.11), the w-line gains in

intensity relative to the DES lines. As the temperature
increases, the w-line gets stronger, since there are more
high-energy electrons in the tail of the Maxwellian distri-
bution to excite the 21Po

1 level. We also note in passing
that the behaviour of the other principal lines, x , y,
z, is very valuable not only in temperature diagnostics,
but also that of electron density and ionization equilib-
rium in high-temperature plasmas (discussed in detail
in Chapter 8). The DES spectra will also be discussed
for a variety of temperature–density conditions in non-
equilibrium time-dependent sources, such as solar flares,
as well as photo-excitation by external radiation fields, in
Chapter 8.

If we denote the recombination rate coefficient for a
DES line by αs(T ), then its intensity (related to emissiv-
ity) is

Is(i → j, T ) = αs(T )nine , (7.48)
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where ni is the density of the target ion and ne is the elec-
tron density. The emissivity of thew-line4 is related to the
the electron impact excitation rate coefficient qw(Te). It is
the intensity ratio of a DES line to the w-line that is used
for temperature diagnostics. This ratio is then

Is

Iw
= αs

qw
, (7.49)

where the calculation of electron impact excitation cross
sections and rate coefficients is as in Chapter 5. In the next
section we describe the calculations of DES line strengths
that yield the rate coefficient αs (Te).

7.6.2 Dielectronic satellite line strengths

Since photoionization is the inverse process of (e + ion)
recombination, all of the 22 KLL DES resonances in
Table 7.1 are found in the photoionization cross sections
for hν + Fe XXIV → e + Fe XXV [212, 213], as shown
in Fig. 6.16. Therefore, we may compute recombination
cross sections for the satellite lines in the coupled chan-
nel approximation using the unified method. Figure 7.12
shows the σRC with the KLL resonance profiles delineated
as function of the recombining electron, or the photoelec-
tron, energy. On the other hand, the isolated resonance
approximation, Eq. 7.26, is commonly employed to calcu-
late the DES line intensites [206, 214]. The autoionization
rates Aa(s) and the radiative decay rates Ar(s) are inde-
pendently computed and substituted in Eq. 7.26 to obtain
αs(T ). However, as isolated resonances, the DES lines are
treated as a single energy transition, which does not con-
sider the natural shape of the autoionizing resonances, and
possible interference due to overlapping resonances, as
shown in Fig. 7.12. However, for highly charged ions the
isolated resonance approximation is a good approximation
because background recombination is usually negligible.
In the adaptation of the unified method to compute DES
line strengths [213], the KLL resonances appear in recom-
bination cross sections as in Fig. 7.12. They are obtained
from photoionization cross sections of the final (e + ion)
states of the recombined Li-like levels 1s22s (2S1/2),

1s22p
(

2Po
1/2,3/2

)
(Table 7.1). As evident from Fig. 7.12,

the DES lines are obtained with full natural line profiles
and display overlapping effects. While the top panel (a)

4 We carefully avoid the term ‘resonance’ line to refer to the w-line,

which astronomers often use for the first dipole allowed transition in an

atom. This is to avoid any confusion with physical resonances, which

are an important part of this text. However, readers should be aware

that they will undoubtedly encounter references to ‘resonance’ lines in

literature, and should be particularly careful when dealing with the

DES lines that actually arise from autoionizing resonances.

in Fig. 7.12 gives the full observable DES spectrum, the
lower three panels (b) to (d) also show the spectroscopic
identifications of the individual DES lines correspond-
ing to contributing symmetries Jπ = (1/2)e, (1/2)o, (3/2)o.
The resonances vary over orders of magnitude in cross
section, with often overlapping profiles within each Jπ -
symmetry; thus, the interference effects due to channel
coupling are manifest in the detailed theoretical spectrum.

In the unified method, the DES recombination rate
coefficients αs(T ) are obtained directly from recombina-
tion cross sections (Fig. 7.12), as

αs(T ) = 4√
2πm

(
1

kT

)3/2 ∫ ∞
0
ε e− ε

kT σRCdε. (7.50)

For the narrow satellite lines, where the exponential fac-
tor varies little over the resonance energy range, the rate
coefficient can be written as

αs(T ) = 4√
2πm

e−
εs
kT

(kT )3/2

∫ ε f

εi

ε σRCdε, (7.51)

where εs is the centre or the mean energy of the reso-
nance line. The DES line strength may be defined as the
temperature-independent integral5

Ss =
∫ εf

εi

σRCdε. (7.53)

The quantity Ss , expressed in eVcm2, is also useful for
comparisons with experimental measurements of DES
spectra, such as experiments on an electron-beam-ion-
trap [209, 213]. A convenient expression for the satel-
lite recombination rate coefficient in terms of the line
strength is

αs(T ) = 0.015484
εse−

εs
kT

T 3/2
Ss . (7.54)

Equation 7.54 is valid for any satellite line with a nar-
row energy width. A look at the units is useful: we
use ε in Ry, σRC in Mb and T in K. In cgs units,
Ry = 2.1797×10−11 ergs, Mb = 10−18 cm2 giving
Ry2Mb = 4.75109 × 10−40 erg2cm2. Figure 7.13
shows computed ratios of the total intensity of the
Kα complex of KLL DES lines, relative to the w-
line. The ratio IK L L/Iw is obtained from the uni-
fied approach [208] and two other calculations in
the independent resonance approximation [210, 211].

5 At this point we note the analogous expression for resonance oscillator

strengths, defined in Eq. 6.69 as

fr =
∫

r

d f

dε
=

∫
r
σPIdε, (7.52)

computed from detailed photoionization cross sections.
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FIGURE 7.12 Satellite lines of FeXXV in the
Kα complex. The top panel (a) shows the
total spectrum. The lower three panels
show the resolved and identified lines
belonging to the final individual recombined

level (b) 1s22s(2S1/2), (c) 1s22p
(

2Po
1/2

)
,

(d) 1s22p
(

2Po
3/2

)
[213].

All three curves in Fig. 7.13 appear to converge to good
agreement, ∼20%, as they approach the temperature of
maximum abundance of Fe XXV at log(T ) ∼ 7.4 in coro-
nal equilibrium (discussed in the next section). However,
there are significant differences at lower temperatures.

7.6.2.1 Correspondence between isolated and
unified approximations

In Eq. 7.53 we made the approximation that the cen-
tral DES line energy may be given by a single energy
εs , for convenience in comparing with independent reso-
nance approximations where that approximation is inher-
ent. However, the more precise quantity that is computed
in the unified method, allowing for energy variation of a
resonance, is [213]

SRC =
∫ εf

εi

ε σRCdε, (7.55)

where εi and εf are the initial and final energies that
delimit the extent of the resonance. Such a demarcation
is not always possible, or may not be accurate, in the case
of weak overlapping resonances, exemplified in Fig. 7.12.
Nevertheless, for most DES lines sufficiently strong to be
observed in practice, the background contribution is suffi-
ciently small compared with the peak contribution from
the resonance that the approximation Ss = SRC/εs is
valid in most cases.

Using the basic relation Eq. 7.26 for DR, and inde-
pendent radiative and autoionization rates Ar and Aa,
respectively, the satellite recombination rate coefficient
correponds to a single autoionizing level into which free
electrons may be captured and radiatively decay into a
DES line. However, in the independent resonance approx-
imation one needs to consider many pathways for branch-
ing between autoionization and radiative decay. Let the
capture rate be related to its inverse, the autoionization
rate Aa(i → m) from an autoionizing level i into the con-
tinuum m (ε�) (Eq. 7.14). Then, the full expression for the
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FIGURE 7.13 Comparison of intensity ratios
I(KLL)/I(w) of Fe XXV: unified method (solid line
[208]) and isolated resonance approximation
(dashed [211], dotted [210]).

DES rate coefficient in the independent approximation is,

αs(T ) = gi

gm

h3

2(2πmekT )
3
2

Aa(i → m)e
−εs
kT

× Ar (i → j)∑
l

Ar(i → l)+∑
k

Aa(i → k)
. (7.56)

Note that we now specify explicitly the various pathways
for autoionization into excited levels as final indices; for
example, if m denotes the ground level, then k refers to
excited levels. Substituting from the unified expression for
the DES line strength,

4SRC = gi

gm

h3

4πme
Aa(i → n)

× Ar(i → j)∑
l

Ar(i → l)+∑
k

Aa(i → k)
, (7.57)

which gives the autoionization rate Aa(i → m),

Aa(i → m) = SRC
gi
gm

h3

16πme
Ar (i → j)− SRC

×
⎛
⎝∑

l

Ar(i → l)+
∑
k �=m

Aa(i → k)

⎞
⎠ .

(7.58)

The Aa for other continuum states can be obtained by
solving the set of coupled linear equations that arise from
Eq. 7.58, provided the unified DES line strengths SRC are
known. In the case of KLL lines

∑
k �=m

Aa(i → k) = 0, and

the expression simplifies to,

Aa(i → m) = SRC
gi
gm

h3

16πme
Ar(i → j)− SRC

×
∑

l

Ar(i → l). (7.59)

7.7 Recombination to H and H-like ions

Before turning our attention to the most important appli-
cation of photoionization and recombination in astro-
physics – ionization balance – we remark on the simplest
example of (e + ion) recombination from bare nuclei to
H-like ions. Being one-electron systems, only the RR pro-
cess is relevant. The total recombination rate coefficient
of hydrogen can be calculated from photoionization cross
sections computed using formulae given in Section 6.4.2.
Therefrom, recombination rate coefficients for individual
shells up to n = 800, and the total, including contribu-
tions from the rest of the shells up to infinity, have been
computed [133, 215].6 A sample set of total αR(T ) is
given in Table 7.1. For any other hydrogenic ion with
charge z, the recombination rate coefficient αR(z, T )
can be calculated using the z-scaled formula αR(z, T ) =
αR(H, T/z2), where αR(H, T/z2) is the recombination
rate coefficient of neutral hydrogen at the equivalent
temperature T/z2.

7.8 Ionization equilibrium

Photoionization and (e + ion) recombination determine
the ionization balance in low-temperature-density pho-
toionized sources, such as H II regions ionized by an
external radiation field (Chapter 12). The assumption is

6 Hydrogenic recombination rate coefficients are available from the

OSU-NORAD Atomic Data website [142].
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TABLE 7.2 Recombination rate coefficients αR(T) (RRC) (in cm3s–1) for the recombined atoms and ions.
Complete sets of αR(T) are available from the NORAD-Atomic-Data website [142].

Ion RRC(cm/s)

log10T (K ) = 3.7 4 4.3
5012 K 10 000 K 19 953 K

H 3.1321× 10−12 4.1648× 10−13 2.5114× 10−13

C I 8.6730× 10−13 6.9041× 10−13 1.2959× 10−12

C II 9.0292× 10−12 6.0166× 10−12 6.0206× 10−12

C III 4.1728× 10−11 2.3405× 10−11 1.8979× 10−11

C IV 1.287× 10−11 8.103× 10−12 5.049× 10−12

C V 2.3918× 10−11 1.5472× 10−11 9.9678× 10−12

C VI 4.2088× 10−11 2.7326× 10−11 1.7614× 10−11

N I 8.1021× 10−13 5.2797× 10−13 4.9325× 10−13

N II 4.2084× 10−12 3.0754× 10−12 2.4883× 10−12

N III 1.9095× 10−11 1.4609× 10−11 1.1918× 10−11

N IV 2.8578× 10−11 2.2941× 10−11 2.0527× 10−11

N V 2.267× 10−11 1.433× 10−11 8.960× 10−12

N VI 3.777× 10−11 2.432× 10−11 1.554× 10−11

N VII 5.9457× 10−11 3.8764× 10−11 2.5028× 10−11

O I 4.7949× 10−13 3.1404× 10−13 2.4927× 10−13

O II 3.7524× 10−12 2.5156× 10−12 1.8260× 10−12

O III 1.4113× 10−11 1.3332× 10−11 1.0768× 10−11

O IV 4.7073× 10−11 3.9524× 10−11 3.0794× 10−11

O V 2.5665× 10−11 1.9636× 10−11 1.8082× 10−11

O VI 3.434× 10−11 2.185× 10−11 1.375× 10−11

O VII 5.038× 10−11 3.247× 10−11 2.078× 10−11

O VIII 8.0053× 10−11 5.2173× 10−11 3.3877× 10−11

Fe I 1.4725× 10−12 2.2977× 10−12 8.7237× 10−12

Fe II 4.1778× 10−12 4.0159× 10−12 3.4231× 10−12

Fe III 6.8638× 10−12 5.0792× 10−12 3.8430× 10−12

Fe IV 1.2832× 10−11 9.1426× 10−12 6.0594× 10−12

Fe V 2.5580× 10−11 1.6677× 10−11 1.0517× 10−11

Fe XIII 1.0616× 10−09 9.6823× 10−10 7.0239× 10−10

Fe XVII 4.176× 10−10 2.729× 10−10 1.778× 10−10

Fe XXI 7.4073× 10−10 4.6348× 10−10 2.9686× 10−10

Fe XXIV 7.423× 10−10 4.859× 10−10 3.160× 10−10

Fe XXV 9.105× 10−10 6.012× 10−10 3.955× 10−10

Fe XXVI 1.0703× 10−09 7.1077× 10−10 4.7048× 10−10

not that plasma conditions do not change with time, but
that they are sufficiently slowly varying for equilibrium
to prevail without affecting spectral or other observable
properties. Later, in Chapter 8, we shall also study tran-
sient phenomena when non-ionization equilibrium must
be considered.

In ionization equilibrium at a given temperature and
density, the distribution of an element among various

ionization stages can be specified. A considerable sim-
plification occurs in astrophysical models since only
a few ionization stages are abundant under a given
set of external conditions. The corresponding ionization
fractions are the prime output parameters from plasma
modelling codes for H II regions: diffuse and planetary
nebulae, supernova remnants and broad line regions of
active galactic nuclei. The two most common assumptions
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to describe ionization conditions in such objects are: (i)
photoionization equilibrium and (ii) collisional or coro-
nal equilibrium. The dominant ionizing process in the
first case is photoionization from the radiation field of an
external source, and in the second case, electron impact
ionization (Chapter 5). A further assumption is generally
made, that the ambient plasma is of sufficiently low den-
sity, usually optically thin, so that the ionization balance
depends mainly on temperature. That is the case for neb-
ular densities in the range ne ∼ 103 − 106 cm−3, and
ne ∼ 108−1012 cm−3 in the solar corona and solar flares.
We will see later that these densities are well below those
needed to achieve thermodynamic equilibrium such as in
stellar interiors (cf. Chapters 10 and 11).

While the two ionization processes, photoionization
and electron impact ionization, are physically quite dif-
ferent, in low-density plasmas they are both balanced by
the same inverse process – (e + ion) recombination – at
given electron temperature and usually with a Maxwellian
distribution.7 The total (e + ion) recombination rates may
be obtained either as a sum of separately calculated RR
and DR rates, or in the unified formulation. In principle,
the unified method not only subsumes both the RR and
DR processes, but also enables a fundamentally consistent
treatment, since both the photoionization and recombi-
nation calculations are carried out using the same set of
atomic eigenfunctions.

7.8.1 Photoionization equilibrium

It is convenient to consider a photoionized nebula
(Chapter 12) as an example of photoionization equilib-
rium. Each point in the nebula is fixed by the balance
between photoionization and (e + ion) recombination, as∫ ∞
ν0

4π Jν
hν

n(X z)σPI(ν, X z)dν

=
∑

j

nen(X z+1)αR

(
X z

j ; T
)
, (7.60)

where Jν is the intensity of the radiation field; 4π Jν/hν
is the number of incident photons per unit volume per unit
time; σPI is the photoionization cross section of ion X z

at frequency ν; hν0 is the threshold ionization energy;

αR

(
X z

j ; T
)

is the (e + ion) recombination rate coefficient

into level j at electron temperature T; ne, n(X z+1) and
n(X z) are the densities of free electrons and recombining

7 However, electron density effects pertaining to level-specific

recombination rates, due to collisional redistribution among high-lying

levels, are important for recombination line spectra, such as H-like and

He-like ions [216, 217].

and recombined ions, respectively. In Eq. 7.60, the left
side gives the photoionization rate �, whereas the right
side is the recombination rate. In photoionization equilib-
rium, the ionic structure of an element X in the ionization
stage X z+ is given by balance equation (i.e., gain = loss)8

n(X (z−1)+)�z−1 + nen(X z+1)αz

= n(X z+)[�z + neαz−1]. (7.61)

On the left, we have photoionizations from X (z−1)+
and recombinations from X (z+1)+ into X z+, balanced by
photoionizations and recombinations from X z+. One can
map out the ionization structure of a photoionized region
through specific ionic stages of key elements. Lines from
low ionization stages of iron are commonly observed,
and ionization fractions of these ions are of great inter-
est. For instance, we consider a typical planetary nebula
(Chapter 12) with a black body ionizing source at an
effective temperature of Teff = 100 000 K, an inner radius
of 1010 cm, and particle density of 3600 cm−3. Using
the atomic data for photoionization cross sections from
the Opacity Project [37], and recombination rate coeffi-
cients from the unified method, the ionization structure
of Fe ions obtained from the photoionization modelling
code CLOUDY [218], is shown in Fig. 7.14 (solid curves,
[219]). It is seen that, under the assumed conditions, Fe IV

is the dominant ionization state in most of the nebula. Sig-
nificant differences are found using photoionization cross
sections computed in the central-field model [140], and
previously computed RR and DR rate coefficients [220]
(dotted and dashed curves). In particular, the relative frac-
tion of Fe V is reduced by nearly a factor of two in the
region near the illuminated face of the cloud, compared
with less accurate atomic data. This is directly related to
some of the features responsible for this difference, such
as the presence of a large near-threshold resonance in
σPI(Fe IV), shown in Fig. 6.13. Proper inclusion of such
features also showed that the fraction of Fe VI is increased
by almost 40% over previous results.

Table 7.3 gives numerical values of computed aver-
aged ionic fractions, and presents the Fe I–Fe VI fractions
averaged over the whole volume of the nebula. Using

8 Readers need to be aware of confusion that may arise due to

terminology used for recombination of, or recombination into, an ion.

Here, we employ the convention consistent with the unified treatment

of photoionization and (e + ion) recombination: the rate coefficient for

forming the recombined ion z is αz from ions X z+1. But often in

literature the convention refers to recombining ion and rate coefficient

αz+1 instead. To wit: in the unified formulation we speak of

photoionization and recombination of the single ion C I. Separately

however, one may refer to photoionization of C I, but recombination

of C II.
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TABLE 7.3 Averaged ionic fractions of iron in a model planetary nebula (cf. Chapter 12) at Teff = 105 K. Unlike the new data, the
earlier data employ photoionization cross sections without resonances, and the sum of RR and DR rate coefficients.

Fe I Fe II Fe III Fe IV Fe V Fe VI

Earlier σPI, αR 3.3× 10−4 0.166 0.109 0.495 0.145 0.080
New σPI, αR 1.5× 10−4 0.145 0.127 0.470 0.112 0.140
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0

0.2

0.4

0.6

0.8

1

Radius [cm]

Io
ni

c 
fr

ac
tio

n

Fe II

Fe III

Fe IV

Fe V

Fe VI

FIGURE 7.14 Computed ionization
structure of iron in a typical planetary
nebula (see text). Solid curves are ion
fractions using the photoionization and
recombination data from the Opacity
Project and unified method, respectively
[98]. The dotted curves are with the
same photoionization data, but
independently computed RR and DR
rate coefficients [220]. The dashed
curves are employ the central-field type
photoionization data [140], and the
independent RR and DR rates.

photoionization cross sections with resonances, and uni-
fied recombination rates, the averaged fraction of Fe V

decreases by approximately 30%, while the fraction of
Fe VI is almost doubled. Furthermore, previous data pre-
dicted that the fraction of Fe VI should be about half
the fraction of Fe V, but the new data indicate that Fe VI

should actually be ∼1.3 times more abundant than Fe V.
Whereas the details may vary, the main point here is that
coupled channel R-matrix photoionization cross sections,
and (e + ion) recombination rate coefficients obtained self-
consistently with those calculations, yield quite different
ionization balance than data from simpler approximations.

7.8.2 Collisional equilibrium

In the absence of an external photoionizing source and
radiation field, collisional ionization by electrons is the
primary mechanism for ionization. Such a situation occurs
in the prototypical case of the solar corona, with mod-
erately high electron densities, ne ∼ 109 cm−3, that
establish what is known as collisional equilibrium, com-
monly known as coronal equilibrium. At first sight, one
might think that the radiation field of the Sun might also
play a role in (photo)ionizing the corona. But the effec-
tive temperature of the Sun is only about 5700 K (recall

the discussion of the Sun as a black body in Chapter 1),
whereas the kinetic temperatures in the corona exceed
106 K, nearly a thousand times higher. Therefore, pho-
toionization by the relatively ‘cold’ solar radiation field
has no appreciable effect on the ionization balance of
highly charged ions that are present in the solar corona.

In coronal equilibrium, the relative concentration of
the ions of a given element X are determined by the
condition

Cz
I (T,X

z)nen(Xz) =
∑

j

nen(Xz+1)α
(

Xz
j ; T

)
, (7.62)

where Cz
I is the rate coefficient for electron impact ioniza-

tion of an ion of charge z = Z−N into an ion with charge
z+1, with Z and N as the atomic number and the number
of electrons, respectively. Let αz = ∑

j α
(

Xz
j

)
be the

total recombination rate from the ground state of Xz+1.
The normalization of ionic densities requires that the total
density be equal to the sum of those in all ionization
stages,

nT (X) =
zmax∑
z=0

n
(

Xz
g

)
. (7.63)

The ionization rates on the left-hand side of Eq. 7.62 refer
to the ground state of the ion. Though recombinations
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occur to an infinite number of levels on the right side
of Eq. 7.62, cascading radiative transitions return the ion
core to its ground state. This condition is predicated on
the assumption that the radiative and collisional processes
proceed on faster timescales than photoionization and
recombination. Substantial departures from these equilib-
rium conditions may result in high densities where some
excited states are significantly populated, or in LTE.

In practice, to calculate the ionization fraction we must
consider all ionization stages. Equation 7.62 implies a set
of coupled simultaneous equations. For example, for car-
bon ions with Z = 6, there are seven ionization stages;
from z = 0 for neutral, to z = +6 for fully ionized carbon.
For fractions of different ionization stages relative to the
total, we have seven simultaneous equations,

n0
nT

C0 − n1
nT
α1 = 0

n1
nT

C1 − n2
nT
α2 = 0

...

...

...
n5
nT

C5 − n6
nT
α6 = 0

(n0+n1+n2+n3+n4+n5+n6)
nT

= 1

, (7.64)

where the notation nz represents n(Xz). Now these equa-
tions can be solved for any ionization fraction ni/nT . If
D is the determinant,

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0 −α1 0 0 0 0 0
0 C1 −α2 0 0 0 0
0 0 C2 −α3 0 0 0
0 0 0 C3 −α4 0 0
0 0 0 0 C4 −α5 0
0 0 0 0 0 C5 −α6
1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(7.65)

then, n1/nT , for example, is

n1

nT
= 1

D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

C0 0 0 0 0 0 0
0 0 −α2 0 0 0 0
0 0 C2 −α3 0 0 0
0 0 0 C3 −α4 0 0
0 0 0 0 C4 −α5 0
0 0 0 0 0 C5 −α6
1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(7.66)

Similarly, all other ionization fractions of carbon may
be obtained. Figure 7.15 presents ionization fractions of
oxygen ions in coronal equilibrium using unified recom-
bination rate coefficients (solid curves) [221], compared
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FIGURE 7.15 Ionization fractions of oxygen ions in coronal or
collisional equilibrium (solid curves [221]) using unified
(e + ion) recombination rate coefficients, compared with earlier
results (dashed curves [222]).

with those from the individual treatment of RR and DR
[222].

The basic features in the two sets of results in Fig 7.15
are similar. However, there are significant differences in
the numerical values, particularly at the rapidly varying
transition boundaries between adjacent ionization stages.
Differences can be seen in the depths of the ‘dip’, and the
high temperature behaviour of ion fractions. For example,
the unified recombination rates imply a faster decrease in
the abundance of O II with temperature, while that of O III

and O VIII rises faster with temperature. These differences
could affect the computation of spectral line intensities in
astrophysical models.

Finally, when three-body recombination and the den-
sity dependences of dielectronic recombination can be
neglected, the relative abundances of various stages of
ionization are independent of density and functions only
of the electron temperature.

7.9 Effective recombination rate
coefficient

The effective recombination rate coefficient αeff(nl) for
a recombined level n� of an ion is often needed in
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astrophysical plasmas. Recombination is an important
process for populating highly excited atomic levels, and
hence the strength of resulting emission lines via radiative
transitions and cascades. The population of a level n� is
dependent on the recombination rate coefficients α(nl),
the densities of recombining ions, say n(X+), and free
electrons ne, in addition to radiative decay A-coefficients
and collisional (de)-excitation coefficients among recom-
bined levels. At high densities, three-body recombination
can also be important,

X+ + e+ e → X+ e′ (7.67)

The effective recombination rate coefficient, αeff, for a
recombined ion level nl can be obtained from the con-
dition,

nen(X+)αeff(nl) = nen(X+)[αR(nl)+ neαt (nl)]+
∞∑

n′=n+1

∑
l ′=l±1

[An′l ′,nl + neCn′l ′,nl ]nn′l ′ .

(7.68)

where αt (s) is the three-body recombination rate coeffi-
cient for the level nl, An′l ′,nl is the radiative decay rate,
Cn′l ′,nl is the (de-)excitation rate coefficient due to elec-
tron collision from level n′l ′ to level nl, and nn′l ′ is the
population density of level n′l ′. The left-hand side of
Eq 7.68 gives the total number of recombined ions formed
in state nl per unit time per unit volume.

Extensive work has been carried out [143, 187, 223] in
the hydrogenic approximation. At high densities, DR from
high-n levels increases, and contributions from highly
excited autoionizing levels are often included through
extrapolation using 1/ν3 scaling. Most of the available
αeff(s) are obtained in L S coupling. They can be used for
fine structure compoments through algebraic transforma-
tion as [224],

αeff(SL i Ji → SLf Jf) = αeff(SL i → SLf)b(Ji, Jf),

(7.69)

where

b(Ji, Jf) = (2Ji + 1)(2Jf + 1)

2S + 1

{
Ji Jf 1
Lf L i S

}
. (7.70)

From the αeff(nl), the rate coefficient for a recombina-
tion line from transition i → j at wavelength λi j can be
obtained as

αeff(λi j ) = Bi jαeff(i), (7.71)

where for convenience we replace i for level nl. The Bi j
is the branching ratio

Bi j = Ai j
r∑

k<i

Aik
r

. (7.72)

nen(X+)αeff(λi j ) gives the number of photons emitted in
the line cm−3 s−1. The recombination line emissivity is
then

ε(λi j ) = Ne N (X+)αeff(λi j )hνi j [erg cm−3s−1]. (7.73)

7.10 Plasma effects

The effect of external fields and high densities is rather
complicated to include in an ab-intio treatment. But they
are important in practical situations, such as for DR from
high-n levels near the Rydberg series limits of resonances.
We have already seen an example in Fig. 7.9, where the
field-ionization cut-off in the experiment is estimated at
nF ≈ 19 from theoretical results. However, a general treat-
ment of plasma fields and densities for the calculation of
total (e + ion) recombination cross sections is yet to be
developed.



8 Multi-wavelength emission spectra

The origin of spectral lines depends on the matter and
radiation fields that characterize the physical conditions
in the source. However, the lines actually observed also
depend on the intervening medium towards the observer.
The wide variety of astrophysical sources span all possi-
ble conditions, and their study requires both appropriate
modelling and necessary atomic parameters. The models
must describe the extremes of temperature, density and
radiation encountered in various sources, from very low
densities and temperatures in interstellar and intergalac-
tic media, to the opposite extremes in stellar interiors and
other environments. As such, no single approximation can
deal with the necessary physics under all conditions. Dif-
ferent methods have therefore been developed to describe
spectral formation according to the particular object, and
the range of physical conditions under consideration.

This is the first chapter devoted mainly to astrophys-
ical applications. The theoretical formulation of atomic
spectroscopy described hitherto is now applied to the
analysis of emission-line observations in three widely
disparate regions of the electromagnetic spectrum: the
visible, X-ray and far-IR. Examples include some of
the most well-known and widely used lines and line
ratios. Emission line analysis depends on accurate calcu-
lations of emissivities, which, in turn, are derived from
fundamental parameters such as collision strengths for
(e + ion) excitation and recombination, and radiative
transition probabilities. However, spectral models in com-
plicated situations, such as line formation in transient
plasmas and in the presence of external radiation fields,
assume a level of complexity that requires consideration
of a variety of processes and parameters. We will discuss
additional examples of emission-line physics in specific
cases, such as nebulae and H II regions (Chapter 12),
stars (Chapter 10), active galactic nuclei (Chapter 13) and
cosmological sources (Chapter 14).

But we first discuss emission lines, in the so-called
optically thin approximation, where freely propagating

radiation is not signficantly attenuated by the material
environment. It corresponds to media with sufficiently low
densities to enable radiation to pass through without much
interaction. In this chapter, we assume that such a situa-
tion prevails in the source under observation, which may
be exemplified by nebulae and H II regions in general, and
the interstellar medium (Chapter 12). Absorption line for-
mation and radiative processes in optically thick media,
such as stellar atmospheres, are treated in the next two
chapters, in Chapters 9 and 10. There we consider several
topics, such as radiative transfer and line broadening, that
also affect emission lines.

Having described the fundamental atomic processes
responsible for spectral formation in previous chapters,
we are now in a position to describe the elementary
methodology for spectral diagnostics with the help of
well-known lines in a wide variety of astronomical
sources that can be treated in the optically thin approxima-
tion. The two kinds of line observed from an astrophysical
source are due to emission from excited atomic levels,
or absorption from lower (usually ground state) to higher
levels. Observationally, both emission and absorption line
fluxes are usually measured relative to the continuum,
which defines the background radiation field without the
emission or absorption line feature(s). Therefore, an emis-
sion line may be defined as the addition of energy to the
continuum flux due to a specific downward atomic transi-
tion, and an absorption line as the subtraction of energy
from the continuum due to an upward atomic transition,
as in Fig. 8.1. In this chapter, we describe spectroscopic
analysis of some of the most commonly observed emis-
sion lines in optically thin sources. The spectral ranges
are in the optical, X-ray, and far-infrared (FIR).

The examples discussed are the well-known forbidden
optical lines [O II], [S II] and [O III], formed in nebulae and
H II regions (Chapter 10). They are characteristic of plas-
mas with low ionization states of elements at low to mod-
erate temperatures and densities: Te ∼ 10 000–20 000 K
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FIGURE 8.1 Emission and absorption line flux relative to the
continuum.

≈ 1–2 eV, and ne∼ 102−6 cm−3. On the other hand, in
high temperature (optically thin) plasmas, the He-like ions
of many elements give rise to the most prominent lines
in X-ray spectroscopy, as described herein. Towards the
opposite extreme of low temperatures, forbidden FIR lines
from boron-like ions [C II], [N III], etc., are observed in
the cold and tenuous interstellar medium and H II regions.

The atomic processes involved in emission and absorp-
tion are quite different. Discussion of several specialized,
but nevertheless frequent and important, phenomena will
be described in other chapters in the context where
they occur. Both emission and absorption lines may
also be formed from autoionizing levels excited by elec-
tron or photon impact. As we saw in the previous
chapter, atomic resonances can decay radiatively, giv-
ing rise to dielectronic satellite lines. Likewise, reso-
nances in photoionization appear in absorption spectra
of astrophysical sources, such as active galactic nuclei
(Chapter 13).

8.1 Emission line analysis

Emission lines primarily depend on collisional processes
and radiative decay. In low-temperature nebular plasmas
with Te ≈ 1 eV (=11 600 K) only the low-lying levels
are excited. Some of the most prominent lines in neb-
ular spectra are from excited metastable levels within
the ground configuration of singly ionized ions of oxy-
gen, sulphur, etc. Therefore such transitions are between
levels of the same parity, which implies forbidden lines
in the spectra with very small A-coefficients, typically
10−4−10−1 s−1, corresponding to magnetic dipole (M1)
and electric quadrupole (E2) transitions. The line ratio
analysis requires the knowledge of the relevant radiative
and collisional rates, discussed next.

8.1.1 Atomic rates and lifetimes

Let us begin with the simple definition of the rate of a col-
lisional process with two reactants, say electrons and ions.
The rate is defined as the number of events (reactions)
per unit time per unit volume. In the case of electron–ion
scattering (or electron impact excitation)

rate(s−1cm−3) = ne(cm−3)× ni(cm−3)× q(cm3s−1).

(8.1)

The three quantities that determine the rate are the den-
sities of the electrons and ions, ne and ni respectively, and
the rate coefficient q. The units of q are related to the rate
defined in Chapter 5 in terms of the cross section or the
collision strength averaged over an electron distribution,
generally assumed to be a Maxwellian, as

qi j (cm3s−1)=<ve(cm/s) Qi j (cm2)>. (8.2)

The rate per second is inversely related to the lifetime
for a given atom. Here, we mean the lifetime against a
transition to another state. The lifetime against collisional
excitation i → j is

τcoll = 1

qi j ne
, (8.3)

where qi j ne is the collisional rate for a single atom,
obtained by dividing Eq. 8.2 by the ionic density ni .
Similarly, we may define the recombination lifetime

τrecomb(X) = 1

αr(X)ne
, (8.4)

where αr(X) is the recombination rate coefficient for an
ionic species X (Chapter 7). Similar considerations apply
to, say, the photoionization rate and lifetime

τphot = 1

�phot(X)
, (8.5)

where, given a radiation field intensity Jν and pho-
toionization cross section σν(X) (discussed further in
Chapter 10),

�(X) =
∫

4π

hν
Jνσν(X)dν. (8.6)

A comparison of rates and lifetimes is useful in the
analayis of astrophysical plasmas, as it indicates the rela-
tive efficiencies of atomic processes. For example, we may
compare the relative timescales for an atom to be colli-
sionally excited from i to j , or for it to be photoionized
in a radiation field; a comparison of lifetimes as above
should give the answer (cf. Chapter 10).
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8.1.2 Collisional and radiative rates

We have already considered the Einstein A and B coeffi-
cients that relate the inverse processes of radiative absorp-
tion and emission. We shall also need to relate collisional
excitation and de-excitation cross sections and rate coef-
ficients between any two levels. From the principle of
detailed balance, we have

giv
2
i Qi j (vi ) = gjv

2
j Q ji (vj ), (8.7)

where the kinetic energy of the incident electron is relative
to levels i and j , such that

1

2
mv2

i =
1

2
mv2

j + Ei j . (8.8)

The collisional excitation and de-excitation rates per
unit volume per unit time are balanced as

neni qi j = ne Nj q ji , (8.9)

and therefore,

qij (Te) =
gj

gi
qji e−Ei j/kTe = 8.63× 10−6

gi T 1/2
ϒ(Te),

(8.10)

in cm3 s−1, as obtained in Chapter 5 in terms of ϒ(Te),
the Maxwellian averaged collision strength i j (related to
the cross section Qi j ).

8.1.3 Emissivity and line ratio

Emissivity is the energy emitted in a given line j → i per
unit volume per unit time

ε j i = 1

4π
N j A ji hνi j , (8.11)

where N j is the level population per unit volume, A j i
is the rate of radiative decay per unit time and hνi j is
the photon energy. The division by the total solid angle
4π assumes that the emission is isotropic. The nature
of temperature- and density-sensitive lines is illustrated
by simply considering a three-level system i , j , k with
Ei < E j < Ek . If levels j and k are excited from i , usu-
ally the ground state where most of the atoms are found,
then, according to the Boltzmann equation, the level pop-
ulations in thermal equilibrium N j and Nk are in the
proportion

N j

Nk
= g j

gk
e(E j−Ek )/kT . (8.12)

If the levels j and k are well separated in energy then
a variation in temperature T will manifest itself in the

variation in the emissivities of lines j → i and k → i ,
which depend on N j and Nk , respectively. Therefore, the
line emissivity ratio should be an indicator of the temper-
ature of the plasma. On the other hand if the levels j and
k are closely spaced together, i.e., (E j − Ek) ≈ 0, then
the level populations are essentially independent of tem-
perature (since the exponential factor is close to unity).
Now if the j and k are also metastable, connected via
forbidden transitions to the lower level i with very low
spontaneous decay A-values, then their populations would
depend on the electron density. This is because the colli-
sional excitation rate for the transition j → k can compete
with spontaneous radiative decay. Thus, depending on
the difference in energy levels 
Ei j , we can utilize line
emissivity ratios to determine temperature or density.

For low-density optically thin plasma sources, the ratio
of emissivities for a pair of lines may be compared directly
with observed intensity ratios. We note the advantage of a
line ratio, as opposed to an individual line intensity: the
line ratio does not generally depend on external factors
other than the temperature and density. Two lines from
the same ion would have the same abundance and ioniza-
tion fraction of a given element. Furthermore, it is usually
a good approximation that the particular ions exist in a
region with the same temperature, density and other phys-
ical conditions (such as velocity fields, spatial extent, etc.).

Whereas a line ratio may depend on both temperature
and density, we can particularize it further, such that it is
predominantly a function of either temperature or density.
Indeed, that is the primary role of line ratio analysis, and
we look for ions with a pair of lines whose ratio varies
significantly with Te or ne, but not both. There are a few
well-known ions and lines that are thus useful. The main
characteristics may be understood by examining the three-
level atom again, but now shown in two different ways
in Fig. 8.2: (i) when the two excited levels, 2 and 3, are

ΔE23

ΔE23
3
2

1

3

2

1
(i) (ii)

FIGURE 8.2 Energy level schematics of (i) density and (ii)
temperature diagnostics. Closely spaced levels yield lines
relatively independent of temperature, such as the [OII], [SII]
lines, and levels spaced farther apart yield lines sensitive to
electron temperature, owing to the Boltzmann factor in
Eq. 8.12, such as in [OIII] (see text).



178 Multi-wavelength emission spectra

closely spaced, and (ii) when they are significantly apart
in energy. From the Boltzmann equation the line ratio
will depend on the temperature and the energy difference
E23, and the density via the excitation rates q12, q13 and
q23 that determine the distribution of level populations
among the three levels. But when the energy difference
E23 is small, E23 ≈ 0, then the Te dependence via the
exponential factor will also be small and the line ratio
should depend mainly on the electron density. To deter-
mine the line ratio at all densities, the level populations
(N1, N2, N3) must be explicitly computed by solving the
three-level set of equations and calculating the emissivity
ratio1

ε21

ε31
= N2 A21 E21

N3 A31 E31
. (8.13)

8.2 Collisional-radiative model

To determine the emissivity of a line we need to calcu-
late the level populations of ground and excited levels.
Although in principle all atomic levels are involved, it
is neither practical nor necessary to include more than a
limited number. In simple cases, usually only few lev-
els are explicitly considered. They are coupled together
via excitation and radiative transitions among all levels
included in the (truncated) model atom. A coupled set of
equations, therefore, can be written down, involving the
intrinsic atomic parameters that determine the intensities
of observed lines.

In the simplest case, we consider only electron
impact excitation and spontaneous radiative decay (fur-
ther specializations may include radiative or fluorescent
excitation, discussed later). The primary dependence on
extrinsic variables is through the electron temperature Te

and density ne. For given (Te, ne), the level populations
are obtained by solving a set of simultaneous equations.
The two atomic parameters needed are the excitation rate
coefficient qi j (cm3 s−1) and the Einstein A values A j i
(s−1) for all transitions in a model N -level atom with
level indices i = 1, 2, . . . , j, . . . , N . The total rate for the
i → j transition is expressed in terms of

Pi j = qi j (Te)ne + Ai j ( j �= i). (8.14)

Collisional excitation into level j from all other lev-
els (gain) is followed by downward spontaneous radiative
decay (loss) to all levels j < i . In steady state, the level
populations Ni are calculated by balancing the number of

1 Here one should distinguish between ‘line ratio’, which may refer to

observed quantities, and ‘emissivity ratio’, which refers to theoretically

computed parameters.

excitations into level i (per unit volume per unit time),
with radiative decays out of it (A j i ≡ 0 if j < i), i.e.,

Ni
∑
j �=i

Pi j =
∑
j �=i

N j Pji . (8.15)

A more general form of Eq. 8.15 involves time-
dependence, and all collisional and radiative processes
that affect each level population Ni . But if we have
statistical equilibrium then the rate equations are time-
independent, i.e.,

dNi

dt
=

∑
j �=i

N j Pji − Ni
∑
j �=i

Pi j = 0. (8.16)

These collisional-radiative (CR) equations may be
cast in matrix notation as P = C + R, where the matrix
elements Ci j involve collisional (de)-excitation rate coef-
ficients qi j , and the R ji involve the Einstein radiative
decay rates. In the presence of a radiation field of intensity
Jν , we can write the radiative sub-matrix as

R ji = A ji + Bi j Jν . (8.17)

The CR equations can be solved by any simultaneous-
equation solver, such as matrix-inversion or Gauss–Jordan
elimination and back substitution. Eq. 8.15 constitutes a
CR model with a finite (usually small) number of lev-
els (for the time being we are neglecting photo-excitation
by an external radiation source). We illustrate the essen-
tial physics by considering a simple three-level atom
(Fig. 8.2), and write down the populations of levels 2
and 3;2

N2 A21 + ne N2(q21 + q23)

= ne N1q12 + ne N3q32 + N3 A32, (8.18)

and similarly for level 3,

N3(A31 + A32)+ ne N3(q31 + q32)

= ne N1q13 + Ne N2q23. (8.19)

One can also do this for level 1. That would give three
simultaneous equations which, in principle, can be solved
for the three-level population. However, the normalization
would still be arbitrary. Therefore, we generally normal-
ize the level populations to unity, i.e., (N1+N2+N3)= 1.
But even before we solve the set of equations exactly, it
is instructive to simplify the above equations by physi-
cal arguments for a given ion in a particular source, such

2 We follow the convention that the densities are denoted as lower case n

(cm−3), such as ne or ni, and level populations as upper case N

(cm−3), such as N2, N3, etc. But in some cases it will be necessary to

use different notation, viz. Chapter 9.
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as low-density H II regions, where the excited state pop-
ulations are negligible and almost all the ions are in the
ground level. In that case, the excited levels are populated
only by excitation from the ground level, and radiative
decay from above. Then we can drop all collisional terms
from excited levels, such as ne N2(q21+q23) and ne N3q32
from Eq. 8.18, and ne N3(q31 + q32) and ne N2q23 from
Eq. 8.19 to obtain

N2 A21 = ne N1q12 + N3 A32
N3(A31 + A32) = ne N1q13.

(8.20)

If we are only interested in the ratios of the three lines
from excited levels, (i) 3→1, (ii) 3→2 and (iii) 2→1, then
we can divide out N1 and obtain relative level populations,

N3

N1
= neq13

(A31 + A32)
. (8.21)

Substituting in the first Eq. 8.20 also gives N2/N1.
We can now obtain the emissivities of the three lines. For
example,

ε31 = neq13

(A31 + A32)
∗ (A31 ∗ hν31). (8.22)

The other two line emissitives may be obtained sim-
ilarly, and the emissivity ratios such as ε31/ε21 can be
obtained. Yet another simplification occurs in cases where
we have two lines arising from the same upper level, say
from level 3. In that case the ratio is independent of the
level populations, since it is the same for both lines and
cancels out. For example,

ε(3→1)

ε(3→2)
= A31hν31

A32hν32
, (8.23)

which is the ratio of the respective A-values and energy
differences. Furthermore, if the lines are close in wave-
lengths with hν31 ≈ hν32, then the line ratio is simply the
ratio of A-values alone. Observations of line intensities
I31 and I32 originating from the same upper level thereby
provides an empirical check on the A-values, which are
usually calculated theoretically. To ensure accuracy, how-
ever, it is best to solve the coupled statistical equations by
setting up the CR model (Eq. 8.15) with a reasonably com-
plete subset of levels likely to contribute to line formation
in an ion, and solve them exactly. To summarize the
discussion thus far: we are now left with the task of deter-
mining level populations in excited states of an ion, which
depend essentially on the rate of excitation of levels and
radiative decays. Since the excitation rates are functions of
temperature and density alone, and determine level popu-
lations, it follows that line ratios are indicators of Te and

ne. Recall that we neglected radiative excitations. How-
ever, more complicated situations may also involve exter-
nal radiation fields and time-dependence, considered later.

8.3 Spectral diagnostics: visible lines

In this and following sections we discuss some of the
most common and basic diagnostic lines and emission
line ratios in three widely different regions of the electro-
magnetic spectrum: optical, UV/X-ray, and far-infrared.
These diagnostics will later be employed in the analysis of
optically thin plasmas in astrophysical objects described
in subsequent chapters on stellar coronae (Chapter 10),
nebulae and H II regions (Chapter 12) and active galactic
nuclei (Chapter 13), etc. More complicated species, such
as Fe II, and more specialized effects, such as resonance
fluorescence and photo-excitation, will also be dealt with
in those chapters pertaining to the actual astrophysical
situations where they are likely to occur.

8.3.1 Optical lines: [OII], [SII], [OIII]

Among the most prominent lines in the optical range are
those due to forbidden transitions in O II, O III and S II.
The [O II] and [S II] lines form a pair of similar fine struc-
ture ‘doublets’ at λλ 3726, 3729 and λλ 6716, 6731,
respectively.3 These lines are the best density diagnostics
in H II regions, and they conveniently occur at the blue and
the red ends of the optical spectrum. On the other hand,
the strongest [O III] lines act as temperature diagnostics
and occur in the middle of the optical range, with three
main transitions at λλ 4363, 4959, 5007 Å. Figure 8.3 is a
spectrum of the Crab nebula [225], and encompasses the
optical range displaying not only these lines, but also a
number of quintessential nebular lines.

The [O II] lines are also referred to as ‘auroral’ lines,
since they are formed in the Earth’s ionosphere and seen in
Aurorae near the geomagnetic polar regions; neutral oxy-
gen is photoionized by the Sun’s UV radiation to form
O II. The [S II] lines are traditionally referred to as ‘neb-
ular’ lines, and observed in most H II regions. For these
ions, the set of CR equations may be as small as five

3 In a classic paper in 1957, M. J. Seaton and D. E. Osterbrock first

demonstrated the utility of the forbidden [O II] and [S II] line ratios as

nebular diagnostics [226]. The crucial dependence of the line ratios on

the accuracy of the fundamental atomic parameters was, and continues

to be, one of the main drivers behind the development of

state-of-the-art atomic physics codes based on the coupled channel

approximation described in Chapter 3 and elsewhere.
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levels, with forbidden transitions within the ground con-
figuration as exemplified by the [O III], [O II] and [S II]
lines mentioned. The blue [O II] and the red [S II] line
ratios are both sensitive indicators of ne in the nebular
range 102–105 cm−3. The [O III] lines are in the middle
of the optical region and provide the ‘standard’ nebular
temperature diagnostics.

8.3.1.1 Density dependence of [O II] and [S II]
lines

As shown in Fig. 8.4, these lines originate from transi-
tions within the same type of ground configuration: 2p3

and 3p3, respectively. The energy level structure consists

of five levels
(

4So
3 2
,2 Do

3 2,5 2
,2 Po

1 2,3 2

)
; their energies are

given in Table 8.1. The transitions of interest for density
diagnostics are from the 2Do

3 2,/5 2 levels to the ground

level, at λλ 3729, 3726 Å for [O II], and λλ 6717, 6731
Å for [S II]. Note that the 2Do

3 2,/5 2
and the 2Po

1 2,3 2
lev-

els are switched around in O II and S II. Hence the line
ratio corresponding to the same transitions is 3729/3726 in
[O II], higher-to-lower wavelength, but the reverse in the
[S II] 6717/6731 ratio. Since the two fine-structure levels
are closely spaced, the temperature dependence for colli-
sional excitation is small, and the line ratios depend nearly
entirely on electron density. The main transitions of inter-
est are from the ground level So

3 2
to the two fine structure

levels 2Do
5 2,3 2

, that give rise to the density-sensitive lines
via collisional mixing. The detailed collision strengths
for [O II] as a function of electron energy are shown in
Fig. 8.5 [108]. The top two panels show the collision
strengths for electron impact excitation 4So

3 2
→2 Do

5 2,3 2
.

The collision strengths divide in the ratio 6:4 according to
statistical weights, even at resonance energies (Chapter 5).
But the actual sensitivity to electron density depends pri-

marily upon the collision strength  
(

2Do
5 2
−2Do

3 2

)
for

mixing between the upper levels 2Do
5 2

and 2Do
3 2

, which
contains considerable resonance structure, as shown in the
bottom panel of Fig. 8.5. Although these two levels are
reversed in [O II] 3729/3726 and [S II] 6717/6731 ratios
(Table 8.1), it makes no qualitative difference to the den-

sity dependence, since  
(

2Do
5 2
−2Do

3 2

)
is symmetrical

with respect to energy order (Chapter 5).

Although in practice the line ratios need to be calcu-
lated from a CR model (Eq. 8.15) at all densities (and
temperatures) of interest, it is instructive to consider the
low- and high-density limits of the [O II] and [S II] line
ratios from physical considerations alone. We consider
two limiting cases.
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TABLE 8.1 Energies of OII and SII ground configuration levels
(Rydbergs).

Level O II (2p3) S II (3p3)

4So
3/2 0.0 0.0

2Do
5/2 0.244 315 7 0.135 639 6

2Do
3/2 0.244 498 1 0.135 349 9

2Po
3/2 0.368 771 6 0.223 912 3

2Po
1/2 0.368 789 8 0.223 486 7
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FIGURE 8.5 The collision strengths for [OII] transitions
sensitive to electron density [108]. The near-threshold

resonances in  
(

2Do
5 2
−2 Do

3 2

)
(inset) enhance the effective

Maxwellian averaged rate coefficients that determine the
collisional mixing between the two fine-structure levels.

The low density limit ne → 0
At very low densities, most ions are in the ground level.
The other excited levels in Table 8.1 are metastable, and
downward transitions are dipole (E1) forbidden. But they
decay via magnetic dipole (M1) or electric quadrupole
(E2) transitions with A-values (∼ 10−1 − 10−4 s−1),
that are about eight to ten orders of magnitude smaller
than is typical for dipole allowed transitions. However,
after excitation from the ground 4So

3 2
level to the upper

metastable levels, it is highly improbable that the ion will
be collisionally de-excited to the ground level by electron
impact, since the number of electron collisions would be
very small. Thus, in a low-density plasma, the excited ion
is likely to remain so, until radiative decay (the proba-
bility that it will is nearly unity). Thus the ratio of lines
corresponding to the relevant transitions 2Do

5 2,3 2
→4 So

3 2

is governed only by the ratio of the excitation rate coef-

ficients q
(

4So
3 2
−2 Do

5 2

)
and q

(
4So

3 2
−2 Do

3 2

)
. Now, if

we further neglect the temperature dependence, since the
two excited 2Do

5 2,3 2
levels have negligible energy differ-

ences, the ratio of the rate coefficients is simply the ratio
of the (effective) collision strengths. Therefore,

limne→0

N
(

2Do
5/2

)
N

(
2Do

3/2

) =  
(

4So
3/2 −2 Do

5/2

)
 

(
4So

3/2 −2 Do
3/2

) = 6

4
.

(8.24)

The collision strength ratio divides according to the
statistical weights of upper levels, because in LS coupling
if the total L or S = 0 for the initial term, then the fine-
structure collision strengths can be obtained algebraically
from the LS collision strength (Chapter 5). Given that the
intial LS term is 4So with L = 0, the low-density limit for
both the [O II] and [S II] line ratios I(3729)/I(3726) and
I(6717)/I(6731) is 3/2.

The high density limit ne → ∞
At sufficiently high densities, the level populations
assume the Boltzmann distribution, and the [O II] and
[S II] line ratios are given by

lim
ne→∞

ε
(

2Do
5/2 −4 So

3/2

)
ε
(

4So
3/2 −2 Do

3/2

)

=
g
(

2Do
5/2

)
g
(

2Do
3/2

) A
(

2Do
5/2 −4 So

3/2

)
A
(

2Do
3/2 −4 So

3/2

) , (8.25)

which depends only on the ratio of the intrinsic A values
(given in Appendix E). The high density limits are: [O II]
I(3729)/I(3726) = 0.35, and [S II] I(6716)/I(6731) = 0.43.

Figure 8.6 shows the line ratios obtained from a full
solution of the five-level atom in Table 8.1. It is seen that
the theoretical line ratios approach their respective limit-
ing values. There are slight deviations, owing to coupling
with other levels and associated rates, from the limit-
ing values derived from physical consideration alone. But
such simple limits are not easily applicable to other ions,
since they are subject to certain caveats, assuming (i) rel-
ativistic effects are small so that LS coupling is valid,
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(ii) the lower term has total L or S = 0, (iii) resonance
effects do not preferentially affect one excited fine struc-
ture level over the other. If (i) holds but (ii) does not,
then algebraic rules may still yield fine structure collision
strengths from LS coupling values. However, in compli-
cated cases such as Fe II, discussed in Chapter 12, none of
these caveats apply, and no simple limits can be obtained.
The [O II] and [S II] lines are immensely valuable diag-
nostics in H II regions since the low- and high-density
limits discussed above always hold. The theoretical lim-
its derived above are well-established, and verified by
many observational studies of nebulae with no observed
deviations from these ‘canonical’ values. In Fig. 8.6, the
observed intensity ratios from the Orion nebula, obtained
from Echelle spectrophotometry using the Very Large
Telescope [227], are also shown; they constrain the densi-
ties fairly precisely to log ne ≈ 3.7 (ne ≈ 5 × 103cm−3)
from both the [O II] and [S II] line ratios.

8.3.1.2 Temperature dependence of [O III] lines
The energetics of [O III] emission lines are quite differ-
ent from [O II] and [S II] (Fig. 8.2), and highly suitable for
temperature diagnostics. The five levels of the ground con-
figuration are 1s22s22p2(3P0,1,2,

1 D2,
1 S0). The three

LS terms are separated by a few eV, so that the level
populations due to electron impact excitation are depen-
dent on temperatures typical of nebular H II regions.
Often, the strongest lines in the optical nebular spectra
are the three lines λλ 4959, 5007, 4363 Å due to tran-
sitions 1D2 −3 P1,

1 D2 −3 P2,
1 S0 −1 D2, respectively.

Combining the fine structure transitions, the line ratio
[I(4959) + I(5007)/I(4363)] is a very useful diagnostic of

temperatures ∼1–2 eV ≈ 10 000 20 000 K. Using known
excitation rate coefficients and A-values for [O III] lines
(see Appendix E) emissivities can be parametrized in
terms of Te and ne as in Eq. 8.22. For the [O III] line ratio
([228]),

I (λ4959+ λ5007)

I (λ4363)
= 8.32 e3.29×104/T

1+ 4.5× 10−4ne/
√

T
. (8.26)

Similar expressions may be constructed for other line
ratios in ions with a few-level CR model [228]. The
O III lines are discussed in Chapter 12 in the context
of photoionized H II regions. It is shown that in ion-
ization equilibrium the photoionization rates, and hence
the inverse recombination rates, are slower by orders of
magnitude than collisional excitation rates. However, res-
onant photo-excitation of O III due to the He II 304 Å
recombination line is a significant contributor to the for-
bidden [O III] lines – the so-called Bowen fluorescence
mechanism described in detail in Chapter 10.

8.3.2 Hydrogen and helium recombination
lines

In all H II regions with Te ∼ 104 K (about an eV) the H
and He emission lines are not due to electron impact exci-
tation, since electrons have insufficent energy to excite
any of those lines from the ground levels of H and
He. Rather, the H and He lines are due to electron–ion
recombination:

e− + H+(p) → Ho(n�),
e− + He++ → He+(n�),
e− + He+ → Heo(n�).

Electron–ion recombination at low temperatures takes
place with the electron captured into a high Rydberg level
n�, with subsequent transition to another (lower) level,
or to the ground state. For example, Hα (6563 Å) is
emitted following capture (or cascades) into the n = 3
levels followed by radiative transition to the n = 2 levels.
Such radiative cascades usually proceed via the fast dipole
allowed (E1) transitions with high A-values. Also, note
that there are a number of levels in any excited n-complex
in H or He; therefore, there are several transitions associ-
ated with recombination lines of H and He. For example,
the Hα line is due to transitions

3s(2S1/2), 3p
(

2 Po
1/2,3/2

)
, 3d(2 D3/2,5/2)

→ 2s(2S1/2), 2p
(

2 Po
1/2,3/2

)
: Hα. (8.27)

Similarly, visible helium lines are produced in nebu-
lae by radiative transitions among many levels, following
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electron recombination of H-like He II into He ions. For
example, the 5876 Å line from He I is due to the transition
among the following levels,

1s3d(3 D1,2,3)→ 1s2p
(

3 Po
0,1,2

)
.

Hydrogen recombination lines are discussed further in
Chapter 12 under nebular conditions.

8.4 X-ray lines: the helium isoelectronic
sequence

The atomic physics of X-ray emission line diagnostics
is considerably more involved than the optical forbidden
emission lines discussed above. The most useful atomic
system is helium-like ions of nearly all astrophysically
abundant elements, from carbon to nickel. Although it has
only one more electron, the atomic physics of helium is
fundamentally different from hydrogen. The two-electron
interaction, absent in H, dominates atomic structure and
spectral formation in not only neutral He but also in
He-like ions that are of great importance in X-ray spec-
troscopy of high-temprature astrophysical and laboratory
plasmas.

As discussed earlier, in Chapters 4 and 5, He-like ions
have a closed-shell ground configuration 1s2. Excitations
out of this K-shell into the excited levels of configurations
1s2l – the He Kα transitions – require high energies, typ-
ically in the X-ray range. The downward radiative decays
entail several types of transitions as shown schematically
in the energy-level diagram in Fig. 8.7, which is a simpli-
fied version of the more elaborate diagram in Fig. 4.3 with
fine structure, as discussed in Section 4.14.

1s2p

1s2

1s2p

r

i

f

1s2s

Excitation

1p0

1S

3p0

3S

FIGURE 8.7 Basic energy level diagram for the formation of He
Kα X-ray lines.

Referring to LS coupling term designations to begin
with, appropriate for low-Z elements, the primary X-ray
transitions are

1s2(1S) → 1s2p(1P) dipole allowed (r)
1s2(1S) → 1s2p(3P) intersystem (i)
1s2(1S) → 1s2s(1S) two-photon 2hν

continuum
1s2(1S) → 1s2s(3S) forbidden ( f )

(8.28)

The parenthetical (r ) on the right refers to the common
astronomical notation for the first dipole transition in an
atom, and stands for ‘resonance’ transition.4 All of these
transitions, and their line ratios, are the primary diag-
nostics for density, temperature, and ionization balance
in high temperature plasmas [205, 206, 231, 232, 233].
Figure 8.8 shows the quintessential (though simplest)
specrum of the X-ray He Kα lines from O VII, as observed
from the star Procyon.5 The primary diagnostics from
He-like ions depend on two line ratios, discussed below.

R = f

i
,

and (8.29)

G = i + f

r
.

8.4.1 Density diagnostic ratio R = f / i

As shown in Fig. 8.7, the forbidden lines arises from
the metastable state 1s2s (3S) (or 23S), which has a
very low A-value for decay to the ground state 1s2(1S).
On the other hand the 23S state has a high excitation
rate to the nearby higher state 2(3Po): the two states are
connected via strong dipole transition. As the electron
density increases, electron impact excitation from 23S
transfers the level population to 23Po via the transition
23S → 23Po, thereby decreasing the f -line intensity and
increasing the i-line intensity. This transition is similarly
affected by photo-excitation, if there is an external radia-
tion source, such as a hot star or active galactic nucleus.
The downward radiative decay from the 23Po back to the
23S partially makes up for the upward transfer of popula-
tion, but (a) the 23S is metastable and likely to get pumped
up again and (b) part of the 23Po level population decays

4 This term, though common, is inaccurate and is unrelated to

resonances as described elsewhere in this text.
5 Stellar classes and luminosity types are discussed in Chapter 10.

Procyon is a main Sequence F5 IV–V star, not too different from the

Sun (G2 V) with similar coronal spectra; although Procyon is a binary

system with a white dwarf companion. The similarity reflects common

microscopic origin under coronal plasma conditions, unaffected by the

overall macroscopic peculiarities of the source, per se.
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FIGURE 8.8 Resonance (r), intercombination (i) and forbidden (f) X-ray lines of He-like O VII from the corona of Procyon ([229],
reproduced by permission). The ‘triplet’ here refers simply to three lines, and not to the spin-multiplicity (2S+ 1), which is the
standard spectroscpic usage (viz Chapter 2), and throughout this text.

to the ground state. Hence, the ratio R = f/i is a sen-
sitive density indicator beyond some critical density nc,
determined by the competition between the radiative and
excitation rates for the relevant transitions. Specifically,

nc ∼ A(23S− 11S)

q(23S− 23Po)
.

For ne > nc the f-line intensity decreases in favour of
the i-line (as shown later in Fig. 8.10).

8.4.2 Temperature and ionization equilibrium
diagnostics ratio G = (i+ f)/r

If we add together the lines from the excited triplet n = 2
levels 2(3S,3 Po), then the density dependence vanishes
since collisional excitations would re-distribute the level
population among the two levels, but the sum would
remain constant. Since the singlet 21Po level lies higher
in energy than the triplets, the ratio G = (i + f)/r is
expected to depend on the temperature. However, there is
another dependence of G that is highly useful – on ioniza-
tion balance in the ambient plasma. This occurs because
of recombinations from H-like to He-like ions, and on
ionization from Li-like into He-like ions. The recombi-
nations preferentially populate the high-lying triplet (spin
multiplicity 2S + 1 = 3) levels, generally according to
statistical weights, but then cascade down to populate the
n = 2 levels (Fig. 8.7). However, the triplets are far more
likely to cascade down to the 23S via 
S = 0 dipole
allowed transitions, than to the ground state 11S, which
would be via the less-probable spin-change transitions.
The metastable 23S state thus acts as a ‘pseudo-ground
state’ for recombination cascades from excited triplets.

The excited singlets n1L on the other hand are most
likely to radiate quickly to the ground state 11S, following
the most direct singlet cascade pathways. Therefore, the
2(3S,3 Po) states are populated far more than the 2(1Po)

by recombinations from a H-like ionization stage. It fol-
lows that the ratio G would be highly sensitive to the
ionization fraction H/He of an element. The ratio G is
also sensitive to inner-shell ionization from the Li-like to
He-like stages: 1s22s → 1s2s(3S) + e. Therefore, ioniza-
tions also enhance the population of the metastable 2(3S)
level (again acting as a ‘pseudo-ground state’). Recall
that inner-shell excitations into the singlet level 1s2s(1S)
do not result in line formation, since it decays into a
two-photon continuum (Fig. 4.3, Eq. 4.167).

8.4.3 Electron impact excitation of X-ray lines

Why is the forbidden f -line nearly as strong as the
dipole allowed w-line (Fig. 8.8)? The answer lies partly
in recombination cascade transitions, but also in electron
impact excitation rates that are similar in magnitude. Par-
ticularly so, because the forbidden transitions are more
susceptible to resonance enhancement than allowed tran-
sitions (Chapter 5). While the discussion thus far illus-
trates the basics of He-like spectra, in non-relativistic
LS coupling notation, it is not precise because we have
neglected fine structure and the detailed nature of atomic
transitions. Nevertheless, it is useful to introduce the
primary lines of He-like ions in this manner, as done his-
torically, and for light elements up to neon, where the
fine structure is unresolved. But it is necessary to con-
sider the full complexity of He-like spectra to determine
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FIGURE 8.9 Collision strengths for X-ray transitions in He-like OVII [234].

the atomic transitions and rates needed to be solved for
level populations and line intensities.

To introduce fine structure fully, we recall the dis-
cussion in Chapter 4 of the different types of radiative
transitions that occur in He-like ions. In addition, we
also need to understand electron scattering with helium-
like ions, which is the process primarily responsible for
the formation of X-ray lines.6 We consider the excita-
tion from the ground level 1s2 (1S0) to the n = 2,3,4

6 The atomic astrophysics of He-like systems is discussed throughout the

text as a prime example of astrophysical spectroscopy. In addition to

the formation of these lines covered in this chapter, particular aspects

are described in radiative transitions (Chapter 4), and X-ray spectra of

active galactic nuclei (Chapter 13).

levels 1sns
(

3S1,
1 S0

)
and 1snp

(
3Po

0,1,2,
1 Po

1

)
. One of

the main features of the excitation cross sections is the
extensive appearance of series of resonances that often
dominate the energy range of interest.7 As we have seen,
for positive ions the electron may be captured into Ryd-
berg series of infinite resonant states belonging to a higher
threshold with energy Ek > Ei j , temporarily bound to the
ion in autoionizing states Ek(n�). As n →∞, these reso-
nances form a Rydberg series converging on to the higher
threshold Ek . We illustrate the practical situation where

7 This section also highlights the reason for employing the coupled

channel (CC) approximation to compute collision strengths, since that

fully accounts for resonance effects.
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many resonance n-complexes (i.e., same n-values but dif-
ferent �-values) manifest themselves. Figure 8.9 shows
the collision strengths for four of these transitions in He-
like oxygen O VII that give rise to prominent lines in the
observed X-ray spectra, discussed later.

Resonances lie between two n-complexes: n = 2–3
and n = 3–4. The (e + ion) resonance in the (e + He-
like) system has the configuration of a three-electron Li-
like system 1sn�n′�′, or using the n-shell notation, KLL,
KLM, KMM, etc. For example, the series of resonances
1s3�3�′, 1s3�4�′ refer to KMM and KMN complexes,
converging onto the n = 3 levels of the He-like O VII

1s3�(SLJ). Similarly, for the KNM, KNN, complex of
resonances converge on to the n = 4 levels. Of the four
shown in Fig. 8.9, only one is an allowed dipole transi-
tion, 11S0 − 21Po

1, from the ground state 1s2(1S0) to the
highest of the n = 2 levels in O VII 1s2s(1Po

1); the other
three transitions are forbidden 11S0 − 23S1 or intersys-
tem (Eq. 4.167) transitions 11S0 − 23Po

1, 1
1S0 − 23Po

2.8

Now note that the collision strength for the allowed tran-

sition  
(

11S0 − 21Po
1

)
rises significantly with energy,

whereas those for the other transitions decrease or are
nearly constant (Section 5.5).

8.4.4 R and G ratios with fine structure

Recalling the designations of radiative transitions in He-
like ions from Section 4.14, and Fig. 4.3, the i-line is
labelled as ‘intersystem’ in Eq. 8.28. In fact, it is a
combination of two entirely different types of transition,
revealed when one considers the fine structure 3Po

1,2. We
now explicitly refer to the fine structure levels and type
of radiative transitions, and switch to the more distinctive
notation already introduced in Fig. 4.3; and Eq. 4.167

f→ z : 23S1 − 11S0(M1)

i →x + y:
(

23Po
2, 2

3Po
1

)
− 11S0(M2,E1)

r → w : 21Po
1 − 11S0(E1)

(8.30)

and the line ratios

R = z/(x + y) G = (x + y + z)/w. (8.31)

While the emissivities are calculated by a detailed
solution of the full collisional–radiative model (Eq. 8.15)
for He-like ions, comprising all seven levels shown in
Fig. 4.3, it is again instructive to write down the diagnostic
line ratios in physical terms with contributing transitions

8 We often abbreviate the configuration [n,�] by writing only the n-prefix

when writing the transition from one (n�)SL J to another.

and rates of atomic processes. Let us first consider the
density diagnostic ratio

R =
I
(

23S1 − 11So

)
I
(
23Po

1 − 11S0
)+ I

(
23Po

2 − 11S0
) . (8.32)

For convenience, one defines a quantity F consisting
of collisional excitation and recombination rate coeffi-
cients that contribute to the 23S1 and 23Po

0,1,2 level
populations;

F = q(11S0−23S1)+αR(23S1)XH/He+C(23S1)

q(11S0−23P0,1,2)+αR

(
23Po

0,1,2

)
XH/He+C

(
23Po

0,1,2
) .
(8.33)

The q refers to electron impact excitation rate coef-
ficient, αR to the level-specific (e + ion) recombina-
tion rate coefficients (radiative plus dielectronic – see
Chapter 7), XH/He to the ionization fraction H-like/He-
like, and C(SL J ) to cascade contributions from excitation
or recombination into higher levels to the level SL J . The
radiative branching ratio B for decays out of the 23Po

J
levels, including statistical weights, is

B = 3

9

A
(

23Po
1 − 11S0

)
A
(
23Po

1 − 11S0
)+ A

(
23Po

1 − 23S1
)

+ 5

9

A
(

23Po
2 − 11S0

)
A
(
23Po

2 − 11S0
)+ A

(
23Po

2 − 23S1
) . (8.34)

Note that there is no branching out of the 23Po
0 level to

the ground level 11S0 (strictly forbidden); it decays only
to 23S1. With the exception of the 23S1−23Po

0,1,2 excita-
tions, we have neglected collisional redistribution among
other excited n = 2 levels since they are small compared to
radiative decay rates. The density dependence of the ratio
R can now be expressed as

R(ne) = Ro

1+ ne/nc
, (8.35)

where nc is the critical density given by

A(23S1 − 11So)

(1+ F)q(23S1 − 23P0,1,2)
, (8.36)

and

Ro = 1+ F

B
− 1. (8.37)

As the electron density ne exceeds or is comparable to
nc, the ratio R decreases from its low-density limit Ro.
Figure 8.10 shows a plot of R vs. ne for O VII.

Now we examine the G ratio between the lines from
the triplet levels (x + y + z) to the singlet line w, which
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FIGURE 8.10 X-ray density diagnostic line ratio
R = f/i ≡ (x+y)/z for O VII (modelled after [229]). The
forbidden-to-intercombination line ratio varies from
Ro = R > 1 at low densities, to R < 1 at high densities
(Fig. 8.8).

is primarily a function of temperature and ionization
balance. The density dependence due to redistribution
transitions within triplets is taken out by adding all triplet
lines:

G(Te, XH/He, XLi/He)

= q(11S0−23S1)+q
(

11S0−23Po
0,1,2

)
+
[
αR(23S1)+αR

(
23Po

0,1,2

)]
XH/He+C(23S1)+C

(
23Po

0,1,2

)
+CI (23 S1)XLi/He

q
(
11S0−21Po

1

)+αR
(
21Po

1
)+C

(
21Po

1

) . (8.38)

Here, we explicitly express G as function of Te, recom-
bination from H- to He-like ionization stage, and inner-
shell excitation/ionization from Li- to He-like ionization
stage, 1s22s + e → 1s2s(23S1) + 2e (CI denotes the
ionization rate), which can be a significant contributor to
the 23S1 population and hence the forbidden z-line inten-
sity. Detailed calculations yield a range of values for the
generic behaviour of the line ratio G(T ) under different
plasma conditions:

0.7 < G < 1.5 coronal equilibrium (T ∼ Tm)

G > 1.5 recombining plasma (T < Tm)

Go < G < 0.7 ionizing plasma (T > Tm)

(8.39)

The range of G ratios given above is approximate, and
several points need to be noted. While G � 1.0 is gen-
erally valid for sources in collisional equilibrium around
the temperature of maximum abundance Tm of the He-
like stage, the G values may vary widely under non-
equilibrium and transient conditions. G(T ) is particularly
sensitive in the low-temperature range, and is a useful
indicator of the nature of the plasma source. Photoionized
plasmas with a radiation source as the dominant ionization

mechanism have lower electron temperatures than colli-
sionally ionized plasmas. Examples of the former include
H II regions, such as planetary nebulae ionized by hot
stars, and active galactic nuclei ionized by a central radia-
tion source powered by supermassive black hole activity.

The ratio G(T ) begins with a characteristically high
value Go in the low temperature limit T � Tm for each
ion, and decreases with temperature, as shown in Fig. 8.11
for several He-like ions. This is because, at low tempera-
tures, collisional excitation from the ground state to the
energetically high n = 2 levels is small compared with
(e + ion) recombination, which preferentially populates
the triplet levels. As the temperature increases, the high
excitation rate coefficient of the w-line begins to out-
weigh the triplet (x + y + z) excitation rate, and G(T )
decreases. Another reason for the high value of Go is
that at lower temperatures the Li-like ionization state is
more abundant (albeit much more transient than the He-
like stage), and therefore inner-shell excitation–ionization
into the 23S1 level contributes to the enhancment of the z-
line. For the reasons discussed above the observed G(T )
vs. the theoretical Go (T � Tm ) is an excellent discrimi-
nant between photoionization vs. collisionally dominated
sources. Another trend that is discernible from Fig. 8.11

is that at T � Tm , the temperature of maximum ionic
abundance in collisional (coronal) equilibrium, the G ratio
tends to rise, owing to ensuing recombinations from the
increasing fraction of the H-like ionization state.

8.4.5 Transient X-ray sources

We have described the essential astrophysics inherent in
the R and G ratios, and their diagnostic value for density
and temperature. However, the limits on temperature refer
to extreme conditions of ionization, and do not provide a
complete temporal evolution of a plasma source with tem-
perature changing with time. Examples of these sources
may be found in X-ray flares and in laboratory sources
for magnetic and inertial confinement nuclear fusion [21].
Once again, we continue the reference to the useful He-
like ions. In the discussion below, we select Fe XXV,
which covers the high-temperature range and a wide range
of plasma conditions.

First, we write down the complete set of coupled equa-
tions for (i) ionization balance and (ii) collisional–radiative
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FIGURE 8.11 The line ratio G = ( f + i)/r = (x + y + z)/w:
temperature and ionization diagnostics with X-ray lines of
He-like ions [233]. Upper panel – collisional equilibrium; lower
panel – neglecting recombination (ionizing plasma).

models of He-like ions. In addition, we can also account
for non-ionization equilibrium and the presence of a radi-
ation source characterized by an ionization parameter U,
defined as the ratio of local photon to electron densities9

U = 1

Ne

∫ ∞
IH

�(ν)

jν
dν, (8.40)

where �(ν) is the radiation field intensity. For a black
body �(ν) ≡ Bν , given by the Planck function and a
reasonable approximation for a stellar source. However,
for active galactic nuclei with a non-thermal radiation
source, the �(ν) may be taken to be a power law �(ν) =
ν−α , where α is the so-called photon index typically
in the range of 1.0–2.0 (discussed in Chapter 11). In
transient sources, such as X-ray flares, the temperature

9 There are several analogous definitions of ionization parameters in the

literature with reference to differing particle densities, such as the

number density of H-atoms.

variations imply that the level populations are time depen-
dent. The general form of the time-dependent coupled
equations is

dNi

dt
=

∑
j>i

N j A ji − Ni
∑
j<i

Ai j + αH
i (T )XH/He

− αi XLi/He(T )Ni + Ne
∑
j �=i

N j qe
j i (T )

− Ne Ni
∑
j �=i

qe
i j + Ne

∑
j �=i

N j q
p
j i (T )

− Ne Ni
∑
j �=i

q
p
i j + Ne

∑
j �=i

N j qαj i (T )

− Ne Ni
∑
j �=i

qαi j + NeCLi
i (T )XLi/He

− NeCi
H(T )Ni +

∑
j �=i

N j�(hν j i )B ji

− Ni
∑
j �=i

�(hνi j )Bi j . (8.41)

In addition to the processes discussed thus far, we have
introduced ‘particle’ impact rate coefficients, denoted
as qe (electron collisions), qp (proton impact), and qα

(α-particle impact). Although at first sight collisions
between positively charged protons or helium nuclei, on
the one hand, and highly (positively) charged He-like
ions, on the other hand, may seem very improbable, they
are in fact quite significant in redistribution of popula-
tion among excited levels [23, 25, 235]. Proton impact
excitation is particularly effective in mixing level pop-
ulations among closely spaced levels, such as the fine-
structure levels of positive ions when the ratio of transition
energy to kinetic temperature 
E/kT � 1. This condi-
tion is satisfied in high-temperature X-ray plasmas with
Te> 106 K. At high energies, protons have much larger
angular momenta, owing to their mass (�� = mvr ),
which is 1836 times heavier than electrons. Therefore,
the partial wave summation over � (Chapter 5) yields a
large total cross section. The proton impact rate coeffi-
cient for fine structure transitions 23S1 → 23PJ can
exceed that due to electron impact [235]. Morever, the
proton density np ∼ 0.9 ne in fully ionized plasmas, so
the total rate is quite comparable to that due to electron
impact.

For plasma sources in equilibrium, the left-hand side of
Eq. 8.41 is zero, and it corresponds to quiescent plasmas
in, for example, active but non-flaring regions of stel-
lar coronae. For transient sources, we may parametrize
the electron temperature as a function of time: Te (t). Of
course, the electron density may also vary, but we confine
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FIGURE 8.12 Time-dependent parameters and
ionization fractions for He-like FeXXV and
other ionization stages, with variations up to
approximately one hour (3600 s). The topmost
panel is the electron temperature profile Te(t).
The second panel from the top is the ionization
parameter U(t). The middle panel shows
corresponding ionization fractions from
neighbouring ionization stages of Fe XXV, from
Fe XXIII to fully ionized Fe XXVII, for the
collisional ionization case with Te(t); the
second panel from the bottom is for
photoionization by an external source (using
U(t), as shown), and the bottom-most is the
hybrid case with both Te(t) and U(t). Note that
the ionization states in a purely photoionized
plamsa exist at much lower temperatures
(times) than the pure collisional case.

this illustrative discussion to temporal temperature vari-
ations only.10 With respect to the He-like lines and the
Kα complex, three general categories of plasma condi-
tions may be considered: (i) collisional ionization, without
a photoionizing external radiation field, (ii) photoioniza-
tion, characterized by an ionization parameter (essentially
the ratio of photon/electron densities), and (iii) a ‘hybrid’
situation with collisional ionization and photoionization.
Note that conditions (ii) and (iii) may both be ‘con-
trolled’ numerically by adjusting the ionization parameter.
Figure 8.12 is the temperature profile Te(t), ionization
parameter U (t), and ionization fractions, for a numerical
simulation of time-dependent plasmas for all three cases
[236]. The resulting spectra may correspond to an X-ray
flare of an hour duration (say, a solar flare).

Figure 8.13 displays the intensity variations of the
Fe XXV Kα complex, including the dielectronic satellite

10 The He-like line ratios in transient astrophysical and laboratory

plasmas have been discused in considerable detail in

[207, 236, 237, 238].

lines (Chapter 7), which range over 6.6–6.7 keV. The
rather complex Fe XXV spectrum in Fig. 8.13, in contrast
with the simple O VII spectrum in Fig. 8.8, is largely the
result of the presence of a number of KLL dielectronic
satellite (DES) lines (Chapter 7), interspersed among the
primary lines w, x , y and z. At low temperatures, the DES
lines dominate the spectrum, and the total Kα intensity
is shifted towards lower energies by up to 100 eV below
the principal Fe XXV w-line at 6.7 keV. At high temper-
atures, the DES diminish, relative to the intensity of the
w-line (see Chapter 7). This has important consequences
in ascertaining the nature of the plasma in the source. Iron
ions, Fe I–Fe XVI, in ionization stages less than Ne-like
with a filled 2p-shell, give rise to the well-known fluo-
rescent emission Kα line at 6.4 keV, which is formed
in relatively ‘colder’ plasmas, such as in accretion discs
around black holes T < 106 K ([239], Chapter 13). On
the other hand, in higher temperature central regions of
active galactic nuclei, the 6.7 keV Kα complex of He-
like Fe XXV is observed. For example, from the proximity
of the star Sagittarius A∗ at the galactic centre of the
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FIGURE 8.13 Spectral simulation of a transient plasma in the 6.6–6.7 keV kα complex of Fe XXV, with time-dependent parameters
as in the previous figure. The left panels correspond to the pure collisional case applicable to flaring activity in stellar coronae, the
middle panels to a photoionized plasma, and the right-hand side panels to a hybrid photo-excitation–photoionization and collisional
case. The forbidden (f or z), intersystem (i or x+y), and the resonance (r or w) lines are shown, together with the dielectronic
satellite lines (a–v). The six panels from top to bottom correspond to t = 480, 1080, 1320, 1560, 1920 and 2400 seconds. Note the
enhanced dielectronic satellite spectra in the collisional case (left-hand side top two panels, t = 480 s, 1080 s) corresponding to low
Te during ‘rise’ times, and the ‘spectral inversion’ between the forbidden z-line and the resonance w-line at late times (left-hand side
bottom two panels, t = 1920 s, 2400 s) also at low Te [236].
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Milky Way [240], the observed X-ray flux lies in the range
6.6–6.7 keV, which could be due to the DES of Fe XXV.
Thus the precise observed energy of the Kα complex,
dependent on the DES, is potentially a discriminant of the
temperature, dynamics, composition and other extrinsic
macroscopic variables in a variety of sources and regions
therein.

In low-resolution spectra, the KLL DES lines are
blended together with the x , y, z lines, and the higher-n
KLn satellites are unresolved from the w-line [211, 241,
242]. It is then useful to redefine the G ratio as G D(T )

G D ≡ (x + y + z + K L L)

(w +∑
n>2 K Ln)

. (8.42)

The ratio G D(T ) for Fe XXV is compared for a vari-
ety of astrophysical situations in Fig. 8.14 [207]. The
reference temperature Tm is that of maximum abun-
dance of Fe XXV in collisional equilibrium. The top panel
in Fig. 8.14 shows that while G(T ) remains constant,
G D(T ) shows a considerable enhancement and sensitivity
at low T , owing to the DES contributions. The other two
panels represent simulations for three different plasma
environments, with different ionization fractions XH/He
but no population in Li-like ionization state (middle panel,

XLi/He = 0), and with different XLi/He and no H-like
population (XH/He = 0). In spite of large differences in
different environments, the one thing that stands out is that
at low temperatures G D � 1, more so and over a much
wider temperature range in photoioized plasmas than in
coronal ones.

8.5 Far-infrared lines: the boron
isoelectronic sequence

We have discussed the utility of using ratios of two
lines as diagnostics of physical conditions because most
of the systematic effects, such as detector sensitivity
and interstellar reddening, affect both lines in the same
way. But often in astrophysical sources, we may be able
to observe only a single line in a given wavelength
band. In this section, we look at one such well-known
transition.

Fine structure transitions between closely spaced lev-
els of the ground state in several ions are of immense
diagnostic value. That is especially the case when the
atomic system can be treated as a simple two-level prob-
lem, decoupled from higher levels. Lines from B-like
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ions are particularly useful, ranging from the FIR lines
[C II] at 157 μm, [N III] at 58 μm, [O IV] at 26 μm,
etc., up to short wavelengths in the EUV for [Fe XXII]
at 846 Å. They arise from the same ground-state fine-

structure transition 1s22s22p
(

2Po
3 2
−2 Po

1 2

)
in B-like

ions (see energy level diagram in Fig. 6.6). Since the
electron kinetic energy in low-temperature sources, such
as the interstellar medium is much smaller than the L S
term differences, we may ignore higher terms (Fig. 6.6)
in writing down the line emissivity as simply a func-
tion of upper level population within the ground state
2Po

1 2,3 2
, i.e.,

ε
(

2Po
3/2 −2 Po

1/2

)
= N

(
2Po

3/2

)
A
(

2Po
3/2 −2 Po

1/2

)
× hν

(
2Po

3/2 −2 Po
1/2

)
/4π.

(8.43)

Figure 8.15 is the collision strength for the [C II] 157 Å
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)
for the

FIR [CII] 157 Å line (Fig. 1 from [243]). The two panels show a
comparison of partial wave contributions of odd and even
symmetries Jπ to the total collision strength, dominated by
low-J angular momenta. The broad near-threshold resonance
enhances the rate coefficient considerably at low temperatures.

near-thresold resonance, which enhances the effective rate
coefficient by several factors [243]. If we assume that
no other levels are involved in the collisional–radiative
model, then the probability of downward decay is unity:
every excitation upwards must be followed by the emis-
sion of photon following downward decay. Then the flux
emitted in the line, or the intensity, is

I
(

2Po
3/2 −2 Po

1/2

)
= neni q

(
2Po

3/2 −2 Po
1/2

)
hν/4π,

(8.44)

where q is the rate coefficient in cm3 s−1, which deter-
mines the upper level population of 2Po

3 2
, and hν is

the transition energy (strictly speaking the Einstein rate

A
(

2Po
3 2
−2 Po

1 2

)
should be included on the right, but

since all decays are to the ground level only the inten-
sity depends on the number of ions excited to the upper
level alone, see Eq. 8.45 below). At low temperatures
where the FIR lines of [C II] and other B-like ions are
formed, Eq. 8.44 is a good approximation since (i) other
higher levels are not collisionally excited and (ii) ioniza-
tion balance, and hence recombinations to higher levels
from higher ionization stages, may be neglected com-
pared with the fast collisional excitation rate for 2Po

1/2 →
2Po

3/2 transition within the ground state. However, in the
presence of background UV radiation fields from hot
stars in nebulae higher levels of boron-like ions may
be photo-excited. Also, for more highly ionized mem-
bers of the B-sequence, the lines are formed at higher
temperatures. Therefore, a complete collisional–radiative
plus photo-excitation model for B-like ions involves
many more than just the two ground state fine structure
levels.11

An additional complication arises owing to configu-
ration mixing and channel coupling effects that result in
resonances (Chapter 5). We start only with the ground
state 1s22s22p 2Po, but configuration mixing occurs
with the higher configuration 1s22p3 2Po. In addition,
the other two configurations of the n = 2 complex,

1s22s2p2(4P,2 D,2 S,2 P), 1s22p
3
(4So,2 Do,2 Po) – eight

L S terms in all (Fig. 6.6) – need to be included because
coupled channels give rise to many resonances converg-
ing on to higher terms. The dipole transitions from the
ground state to the excited doublet even-parity terms
2Po → (2D,2 S,2 P) are particularly strong and cou-
pled together. The situation is even more involved for
highly ionized members of the sequence, since levels
from the n = 3 complex of configurations also enter

11 Such an extended CR model is presented in Chapter 12 to explain the

anomalously strong [Ni II] optical lines in H II regions.
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into the picture. Again, there are strong dipole transitions
among the ground state and several of the n = 3 con-
figurations (cf. Fig. 6.11). All of these effects manifest
themselves most prominently as resonances in collision
strengths (and photoionization and recombination cross
sections) lying beween the n = 2 and the n = 3 lev-
els. Collisional calculations of rate coefficients q need to
include these resonance structures for accuracy at high
temperatures.

Once the basic atomic physics has been incorporated
by including as many of the higher levels as neces-
sary to determine the rate coefficients, we may use the
two-level model, Eq. 8.44, to obtain single line emis-
sivities. However, since we do not have a line ratio,
the emissivities are necessarily dependent on ionic abun-
dances ni , which must be estimated from other means or
derived from observations. For the nearly ubiquitous [C II]
157 μm line in the interstellar medium, the intensity is

I ([CII]; 157Å)

=
hνA

(
2Po

3/2 −2 Po
1/2

)
4π

×
N

(
2Po

3/2

)
∑

i Ni (CII)
× n(CII)

n(C)

× n(C)

n(H)
× n(H) erg cm−3s−1. (8.45)

Note that the above expression is the same as Eq. 8.44,
except that we have included the A-value to ensure a
dimensionally correct expression and respective fractions

of level population N
(

2Po
3 2

)
, as opposed to the sum of

all other C II levels (i.e., n(CII)). The ionization fraction
C II/C, abundance ratio C/H, and hydrogen density n(H),
introduce uncertainties in the absolute determination of
line intensity. Nevertheless, the intensity of just one line
in an ion may be related to the total atomic density in
the medium, as well as its physical state as reflected in
excitation and ionization fractions.



9 Absorption lines and radiative
transfer

Among the most extensive applications of atomic physics
in astronomy is the precise computation of transfer of
radiation from a source through matter. The physical prob-
lem depends in part on the bulk temperature and density
of the medium through which radiation is propagating.
Whether the medium is relatively transparent or opaque
(‘thin’ or ‘thick’) depends not only on the temperature and
the density, but also on the atomic constituents of mat-
ter interacting with the incident radiation via absorption,
emission and scattering of radiation by particular atomic
species in the media. Since optical lines in the visible
range of the spectrum are most commonly observed, the
degree of transparency or opaqueness of matter is referred
to as optically thin or optically thick. However, it must be
borne in mind that in general we need to ascertain radia-
tive transfer in all wavelength ranges, not just the optical.
Macroscopically, we refer to optical thickness of a whole
medium, such as a stellar atmosphere. But often one may
observe a particular line and attempt to ascertain whether
it is optically thick or thin in traversing the entire medium.

Radiative transfer and atomic physics underpin quan-
titative spectroscopy. But together they assume different
levels of complexity when applied to practical astro-
physical situations. Significantly different treatments are
adopted in models for various astrophysical media. At
low densities, prevalent in the interstellar medium (ISM)
or nebulae, ne< 106 cm−3, the plasma is generally opti-
cally thin (except for some strong lines, such as the
Lyα, that do saturate), and consideration of detailed radia-
tive transfer effects is not necessary. Even at much higher
densities ne≈ 109−11 cm−3, such as in stellar coronae
(Chapter 10) or narrow-line regions of active galactic
nuclei (AGN, Chapter 13), the plasma remains optically
thin except, of course, in some strong allowed lines which
readily absorb radiation at characterstic wavelengths. For-
bidden and intercombination lines are not affected, since
their transition probabilities are several orders of magni-
tude lower than the allowed lines.

At higher densities in the ne≈ 1012−15 cm−3 range,
such as in stellar atmospheres or even broad-line regions
of AGN, radiative transfer effects become crucial in
determining spectral properties. At densities higher than
stellar atmospheres, moving into the stellar interior,
collisional–radiative physics simplifies, owing to eventual
dominance of local thermodynamic equilibrium (LTE).
In LTE, collisional processes dominate and establish a
statistical distribution of atomic level populations at a
local temperature. These distributions are the well-known
Saha–Boltzmann equations, employed to understand
radiative diffusion in stellar interiors where LTE generally
holds (Chapter 11).

In this chapter we begin with the basic concepts
and terminology of radiative transfer in astrophysics. We
sketch the basic ideas underlying the advanced compu-
tational mechanisms from the point of view of applied
atomic physics. This area entails an enormously detailed
framework, which forms the field of radiative transfer
dealt at length in many other works, especially on stellar
atmospheres (e.g. [244, 245, 246]).

9.1 Optical depth and column density

When radiation propagates through matter, it is not
the geometrical distance that is crucial, but rather
the amount of matter encountered. The attenuation of
radiation also depends on the state of matter in the tra-
versed medium between the radiation source and the
observer. Therefore, we need a measure that includes the
macroscopic state (temperature, density) of the interven-
ing material, and microscopic atomic properties thereof
(absorption, emission, scattering). We define a dimen-
sionless quantity called the optical depth τ , such that
the probability of transmission of radiation (photons)
decreases exponentially as e−τ . Starting from a given
point τ = 0, as τ increases the probability Pesc(τ ) that
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a photon escapes the medium (and possibly be observed)
behaves as

τ → 0, Pesc(τ )→ 1. (9.1)

τ →∞, Pesc(τ )→ 0. (9.2)

The canonical value of optical depth that divides
plasmas into two broad groups based on particle density is
taken to be τ = 1: a plasma source is characterized as opti-
cally thin if τ < 1 and optically thick if τ > 1. Physical
considerations leading to the definition of the macroscopic
optical depth require that τ depend on the geometrical
distance s, and the opacity of the matter κ ,

τ = s × κ, (9.3)

or

τ =
∫
κds. (9.4)

Since τ is dimensionless (note that it appears in an
exponential function that determines the escape probabil-
ity), the dimensions of the opacity coefficient κ are in units
of inverse path length, say cm−1. The optical depth and
opacity in a given line with frequency ν is

τν = s × κν. (9.5)

Further reconsideration of the optical depth is useful
in particular environments, such as the ISM where densi-
ties are very low, typically of the order of a few particles
per cm3. However, the distances are large and the total
amount of material, i.e., the number of particles along a
given line of sight, may be quite large. The local density
or temperature at any given point along the line of sight
may vary significantly. But we are primarily concerned
with the total number of particles taking part in the atten-
uation of radiation. Further simplifying the picture, we
consider only radiative absorption at a given frequency in
one line due to a transition in one ion. Instead of the num-
ber density per unit volume, it is useful to define another
quantity called the column density Ni of just that one ionic
species i . The column density Ni is the number of ions in
a column of area of 1 cm2 over a given distance, from the
observer to the source. The units of Ni are cm−2, unlike
that of volume number density in cm−3, and

Ni (cm−2) =
∫

ni (cm−3) ds(cm). (9.6)

The next thing to consider is the cross section σν for
absorption of the photon in a line at frequency ν by the
ion. We can then write down another expression for the
optical depth as

τν = Ni × σν, (9.7)

where σ (cm2) is the cross section; note that given the
units of Ni (cm−2), τ is again dimensionless. Equation 9.7
may be considered as a microscopic definition of the
optical depth in terms of the cross section of the atoms
of the material along the path. Restricting ourselves to a
single-line transition in the ion, we can express σ in terms
of the absorption oscillator strength f and a line profile
factor φ(ν) over a range of frequencies

σ(ν) =
(
πe2

mec

)
f φ(ν), (9.8)

where (πe2/mec) has units of cm2-sec. Although in
principle the line profile factor is normalized as∫ +∞
−∞

φ(ν) dν = 1, (9.9)

in practice the range of integration is small, and depends
on several line-broadening mechanisms, discussed later in
this chapter.

As the oscillator strength and the Einstein A and B
coefficients are all related to one another (Chapter 4),
we can readily write down a number of expressions for
the optical depth in terms of any of these quantities, as
well as the dominant line-broadening mechanism(s) in the
plasma under consideration. For example, for a transition
at wavelength λ, the line centre optical depth is

τ0(λ) =
∫
κ d� =

√
π e2 λ fλ

mec

(
Mi

2kT

)1/2
ni L , (9.10)

where L is the total path length, fλ is the oscillator
strength, Mi is the mass of the ion, and ni is the average
ion density. Note that ni (cm−3) L(cm) = Ni (cm−2), the
column density defined above.

However, the simple concepts sketched above need
to be generalized and refined with much more precision,
as in the following sections. First, an important set
of processes concerns line broadening, due to tempera-
ture (thermal broadening), and density of electrons and
ions (collisional or pressure broadening). We begin with
the basics of line broadening theory that deal with the
mechanisms responsible for the oft-appearing line profile
factor φ(ν).

9.2 Line broadening

All spectral lines have a finite width and a particular pro-
file. It is generally defined as a function of energy removed
from, or added to, the observed background or the con-
tinuum (Fig. 8.1). Line broadening is an important area
of atomic astrophysics since the width and shape of a
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line is directly dependent on the atomic transitions in
question, on the one hand, and the plasma environment
on the other hand. The complexity of the subject derives
from the intricate interplay between the atomic physics
and the plasma physics that must be considered, as man-
ifest in several physical mechanisms responsible for line
widths and shapes. To begin with, in the quantum mechan-
ical treatment, there is the fundamental or natural breadth
of a line due to the uncertainty principle. The line width
must reflect this uncertainty by way of broadening, as well
as other radiative and collisional effects: (i) finite lifetimes
of energy levels, resulting in natural line width or damp-
ing given by radiative decay rates, (ii) the temperature of
the ambient plasma in the line formation region, leading
to Doppler broadening due to thermal velocity distribution
of ions, and (iii) the particle density, involving collisions
among electrons, ions and neutrals.

The natural line width is related to the uncertainty
principle 
E
t ≥ �. An upper level has a character-
istic decay lifetime 
t , which is inversely proportional
to the broadening, 
E (assuming, that the lower level
has a much longer lifetime). The calculation of radiation
damping, therefore, requires the calculation of all possible
radiative decay rates for levels involved in a line transi-
tion. The characteristic line profile for radiation damping
is a Lorentzian function defined by a specific radiation
damping constant.

Thermal Doppler broadening of a line reveals the
velocity fields present in the line formation region. In
many astrophysical sources it provides a direct measure
of the temperature. It can be shown that for a Maxwellian
distribution of particles at a given temperature the line
shape due to Doppler broadening is a Gaussian function,
characterized by a constant parameter depending on the
temperature and the mass of the particles. Therefore, a
Doppler broadening profile is more constrained to the line
centre than a Lorentzian profile.

Collisional broadening (also called pressure broaden-
ing) is a more complex phenomenon. Different physical
effects account for scattering by electrons, ions (mostly
protons) and neutral atoms. Qualitatively, elastic electron–
ion scattering tends to broaden energy levels, whereas
ion–ion scattering induces Stark broadening due to split-
ting into sublevels. Whereas elastic electron–ion col-
lisions are mainly responsible for broadening of lines
from non-hydrogenic ions, Stark broadening is particu-
larly effective for hydrogenic ions where the �-degeneracy
is lifted in the presence of the electric field of another
ion. This is because the Stark effect is linear for hydro-
genic systems, with the energy levels splitting into a
number of sublevels. It follows that for highly excited

states of any ion, with many n� levels, both the electron
collisions and Stark broadening would be effective. In
relatively cold plasmas broadening by collisions of neu-
tral atoms may also be significant, mediated by the
long-range van der Waals interaction. The collisional
broadening line shape is also a Lorentzian, with char-
acteristic damping constants for each of the processes
mentioned.

Finally, in cases where several types of broadening
mechanisms manifest themselves, given by Gaussian and
Lorentzian functions, the total line profile is obtained
by a convolution over both functions resulting in a
Voigt profile. In this chapter we discuss these basic
concepts.

9.2.1 Natural radiation damping

A spectrum consists of electromagnetic energy at a range
of frequencies. For a spectral line, the distribution of
energy spans a certain range as a function of time. First,
we describe the fluctuations (oscillations) of energy with
time in general, before particularizing the discussion to
individual modes of line broadening.1

A wavetrain of photons passing a given point in space
(or impinging on a detector) may be specified by the con-
jugate variables, angular frequency ω and time t . It is
convenient to think of a radiating oscillator emitting the
energy spectrum as a function of ω and time dependent
amplitude a(t). The value at a definite ω involves inte-
gration over all time, and the value at time t involves
integration over all ω. Mathematically, such functions are
transforms and inverse transforms of each other. The most
appropriate transform in our context is the Fourier trans-
form (FT), which entails decomposition of a sinusoidal
wave in terms of a basis set of sines and cosines, or
generally by exp(iωt) = cosωt + i sinωt , involving both
functions. At frequency ω the FT is defined as

F(ω) ≡
∫ +∞
−∞

a(t) e−iωt dt, (9.11)

and the reciprocal inverse transform is

a(t) = 1

2π

∫ +∞
−∞

F(ω) eiωt dω. (9.12)

Note that since we are dealing with both variables t
and ω, the FT and its inverse yield the spectrum as a func-
tion of time and the frequency; the latter is the energy
spectrum, defined as

1 This section essentially follows the treatment in Stellar Atmospheres by

D. Mihalas [244].
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E(ω) ≡ 1

2π
F∗(ω)F(ω)

= 1

2π
|F(ω)|2 = 1

2π

∣∣∣∣
∫ +∞
−∞

a(t)e−iωt dt

∣∣∣∣
2

.

(9.13)

It is easily seen that∫ +∞
−∞

E(ω)dω =
∫ +∞
−∞

a∗(t)a(t)dt

= 1

2π

∫ +∞
−∞

F∗(ω)F(ω)dω . (9.14)

Similarly, the power spectrum is defined in terms of the
product a∗(t)a(t), which is the power at a given instant t .
The power spectrum or the radiation intensity is defined in
terms of energy per unit time, and obtained by integrating
Eq. 9.14 over a full cycle of oscillation and divided by the
time period T of long duration,

P(ω) ≡ lim
T→∞

1

2πT

∣∣∣∣∣
∫ +T/2

−T/2
a(t) e−iωt dt

∣∣∣∣∣
2

. (9.15)

The integral averages to zero for a single radiating
oscillator emitting a light pulse of short duration, but aver-
aged over an infinite time interval. However, in reality
there is usually an ensemble of many oscillators radiating
incoherently, so that the net emitted power is non-zero.

9.2.1.1 Damping constant and classical oscillator
The interaction of the electron in a radiation field of fre-
quency ω may be treated as a damped classical oscillator
with the equation of motion,

me ẍ + γ ẋ + ω2
0x = 0. (9.16)

Here the second term represents the ‘friction’, in terms
of a damping constant, γ , and the third term the ‘restoring
force’.

Exercise 9.1 Show that the solution of the above
equation is x = x0eiωt e−γ t 2, neglecting terms
quadratic terms in the classical damping constant
γ ≡ (2/3)(e2ω2

0)(mec3); ω0 is the central frequency.
Hence, derive

F(ω) = x0

i(ω − ω0)+ γ /2 , (9.17)

and the energy spectrum of a single oscillator

E(ω) = x2
0

2π

1

(ω − ω0)
2 + (γ /2)2 . (9.18)

The characteristic line profile due to radiation damping
of a given oscillator is manifest in Eq. 9.18, and is the

well-known Lorentzian function. The total power spec-
trum P(ω), or the radiated intensity I (ω), of a whole
ensemble of many oscillators is proportional to that of a
single one, and should have the same basic form, i.e.,

I (ω) = C

(ω − ω0)
2 + (γ /2)2

= γ /2π

(ω − ω0)
2 + (γ /2)2 , (9.19)

where the constant C is obtained on imposing the
normalization∫ +∞
−∞

I (ω) dω. (9.20)

For a Lorentzian profile from natural radiation damp-
ing, the power or the intensity I (ω) drops to half its peak
value at 
ω = ω − ω0 = ±γ /2, which defines γ as
the full width at half maximum (FWHM) of the line. Now
we note that the expression above is simply the spectral
distribution or the oscillator strength per unit frequency

I (ω) = d f

dω
, (9.21)

which is also directly related to the photoabsorption (or
photoionization) cross section (see Chapter 6).

The uncertainty principle can be used to relate the clas-
sical treatment outlined thus far to the quantum mechan-
ical picture. The radiating oscillator corresponds to a
transition from an excited state k to a lower state i in an
atom. The time-dependent probability of radiative decay
of state k is

|ψk |2 exp(−t/τk) = |ψk |2 exp(−�t), (9.22)

where τk characterizes the decay time of the excited state,
defined as the lifetime (τk is not to be confused with the
same usual notation for the optical depth τ ). The recipro-
cal of the lifetime is inversely proportional to the decay
rate, the analogue of the classical damping constant γ ,
given by �k = 1/τk = Aki , the spontaneous decay rate
for transition k → i . As already mentioned, the uncer-
tainty principle leads to natural broadening of a spectral
line since the upper and the lower levels do not have
exactly the energy Ek and Ei respectively (except when
i is the ground state), but non-zero energy widths associ-
ated with each level. Following through the FT analysis of
the decaying probability amplitude, we obtain an expres-
sion for the intensity spread in the quantum mechanical
case in frequency space,

I (ω) = �/2π

(ω − ω0)
2 + (�/2)2 . (9.23)
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� is the total width of the line, depending on the
individual widths of the lower and the upper levels. For
multiple levels,

�k =
∑
j<k

Ak j , �i =
∑
�<i

Ai�. (9.24)

It follows that � = �i + �k , and �/2 is the natural
half-intensity width or FWHM of the Lorentzian spectral
profile.

Another way to relate the damping of energy from
a classical oscillator to quantum mechanical transition
probabilities is to consider the decay rate

dE

dt
= −�E, (9.25)

where � = (−2/3)(e2ω2/mec3), and E = E0e−�t . If � is
evaluated classically from the constants given, then we
obtain the FWHM �/2 = 
λ = 0.6 × 10−4 Å for all
lines. But this classical width is far smaller than observed,
which depends on several quantum mechanical effects.
Since the radiated energy depends on the upper level pop-
ulation, i.e., E = Nk hνik , setting dE/dt = d(Nkhν)/dt ,
we again obtain � = Aki , the quantum mechanical
probability of spontaneous decay.

Three other important points may be emphasized
about line shapes. First, the line profile function is
normalized to unit intensity according to

∫
φ(ν)dν= 1

(Eq. 9.20). Second, if we assume detailed balance,
then both the emission and the absorption profiles have
the same form. Since, for random atomic orientations
in a plasma, a photon may be emitted in any direc-
tion, the observed emission in a given direction is
divided by a factor of 4π (whereas absorption of energy
along a line of sight is obviously one-dimensional or
uni-directional). Third, since natural radiative broaden-
ing depends on the spontaneous decay rates Aki , the
stronger dipole transitions would have the broadest pro-
files so long as other broadening mechanisms are small;
contrariwise, forbidden lines with small A-values are gen-
erally narrow. The first condition also means that the
normalized line profile factor can be used to multiply
the oscillator strength to obtain the spread in fre-
quency (energy) of the absorption coefficient for a given
line, i.e.,

aν =
(
πe2

mec

)
f φ(ν)

=
(
πe2

mec

)
f

[
�/4π2

(ν − ν0)
2 + (�/4π)2

]
. (9.26)

9.2.2 Doppler broadening

The Doppler effect implies that the frequency of radiation
emitted by an atom is higher if the relative movement of
the source and the observer is towards each other, and the
frequency is shorter if they are receding from each other;
the effect on the wavelength is the inverse of that on the
frequency. The frequency or the Doppler shift depends
on the velocity of that atom, which in turn depends on
the ambient temperature T . In most astrophysical plasmas
the velocity distribution of particles is characterized by a
Maxwellian function fMax at that temperature. The prob-
ability of atoms with a line-of-sight velocity between v
and (v + dv) is given by

fMax(v) dv =
(

1

v0π
1/2

)
e−

(
v2/v2

0

)
dv. (9.27)

Kinetic theory relates the root mean square velocity
to temperature as m〈v2〉/2 = (3/2)kT , and therefore we
have

〈v2〉 =
∫ +∞
−∞

v2 fMax(v) dv = v2
0
2
, (9.28)

with

v0 =
√

2kT

M
= 1285

√
T (K)

104 AM
m/s. (9.29)

where M and AM are the mass and the atomic weight
of the atom, respectively. We need to describe the total
absorption in a line at a given frequency ν, absorbed
by an atom in its rest frame at the Doppler-shifted
frequency ν(1 − v/c). The total absorption coefficient is
obtained by integrating the absorption coefficient of an
atom aν

[
ν(1− v/c)] over all velocities,

aν =
∫ +∞
∞

aν
[
ν(1− v/c)] fMax(v) dv. (9.30)

As expected, the absorption coefficient of a line is related
to the oscillator strength f of the corresponding transi-
tion as

aν =
(
πe2

mc

)
f. (9.31)

The Doppler shift in frequency of a photon radiated
by an atom at line-of-sight velocity v is 
ν = νv/c.
Therefore, the symmetric Doppler width about the central
frequency ν0 of a line is defined as


νD ≡
(v

c

)
ν0, (9.32)



9.2 Line broadening 199

and the normalized Gaussian line profile is

aν = 1√
π
νD

exp

[
−

(
ν − ν0


νD

)2
]
. (9.33)

The functional form is a Gaussian, describing ther-
mal motions of particles given by a Maxwellian velocity
distribution characterized by the parameter v0 at temper-
ature T . However, in general we also have the natural
radiation damping profile factor, which is a Lorentzian
(Eqs 9.19 and 9.23). Therefore, the combined (radiation
+ Doppler) profile is a convolution of a Gaussian and a
Lorentzian function (Fig. 9.1). This leads to the full rep-
resentation of a line profile subject to both forms of line
broadening mechanisms (but no others) as

aν =
(
π1/2e2

mec

) (
f

πv0

)

×
∫ +∞
−∞

[
(�/4π) e−v2/v2

0

(ν − ν0 − ν0v/c)2 + (�/4π)2
]

× e−v2/v2
0 dv. (9.34)

The convolution of a Gaussian and a Lorentzian
function yields a Voigt function (heuristically:
Voigt→Gaussian ⊗ Lorentzian). The above expression
may be rewritten using the variables x≡ (ν − ν0)/
νD,
y≡
ν/
νD = v/v0 and b = �/(4π
νD),

aν =
(
π1/2e2

mec

)
f

(
H(b, x)


νD

)
, (9.35)

where the Voigt function H(b, x) is defined as

H(b, x) ≡ b

π

∫ +∞
−∞

e−y2
dy

(x − y)2 + b2
. (9.36)

The total line width is the sum of the partial widths
due to all line broadening mechanism �=�rad + �coll.
Algorithms for computing Voigt functions have been
developed for a variety of applications (e.g., [247]).

Exercise 9.2 Show that the normalization of H(b, x) is
such that the integral over all x is π

1 2. Also, show that for
(x2 + b2)� 1, H(b, x)≈π 1 2/(x2 + b2).

The physical nature of the two effects embodied
in the Voigt function manifests itself clearly in the
limiting cases of the two variables: a� 1, when the
Doppler–Gaussian width is large compared with the nat-
ural Lorentzian width, and x � 1 when the Lorentzian
component of the Voigt profile dominates; thus we may
represent,
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FIGURE 9.1 The Gaussian and Lorentzian line shapes as
function of the full width at half maximum (FWHM) separation
from line centre. The Lorentzian falls off much more slowly
than the Gaussian. Whereas the Gaussian dominates the line
core (or is confined to it), the Lorentzian dominates in the line
wings out to several times the FWHM.

H(b, x)→ e−x2 + b√
πx2

. (9.37)

Since x measures the separation in frequency from the
line centre, the first term (Gaussian) dominates in the line
core, decaying exponentially with x , and the second term
(Lorentzian) dominates in the line wings, decaying much
more slowly as x−2. In other words, thermal broadening
dominates the line core, whereas natural radiative damp-
ing manifests itself in the line wings. Figure 9.1 shows
schematically the forms of line broadening discussed thus
far. The relative intensity (in arbitrary units) is plotted as
a function of FWHM units from line centre. As we shall
see, collisional or pressure broadening, which dominates
at high densities, is also Lorentzian in nature, and may
considerably alter the picture developed thus far at high
densities.

9.2.3 Collisional broadening

The interaction of an atom with other particles in the
plasma leads to broadening of spectral lines, since such
interactions perturb upper and lower levels to broaden the
energy range of the transition. The magnitude of broaden-
ing depends on the particle density in the source as well
as the temperature. Since the pressure in a gas depends
on the temperature and density, collisional broadening is
also referred to as pressure broadening. The excitation
energy of atomic levels comes into play, since higher
levels are less strongly bound to the nucleus than lower
ones and are more perturbed; their excitation energy itself
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depends on the temperature. Furthermore, as mentioned
earlier, each type of particle in the plasma undergoes a
different kind of interaction with the atom. Free electron
impact or electron–atom(ion) scattering is different from
atom(ion)–atom(ion) interactions. The ranges of forces
acting between colliding particles, such as due to the
Coulomb potential behaving as VCoul∼ r−1, up to the
van der Waals potential behaving as Vvw∼ r−6, need
to be considered. Also, hydrogenic ions, and those with
highly excited levels nl, subject to �-degeneracy within
an n-complex, are susceptible to the linear Stark effect
in the electric field due to other ions (mostly protons);
non-hydrogenic atoms experience the quadratic Stark
effect. Owing to these factors, collisional broadening is
particularly difficult to treat precisely. Nevertheless, we
begin with the simple classical impact approximation to
illustrate some basic features.

9.2.3.1 The classical impact approximation
If the atom is treated as a radiating oscillator, then a
sufficiently close interaction with another particle leads
to an abrupt phase change in the wave train, otherwise
freely propagating and described with a monochromatic
frequency ω0 and the function

a(t) = eiω0t . (9.38)

Let t be the time interval between two successive
collisions. Then the Fourier decomposition in terms of the
frequency variable ω is

F(ω, t) =
∫ t

0
ei(ω0−ω)t ′dt ′ = ei(ω−ω0)t − 1

i(ω − ω0)
. (9.39)

However, the time interval t may vary considerably
about a mean collision time t0 for collision between any
two particles in the ensemble. The probability that a col-
lision takes place within a time interval dt is dt/t0, or

P(t) dt = e−t/t0

t0
dt. (9.40)

The energy spectrum averaged over t0 is then

E(ω) = 〈E(ω, t)〉t0
= 1

2π

∫ ∞
0

F∗(ω, t) F(ω, t) P(t) dt. (9.41)

Normalizing,∫
E(ω) dω = 1, (9.42)

and integrating we obtain the frequency dependent spec-
trum as

Perturber

Radiating ion

r (t) ρ0

FIGURE 9.2 Distance of closest approach ρ0 of a colliding
perturber to the radiating ion. The classical collision cross
section is πρ2

0 .

E(ω) = 1/(π t0)

(ω − ω0)
2 + (1/t0)2

= �col/2π

(ω − ω0)
2 + (�col/2)2

, (9.43)

with �col= 2/t0. Thus we see that the simple impact
approximation – instantaneous change of phase on
impact – yields the same Lorentzian profile as natu-
ral radiation damping, irrespective of the type of par-
ticle interaction. Ergo: all collisional broadening leads
to Lorentzian profiles. Furthermore, both the natural
damping and the collisional broadening Lorentzian pro-
files may be convolved into a single Lorentzian, giving a
total � = �rad + �col.

Although collisional interactions have the same func-
tional form, especially manifesting themselves in the line
wings (Fig. 9.1), each interaction is different and must be
considered quantum mechanically. For the present, how-
ever, we extend the impact approximation to define the
impact parameter ρ0, which is the distance of closest
approach of a perturbing particle to the atom, as shown
in Fig. 9.2.

If the particle density is n and the mean velocity v0,
then v0 t0 is the mean distance travelled before a collision.
We can think of ρ0 in terms of the cross section πρ2

0 for
particle scattering. Then the total number of collisions in
time t0

number of collisions = v0

(
πρ2

0

)
n t0, (9.44)

and hence the mean time t0 for one collision is defined as2

n
(
πρ2

0

)
v0 = 1

t0
(9.45)

2 Compare the total number of collisions with the rate, which is the

number of collisions per unit volume per unit time in terms of the rate

coefficient 〈vQ〉 and particle densities (where Q is the cross section

in cm2).
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and the width as

n
(
πρ2

0

)
v0 = �/2. (9.46)

For a Maxwellian distribution the relative mean veloc-
ity v0 between colliding particles in a plasma depends on
the temperature T and their masses, say M1 and M2,

v0 =
√〈
v2

〉 = [
8kT

π

(
1

M1
+ 1

M2

)]1/2
. (9.47)

9.2.3.2 Quantum mechanical treatment
of the impact approximation

The impact parameter ρ0 depends on the range of
interaction and the types of collisions; electron–ion,
proton–ion, atom–atom, etc. In collisional broadening,
the atomic levels are perturbed due to interactions with
free particles in the plasma (transitions to other bound
levels are treated as radiation damping). We shall also
discuss these later in the calculation of plasma opaci-
ties. In general, the change in energy or frequency, and
hence the phase shift, depends on the interaction poten-
tial, which affects a change in the total energy of the
(free particle–atom) system from one energy to another.
The behaviour of the potential as function of range r is
then the crucial quantity, and is related to the collision
time, and hence the change in frequency or energy as


E = h
ν = C p × r−p. (9.48)

As already mentioned, the three most common types
of perturbation for collisional broadening of lines are:
charged particles, mostly protons and electrons, impacting
on hydrogenic ions via the linear Stark effect with p= 2,
on non-hydrogenic ions (most lines) via the quadratic
Stark effect with p = 4, and neutral particles (mostly
neutral H) via the van der Waals interaction Vvw with
p = 6. To examine this point further, we recall from
classical electrodynamics the expression for the electri-
cal field between a charged particle and a dipole, which
is Fd= e/r2. As an electric charge approaches the tar-
get atom (or the ion) it induces an electric dipole, since
the electron cloud and the nucleus tend to be displaced
in opposite directions. The linear Stark effect is most
important for the prominent lines of hydrogen due to
the perturbing electric field(s) of the free protons in the
plasma. This is because the �-degeneracy in the hydro-
genic energy levels n is lifted in the presence of an exter-
nal electric field, leading to mixing (transitions) among
the n� sublevels. We have p = 2 for the Stark poten-
tial, and therefore the Stark line shift of the sublevels is

λs ∼ e/r2.

Since the interaction potential is described by the same
form as Eq. 9.48, we may employ the Wentzel–Kramers–
Brillouin (WKB) approximation to obtain the induced
phase shift δ as

δ(t) = C p

∫ t

−∞
dt ′

r(t ′)p = C p

∫ t

∞
dt ′

(ρ2
0 + v2t ′2)p/2

,

(9.49)

where we relate the instantaneous variable r(t) to the
impact parameter ρ0 as in Fig. 9.2. We also note the usual
convention, whereby the time before impact is denoted
asymptotically from t →−∞, up to t →+∞ after impact
and far away from the interaction region and potential.
The integral above may be evaluated to yield the phase
shift

δ(t →+∞) = C p Ip

v ρ
p−1
0

, (9.50)

where Ip = π , π/2, 3π/8 for p = 2, 4 and 6, respec-
tively. Assuming an arbitrary value of the critical phase
shift, beyond which line broadening would be significant
as δ0 = 1, results in the Weisskopf approximation, which
gives the collisional broadening width

� ≈ 2πnv

(
C p Ip

δ0v

)2(p−1)
, (9.51)

corresponding to the impact parameter

ρ0 =
(

v

C p Ip

)p−1
. (9.52)

However, the calculation of phase shift accurately
requires a more detailed quantum mechanical treatment
than the Weisskopf theory, which has an arbitrary assump-
tion for the critical phase shift and does not address small
phase shifts or predict line shifts in addition to broadening.

9.2.3.3 The nearest-neighbour approximation
Since collisional line broadening depends on interactions
with many particles, a general treatment therefore needs
to be based on quantum statistics in the sense that a suit-
ably averaged effect of all particles can be determined.
The basic idea is that the effect of each kind of perturb-
ing particle, electrons, ions or atoms, on the radiating
atom (ion) can be characterized by an averaged distribu-
tion. The averaged field effect can be approximated by a
probability function, which depends, apart from density,
on the type and range of interaction potential between
the perturber and the radiator. The methods employed
begin with the simple approach that the frequency shift
leading to collisional broadening is assumed to be due
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to the closest (nearest) perturber, to the exclusion of all
others. We will first consider broadening related to Stark
splitting of energy levels of the target ion by the perturbing
ions, usually protons, which move much slower than the
electrons by a velocity ratio

√
mp/me = 42.85.

Since the frequency shift is related to the interaction
potential as 
ω = C p/r p , the intensity profile is a func-
tion of frequency difference from the line centre 
ω. It is
related to the probability P(r) of finding a perturber at a
distance r from the radiating atom

I (
ω) d(
ω) ∼ P(r) dr. (9.53)

The problem then is to obtain as precisely as possible
the probability function that describes the averaged net
effect of all perturbations that affect atomic transitions.
Given particle density n per unit volume, the interparticle
distance is defined as the radius r0 such that there is one
particle in volume 4πr3

0/3; therefore

r0 =
(

4πn

3

)−1/3
. (9.54)

Now we consider the situation that there is no perturb-
ing ion up to a distance r . Then the probability P(r) that
this nearest neighbour lies between r and (r + dr) is

P(r) =
[

1−
∫ r

0
P(r ′) dr ′

]
(4πr2) n dr, (9.55)

where the square bracket is the probability that there is
no other particle at r ′< r , and 4πr2ndr is the probability
that the particle lies in the shell (r, r + dr). Note that
as r increases the probability that a nearest neigh-
bour exists within the shell decreases. Therefore, the
incremental probability behaves as P(r + dr)= P(r)
[1− 4πr2dr ], and from the Taylor expansion to first
order, P(r + dr)≈ P(r) + (dP/dr)dr . From the argu-
ments above, the first derivative is negative, i.e.,
dP/dr = − 4πr2n P(r). We also note that P(r = 0)= 1.

Exercise 9.3 Show that

P(r) = exp

(
−4

3
πr3n

)
4πr2n. (9.56)

Calculate the expectation value 〈r〉 ≡ ∫
r P(r) dr ,

which is the mean perturber distance, and compare with
the mean interparticle distance r0 at a given density n to
show that the difference is small.

Given that the difference between r0 and 〈r〉
is small, we may obtain a characteristic frequency
shift using the former, as 
ω0=C p/r

p
0 , and hence


ω/
ω0= (r0/r)
p . Then

P(r) dr = e−(
ω0/
ω)
3/p

d
(
(
ω0/
ω)

3/p
)
. (9.57)

This relation expresses the probability of the nearest
perturber to collisional broadening in terms of the range
index p of the perturbation. For example, for the linear
Stark effect, the perturbing field strength is Fs = e/r2,
and therefore the characteristic strength particular to the
given interaction and density is

Fs
0 = (e/r2

0 ) = e

(
4

3
πn

)2/3
= 2.5985 e n2/3. (9.58)

Since, in general (r/r0)
p = F/F0, we measure the

field strength in terms of variable β ≡ F/F0. For
Stark broadening we write β = Fs/Fs

0 and the probability
function as

Ps(β) dβ = (3/2) β−5/2 exp(β−3/2) dβ. (9.59)

As β →∞, Ps(β) ∼ β−5 2. This implies that the Stark
profile falls off as 
ω−5 2 in the line wings as opposed to

ω−2 in the simple impact formula.

In simple terms, the impact approximation may
be valid for fast-moving electrons, while the nearest-
neighbour approximation is suitable for the nearly static
(by comparison) ions. However, the nearest neighbour
theory is inadequate, since it does not consider the
overall effect of perturbations from an ensemble of
particles in the plasma, but only from the closest
perturber.

9.2.3.4 The Holtsmark distribution
The effect of quantum statistical fluctuations of the net
electric field created by an ensemble of particles was
developed by Holtsmark. The theory yields a microfield
distribution, for an interaction potential Cp/r p , given by
the probability function

P(β) =
(

2β

π

)∫ ∞
0

ex3/p
x sinβx dx . (9.60)

As before, β = F/F0 with characteristic field strength

F0 = G p C p n p/3, (9.61)

with

G p = (2π2 p)[
3(p + 3) �(3/p) sin(3π/2p)

]p/3
. (9.62)

(Note that on the right-hand side we have a Gamma
function, not the line width. The Gamma function is also
obtained on integrating the error function in Exercise 9.3.)
In the Holtsmark theory for the Stark effect, with p = 2,
we have Fs

0 = 2.6031 e n
2 3, nearly the same as obtained
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from the nearest-neighbour approximation. Examining the
limiting cases we have, for small β,

P(β)=
(

4

3π

) ∞∑
�=0

(−1)� �

(
4�+ 6

3

)
β2�+2

(2�+ 1)! ,

(9.63)

which simplifies to P(β) ∼ β2 (β � 1). The asymptotic
expansion for β � 1 is

P(β) =
(

1.496

β5/2

)

×
[
1+ 5.107β−3/2 + 14.43β−3 + · · ·

]
, (9.64)

where the first term is the same as in the nearest-neighbour
approximation. Tables of P(β) have been computed
(see [244] for references).

9.2.3.5 Debye screening potential
Before we compare the Holtsmark distribution with the
nearest-neighbour approximation, it is useful to discuss
the theory of Debye screening of the electron–nuclear
potential (−Z/r ) in an ion by perturbing particles in a
plasma. The effect of a positively charged ion is to polar-
ize the surrounding plasma by attracting free electrons and
repelling free protons. As the particle density n increases,
the bound electrons in the ion are increasingly ‘screened’
from the nucleus by free electrons. The screening effect
on the Coulomb potential (Z/r) is studied by introducing
a characteristic Debye length d, which is the radius of the
Debye sphere centred at the ion and defined in such a way
that for r > d the potential decreases exponentially. The

Debye potential due to the nucleus of the ion then behaves
as function of r

Vd(r) = Ze−r/d

r
. (9.65)

The Debye potential of the ion Vd (r→0) = Z/r ,
and decreases with increasing r , vanishing rapidly for
r > d . An explicit expression for d may be derived by
considering a charge distribution described by the Poisson
equation. As with all plasma properties, the Debye length
depends on the temperature and the density. For an
electron–proton plasma, we have

d = 6.9

(
Te

ne

)1/2
cm. (9.66)

Exercise 9.4 Calculate and compare in tabular form the
Debye lengths at a wide range of temperatures and densi-
ties that characterize various astronomical objects, as in
Fig. 1.3.

One can now relate the nearest-neighbour approxima-
tion and the Holtsmark theory using the Debye length.
The number of perturbers inside the volume of the Debye
sphere is 4/3 πd3n ≡ Nd. The effective plasma microfield
depends on Nd. We can therefore calculate not one
but a number of Holtsmark distributions P(β, Nd) cor-
responding to different Nd as shown in Fig. 9.3. At
high densities Nd→∞, P(β, Nd) approaches the Holts-
mark distribution, and for low densities it approaches the
nearest-neighbour approximation.

Also, using the Debye potential, we can estimate the
weakening of the electron–nuclear potential in the ion due

0 1 2 3 4
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) Nd= 3
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Nd= 50

Nd= ∞

Holtsmark distribution

Nearest−neighbour theory

FIGURE 9.3 Field strength probabilities in
different approximations, as function of field
strength parameter β = F/F0 and number of
perturbing particles Nd within the Debye
sphere (as in [244]).
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FIGURE 9.4 Line broadening and line shift

to plasma screening. The binding energy of the bound
electrons is reduced by


E = e2 Z

r

(
e−r/d − 1

)
. (9.67)

In particular, the ionization potential of a bound elec-
tron in the ion will be reduced by an amount equal to

EIP, which we can approximate as


EIP = − e2 Z

d
= 2.2× 10−9 Z

(
T

n

)1/2
Ry. (9.68)

That Debye screening can significantly affect atomic
parameters was pointed out in Fig. 6.2, showing the pho-
toionization cross section of Na I at high densities. The
presence of a screened atomic potential by the free elec-
tons leads to a more diffuse 3s valence orbitals for neutral
sodium. That results in a significant shift in the signature
feature in photoionization of alkali atoms and ions: the
Cooper minimum moves to higher energies than those for
the unpertubed atom.

9.2.3.6 Electron impact broadening
As shown above, the probability function of microfield
distribution in the plasma is directly related to the line
widths and shifts. So far, we have discussed the basic
concepts underlying the theory of collisional broaden-
ing, with particular reference to Stark broadening by the
electric field distributions of free protons. However, in
addition to Stark broadening 
λ

−5 2
s , there is also elec-

tron impact broadening which behaves as 
λ−2
e . If we

consider broadening of a line due to a transition between
levels i and j of an ion X and energy hνi j , then we need to
calculate the cross sections for electron impact (e + Xi, j ),
separately for each level i and j . Figure 9.4 shows the
physical nature of impact broadening: the two levels are
broadened, but they are not likely to be broadened by
exactly the same widths.

It follows that the resulting line shape would not
only be broadened, but also shifted by a certain amount
related to

(
hν0 − hν′0

)
. We have already designated

the line width by the parameter γ ; now the shift

is denoted as x . The effect of many perturbers is
considered in the so-called impact approximation [248].
Whereas the details are rather complicated, the expres-
sion for the line shape φe due to electron impact
broadening is

φe(ν) = (γ /2π)

(ν − ν0 + x/2)2 + (γ /2)2 . (9.69)

The width γ and the shift x are related to the thermally
averaged collisional damping rate coefficient qD, similar
to the one we have encountered in electron–ion colli-
sions (Chapter 5). However, it is now a complex number
defined as

γ + ix = ne qD. (9.70)

That this must be so becomes clear when we examine
the form of the damping collision strength D(ε) in terms
of the scattering matrix elements for elastic scattering in
the initial and final levels i and j [249],

 D(i, j; ε)
= 1

2SI + 1

∑
S

∑
Lπ

∑
L ′π ′

∑
��′
(2S + 1)(2L + 1)(2L ′ + 1)

× W(Li L j L L ′; 1�)W(Li L j L L ′; 1�′)

×
[
δ(�, �′)− Si (SLπ; �, �′) S∗j (SL ′π ′; ��′)

]
.

(9.71)

 D is complex since it is given in terms of the com-
plex elastic scattering S-matrix elements on the right-hand
side for levels i and j , unlike the collision strength for
inelastic scattering which is related to the real quantity
|Si j |2 (Eq. 5.22).3 Here, we assume the same spin of
the target ion in both levels (no spin change), S is the
total (e + ion) spin and Lπ , Lπ ′ are the initial and
final total orbital angular momenta. The W is a Racah
algebraic coefficient; � and �′ denote the incident and
outgoing free electron angular momenta. The elastic scat-
tering matrix elements Si , S j are both calculated at the
same energy ε, but correspond to different total energies

3 The boldface S-matrix, or its elements, should not be confused with the

spin S.
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for each level E = Ei+ε and E ′ = E j+ε. Now, the effec-
tive damping collision strength is the Maxwellian average
at temperature T ,

ϒD(T ) =
∫ ∞

0
 D(ε) eε/kT d(ε/kT ), (9.72)

which is dimensionless, as before. The collisional damp-
ing rate coefficient is (in atomic units �=me= 1)

qD(i, j; T ) =
(

2π

kT

)1/2
ϒD(T ). (9.73)

At high densities, in stellar interiors and similar plasma
environments, collisional or pressure broadening is the
most important component of line profiles for most atomic
systems. Since fully quantum mechanical calculations, as
outlined above, are extremely difficult, very approximate
formulae have been used, basically exploiting the fact that
the atomic scattering cross section of an electronic n-shell
is proportional to 〈rn〉2 ∼ n4, where 〈rn〉 is the expecta-
tion value, or the mean radius. One such formula, for line
widths in frequency units, is [250]


νe(i j) = 3.2× 1016

(
n4

i + n4
j

)
ρ

(z + 1)2 T 1/2
4

s−1, (9.74)

where ni , n j are the principal quantum numbers of the
initial and final levels, ρ is the mass density (g cm−3),
z is the ion charge, and T4 = T (K ) × 10−4. However,
this expression is not quite in accord with elaborate quan-
tum mechanical calculations; for example, the approxi-
mate line width from the above expression is multiplied
by a factor of four in [251]. A number of approxima-
tions for astrophysical applications are discussed in [251,
252, 253]. Rather more detailed treatments are required
to obtain accurate expressions for the computation of
these quantities. We shall further address this topic in our
description of the plasma equation-of-state and opacities
in Chapter 11. For the time being, we re-emphasize that
Stark broadening due to ions (protons), and that due to
electron impact, lead to two distinct components of total
collisional broadening, behaving as


λ ∼ Cs
λ
−(5/2)
s + Ce
λ

−2, (9.75)

both of which lead to a slower fall-off of line wings
than the line centre, which is affected predominantly
by thermal Doppler broadening (Eq. 9.33) that falls off
exponentially.

Finally, to encapsulate the general functional form of
line broadening profile: it may be expressed as a con-
volution over functions representing the different forms
discussed in this section, i.e.,

φ(
λ) = [φs(
λ
−5/2)⊗ φe(
λ

−2)]coll

× ⊗ φr(
λ
−2)⊗ φD e−(
λ)−2

, (9.76)

where φs, φe, φr refer to Stark, electron impact and
radiation damping profiles respectively, all of which are
Lorentzian (with collisional terms in the square bracket),
and φD to Doppler profile, which is Gaussian.

9.2.3.7 Escape probability
It is often useful to introduce the concept of escape
probability in physical conditions, such as under par-
ticular temperatures and densities in nebulae or active
galactic nuclei, that do not necessitate a full radiative
transfer treatment, as required in stellar atmospheres. The
escape probability is expressed in terms of the optical
depth, with the assumption that the frequency distri-
bution profile for absorption by an atom matches the
emission profile, reflecting complete frequency redistribu-
tion. This assumption applies to varying extent for strong
‘resonance’ lines.

There are myriad expressions used in practice for
escape probability in a line (e.g., [254]). For a thermalized
line with a Gaussian distribution, the escape probability
has been given by Zanstra [255] as

Pesc(τν0) ≈
1

τ0(π ln τ0)1/2
. (9.77)

A rough approximation for radiative transfer effect
of self-absorption (by the same ionic species within the
plasma), at frequency ν, is to modify the Einstein A
coefficient for a transition j → i as

A′j i = A ji × Pesc(τ ). (9.78)

The idea is that the spontaneous decay probability,
and hence the number of photons or the intensity of the
line, is reduced (Pesc< 1) by an amount dependent on
the optical depth of the medium. The escape probability
method is employed in several photoionization mod-
elling codes for nebular and active galactic nuclei models
(e.g., [256]).

Now that we are able to obtain the line profile factor
introduced in Eq. (9.8), we can move on to absorption line
diagnostics in the next section.

9.3 Absorption lines

Absorption lines, like emission lines, are also used
as density and abundance indicators in a variety of
objects, e.g., the ISM, active galactic nuclei and stel-
lar photospheres. But whereas emission lines probe local
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physical conditions where they are predominantly formed,
absorption lines entail the extent of the absorbing medium
in its entirety. The atomic processes involved in emis-
sion and absorption are also quite different. Owing to the
low temperatures generally prevalent in the ISM, emission
spectra due to collisional excitation (or recombination) are
less common than in other sources with higher temper-
atures (although many exceptions abound, even including
highly ionized species, such as Li-like O5+ in the ISM and
AGN; see Chapter 13). Absorption spectra are therefore
useful in ISM studies because low temperatures imply that
all ions are likely to be in the ground level, and only a few
levels might be excited. Absorption lines are extremely
useful in ascertaining abundances in extended objects –
especially the interstellar and intergalactic media (IGM).
Their utility is manifest over large distances and low den-
sities, especially cosmological distances in the IGM out
to high redshift (Chapter 14). In some ways, absorption
line analysis is easier than the analysis of emission line
ratios. One usually considers absorption in only one line
at a time. The only atomic parameter required is the
absorption oscillator strength, and the main dependence
is on the number of ion absorbers along the line of sight.
However, there are additional dependencies on the thermal
and turbulent velocity distribution of ions and saturation
effects. The monochromatic flux from a source absorbed
by the intervening medium up to the observer is directly
proportional to the oscillator strength and the total number
of absorbers, i.e.,

Fν(abs) ∝ Ni × fi j (ν) (9.79)

where Ni is the number of ions along the line of sight, i.e.,
the column density.

A problem commonly encountered in observations is
that if the number of absorbers is large enough then all
of the flux at line centre from a given source is absorbed,
leading to saturation in the absorption line profile. There-
fore, in practice weak lines are particularly valuable since
they are less amenable to saturation effects than strong
lines. For example, intercombination lines have f -values
that are orders of magnitude smaller than dipole allowed
lines. A correspondingly larger number of ions would
absorb the same amount of flux in an intercombination E1
transition than a dipole allowed E1 transition. Of course,
one does need sufficient absorption in a line in order to
be observed. Hence, forbidden E2 or M1 lines are not
usually good candidates, since their f -values are far too
small.

The following subsections lay out the methodology
employed in absorption line analysis.

9.3.1 Equivalent width

A spectral line always has a finite width. Observations
may not often resolve the line profile in complete detail,
and the frequency dependence of emission or absorption
via the line transition may not be ascertained exactly. A
quantitative measure of the amount of energy in a spec-
tral line relative to the continuum (Fig. 9.5) is given by
the area contained in the line profile under the continuum
line.

Although we now know that line broadening is
determined by several processes, for the purpose of
abundance determination it is deemed sufficient to know
that the line is formed by a given ionic species via a well-
identified atomic transition. The area between the line
profile and the continuum must then be related to (i) the
number of ions or the abundance and (ii) the strength of
the transition. It is useful to define a quantity correspond-
ing to this area, the equivalent width, which we write
formally as

Wν =
∫

Fc − Fν
Fc

dν. (9.80)

The Fc and the Fν are the measured continuum and
line fluxes or intensities respectively, and W denotes the
equivalent width. In this chapter, unless otherwise speci-
fied, we shall describe equivalent widths as derived from
observed absorption spectra. Thus in Eq. 9.80, Fν denotes
the energy transmitted from the continuum radiation of the
source through absorption by an ion in a given transition at
frequency ν. If we consider Fc to be the continuum source
intensity then,

Fν
Fc

= e−τν . (9.81)

Absorbed flux

Equal
area

W
0

Continuum
flux

Fν

ν

Fc

FIGURE 9.5 Spectral line energy relative to the continuum;
W is the equivalent width.
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Since spectral observations are usually in wavelengths,
and given ν = c/λ, we can express W in wavelength
notation as

Wλ = λ2

c

∫ (
1− e−τν

)
dν. (9.82)

In the ISM, optical depths are generally small, τ �
1 (with outstanding exceptions such as for the Lyα), and
therefore we can approximate e−τ ≈ 1− τν , so that,

Wλ = λ2

c

∫
τν dν. (9.83)

In terms of the column density the optical depth is

τν =
(
πe2

mec

)
Ni fν φ(ν), (9.84)

where φ(ν) is the line profile. So long as τ � 1, the
equivalent width is commonly parametrized in terms of
wavelength as [257]

Wλ =
(
πe2

mec2

)
Ni fλ λ

2 = 8.85× 10−13 Ni fλ λ
2.

(9.85)

Note that the denominator contains the factor c2, and
both sides have dimensions of length. A measurement of
the equivalent width in a line (for τ � 1) directly yields
the column density Ni , which for a given element E may
be simply related to the hydrogen column density NH as

Ni = Ni

NE
× NE

NH
× NH, (9.86)

multiplying with its ionization fraction and the ele-
ment abundance ratio on the right-hand side. The
average H-density is related to the column density as
NH = nH × �, where � is the distance between the
observer (e.g., the Earth) and the source. It is more useful
to rewrite Eq. 9.85 in a slightly different way as

Wλ/λ = 8.85× 10−13 Ni fλ λ. (9.87)

The derivation of the equivalent width above is not
quite complete. While the integrated value of the line
profile (in general, as in Eq. 9.76) is unity (Eq. 9.9), its
detailed form indicates the nature of the plasma along
the line of sight, i.e., the length-averaged Doppler shifts,
temperatures and densities of the medium, determine the
overall line shape. Therefore, the equivalent width W
depends on the line shape in a more involved manner when
τ becomes significantly large (it was assumed to be small
in the preceding discussion). Although the ISM densities
are generally very low, the column densities can be very
large, depending on the path length to the source along the

line of sight. The temperature dependence for a plasma
with a Maxwellian velocity distribution can be charac-
terized by a Gaussian function. The mean kinetic energy
at temperature T given by the rms velocity is called the
b-parameter [257]

b =
√

2kT

M
= 1.29× 104

(
T (K )

MA(amu)

)1/2
cm s−1,

(9.88)

where M is the atomic weight of the element. Considering
the Doppler profile factor only4

φ(v) =

⎧⎪⎨
⎪⎩

λ

π1/2 b
e−(v/b)2

λ

π1/2 b
e−c
ν/bν,

(9.89)

since v/c = 
ν/ν. The velocity–temperature dependence
of the optical depth is

τ(v, T ) = Ni σλ φ(v) =
(

Ni σλ λ

π1/2 b

)
e−(v/b)2 . (9.90)

or more simply,

τ = τ0 e−(v/b)2 , (9.91)

where τ0 = (Ni σλ λ/π
1/2 b) is the maximum line centre

optical depth at the central wavelength λ. There are sev-
eral useful expressions for τ0 that may be particularized to
different astrophysical situations, e.g.,

τ0 = 1.497× 10−15 fλ Ni λ

b
, (9.92)

where λ is in Å and b in km/s. Such expressions are gen-
erally used for extended plasma sources, such as the ISM
or the IGM, with low velocity fields.

Using Eq. 9.82 we obtain the more exact approxima-
tion for the equivalent width

W = 2λb

c

∫ ∞
0

[
1− exp

(
τ0e−x2

)]
dx

= 2λb

c
F(τ0). (9.93)

Exercise 9.5 Derive the above equation in terms of the
functional F(τ0) using the velocity dependent expression
for the optical depth, and the Doppler broadening param-
eter x = (c/bν)dν, without making the approximation in
Eqs 9.82 and 9.83. Note that Doppler broadening means

ν/ν0 = b/c. Write a computer program to evaluate W
at different temperatures.

4 The densities in the ISM are generally too low to cause significant

pressure broadening. Also, there may be clouds with slightly different

Doppler shifts along the line of sight.
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9.3.2 Curve of growth

Now that we have the exact expression for the equiva-
lent width (Eq. 9.93) we may evaluate it as a function of
temperature and density. These functions are very useful
in ISM studies and are called curves of growth. For each
chosen absorption line at a given wavelength λ, Wλ may
be plotted with respect to abundance (column density)
of the ionic species. A family of such curves may be
obtained, one for each temperature related to thermal
velocity characterized by the b-parameter. The physics of
the temperature and density dependence of line broaden-
ing plays a crucial role in determining the observed profile
and the overall behaviour of Wλ.

First, we consider the connection between the
observed line profiles and the dependence of Wλ vs. Ni ,
the number density of ion absorbers. Figure 9.6 shows a
schematic diagram of this curve of growth. The line pro-
files in Fig. 9.6 corresponds to deepening and broadening
in direct proportion to the energy removed from the con-
tinuum by an increasing number of absorbers. There are
three distinct segments of the curve of growth, related to
different line profiles. (i) The linear part: according to
Eqs 9.85 and 9.87 the equivalent width should increase
directly (linearly) as the number of ions Ni of element X
in optically thin regions τ � 1, as

W ∼ τν ∼ Ni ∼ Ni

NX

NX

NH
NH ∼ Ax , (9.94)

where Ax is the abundance ratio NX/NH. The line pro-
file in the linear part in Fig. 9.6, W ∼ Ni , corresponds
to deepening and broadening in direct proportion to the
energy removed from the continuum by an increasing
number of absorbers. (ii) The saturated part: corresponds
to the saturation of the line profile when the density of ions
is sufficient to absorb nearly all of the continuum pho-
tons at the line centre wavelength; any further increase

Wλ

W ~

W ~λ
Saturated

Damped

Linear
W ~ Ni

Nifλ

In Ni

Ni

FIGURE 9.6 The curve of growth relating the equivalent width
of an absorption line to the number density along the line of
sight towards the source: Wλ/λ vs. log(Nf λ).

in density results in a slow increase in W ∼ √
ln Ni ,

related mainly to Doppler broadening. (iii) The damped
high-density part: when the line profile at the central
Doppler core is saturated, ions absorb photons in the line
wings, which are then seen to be ‘damped’ beyond the
line centre. The line wings on either side of the line
centre increase (are enhanced) with column density, and
W ∼ √

Ni ∼ A1/2
x (see Exercise 9.6). With an increasing

number of absorbers, the line profile growth is slower than
linear, and continues to expand sideways with damped line
wings, eventually assuming a ‘square’ shape as absorp-
tion continues to manifest itself in the line wings (such
as in absorption spectra of ‘damped’ Lyα clouds; see
Chapter 14).

As described above, the line profile is a convolu-
tion of natural and pressure broadening represented by
a Lorentzian function, and thermal Doppler broadening
given by a Gaussian. The line absorption cross section
may be represented5 as

σν =
(
πe2

mec

)
fν

[
�/4π2


ν2 + (�/4π2)

]

×
[

1√
π
νD

e−(
ν/
νD)
2
]
, (9.95)

where 
ν is the line width, � is the total damping con-
stant due to natural, radiative and pressure broadening and

νD = bν/c is the Doppler width. Note that we dis-
tinguish between the total width 
ν, which includes all
processes, and 
νD due to thermal broadening only. It is
clear that part (iii) of the curve of growth in Fig. 9.6 is the
most complicated. The equivalent width then depends on
the temperature, the density and the abundance of the ele-
ment. All of these external factors cannot be ascertained
from one measurement of W alone. But for the time being
we only wish to determine the behaviour of W in this
regime with respect to density. We make two approxima-
tions for part (iii). One; the saturated line core dominated
by thermal Doppler broadening is narrow, and the Gaus-
sian component is then like a Delta function. Two; for
sufficiently large spread in the line wings, 
ν2 in the
denominator is large compared with �, which depends
only on atomic parameters and is comparatively smaller.
Thus Eq. 9.95 simplifies to

σν ≈
(
πe2

mec

)
fν

(
�/4π2


ν2

)
, (9.96)

5 Again, with the caveat that we do not consider turbulence or clouds

with different radial velocities in this formal expression.
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FIGURE 9.7 The Si II abundances in the ISM determined from curves of growth with absorption in Si II lines towards two different
stars [258]: log N(Si II) = 14.07 (α Vir) and 14.46 (β Cen). A χ2 procedure is employed to ascertain the best values of the
column density and the b-parameter.

and the optical depth

τν =
(
πe2

mec

)
fν

4π2 
ν2

∫ �

0
Ni � ds. (9.97)

The ion column density Ni is related to the abundance
of the element Ax = NX/NH and the ionization fraction
Ni/NX, as shown above. Letting the integral represent
an average over the whole path length � as 〈Ni�〉, we
approximate

τν =
(
πe2

mec

)
fν

〈Ni�〉
4π2 
ν2

. (9.98)

Evaluating W with this expression of τ yields its
dependence on the ion density for lines on the damped
part of the curve of growth

Wν ∼
√〈Ni�〉 fν ∼

√
Ni . (9.99)

Exercise 9.6 Derive Eq. 9.99. Hint: use the change of

variable x2 = 
ν2/
[
〈�Ni 〉(πe2/mec) fν

]
.

In part (ii) of Fig. 9.6, when the density dependence is
still small, the main variation in W is due to the temper-
ature, as reflected in the thermal velocity distribution of
ions, i.e., through the b-parameter. However, the velocity
profile is unknown a priori, since the local temperature
varies or is otherwise unknown in an extended object.
Theoretical curves of growth are therefore computed at
a range of b-parameters to compare with observations and
deduce column densities. Figure 9.7 displays the curves
of growth using Si II lines, with lines of sight through
the ISM towards two relatively bright stars α Virginis
and β Centauri. Note that while the linear and damped
parts of the curves of growth merge together for different
b-parameters, the main variation in the saturated part is

due to thermal velocity distribution. The observed values
are also shown in Fig. 9.7, and yield a fairly well con-
strained range of column densities N (Si II) ∼ 1014 cm−2

[258].
Another example where the curve of growth technique

may be used for abundance determinations is with the
well-known pair of strong Na D lines in stellar atmo-
spheres (see solar spectra, Figs 1.1 and 9.13). The two
fine-structure components are D1 and D2: 3s2S1/2 −
3p2Po

1/2,3/2 at λλ 5895.924 and 5889.950, with f -values
of 0.320 and 0.641, respectively, in the proportion 1:2.
Since the Na D lines are readily observed and their two
components easily resolved, they enable accurate determi-
nation of photospheric densities under various conditions
and models [259].

Absorption spectroscopy can also be extended to
include absorption into resonant levels, or excitation from
a bound state into an autoionizing level lying in the
continuum. The corresponding ‘resonance line strengths’
(defined in Eq. 6.69) may be analyzed in much the
same way as above. However, the computation of res-
onance oscillator strengths, required to compute equiva-
lent widths, is more complicated, since these resonances
appear in photoionization cross sections. This topic is dis-
cussed in the context of resonant X-ray photoabsorption
in AGN in Chapter 13 (in particular, see Exercise 13.1 on
calculating X-ray column densities).

9.4 Radiative transfer

The previous discussion has introduced some of the ter-
minology of radiative transfer in spectral analysis. But a
far more extensive and rigorous methodology has been
developed for large-scale numerical computations for
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radiative transfer, involving atomic astrophysics as an
integral part. This section describes the basics of radia-
tive transfer, leading up to the large variety of non-LTE
methods found in the literature.6

There are several distinct quantities that are defined to
describe radiative transfer: specific intensity, mean inten-
sity, energy density, flux, luminosity, averaged moments
of intensity, opacity, emissivity and the source function.
It is necessary to understand the precise definitions and
concepts underlying all of these within the context of the
formal theory of radiative transfer.

9.4.1 Intensity and flux

A source of radiation is characterized by a specific
intensity, I , defined to be constant along a ray of light
propagating in free space from the source to the receiver.
The source may be a differential area dA1 on the surface
of a star, and the receiver may be another differential area
dA2 on an object like an ionized gas cloud or the detector
at a telescope. The monochromatic intensity Iν of radia-
tion emitted by the source is defined in ergs per unit solid
angle ω, per unit area, per unit time, per unit frequency

Iν = I (erg/(cm2 s1 str1 Hz1)). (9.100)

Let us consider a given amount of energy dE pass-
ing through two surface elements (one at the source and
the other at the receiver) dA1 and dA2, with geomet-
rical disposition as shown in Fig. 9.8 and separation r .
The solid angles subtended by each, at a point on the
other, are: dω1/4π = dA2 cos θ2/4πr2 and dω2/4π =
dA1 cos θ1/4πr2. Then the energy per unit time is

dEν = Iν(1) dA1 cos θ1 dω1 dν dt

= Iν(2) dA2 cos θ2 dω2 dν dt . (9.101)

dA1 dA2

P1
P2

Iν

r

dω2

θ1

θ2

FIGURE 9.8 Constancy of specific intensity Iν along a ray from
the emitting area dA1 at the source to the receiving area dA2 at
the observer (detector), irrespective of the arbitrary
geometrical configuration shown.

6 The subject is discussed in many excellent textbooks and monographs,

such as [244, 245, 246].

Substituting for dω1, dω2 leads to Iν(1)= Iν(2),
or the invariance of specific intensity in the absence
of any source or sink of energy in the intervening
space. But note that the geometrical dilution of the
energy as r−2 is implicit in the definition of the
solid angles. Therefore, while the specific intensity Iν
remains constant, the energy per unit area received
from the source, which determines its apparent bright-
ness, decreases geometrically with distance as 1/r2 (see
below). Since it occurs frequently, it is convenient to
abbreviate the polar angle θ (0≤ θ ≤π) dependence as
cos θ ≡μ, and dω= sinθdθdφ=−(dcosθ)dφ=−dμdφ.
Then we define the mean intensity averaged over all
directions

Jν = 1

4π

∫
Iνdω = 1

4π

∫ 2π

0
dφ

∫ θ=π
θ=0

Iνsinθdθ

= 1

2

∫ +1

−1
Iνdμ. (9.102)

The monochromatic energy density is related to the
mean intensity as

uν = (4π/c) Jν . (9.103)

Note the analogy from fluid mechanics with the flow
of a fluid of density ρ and velocity v such that ρv is the
amount at or through a given point. The monochromatic
flux is

Fν =
∫

Iν cos θ dω = 2π
∫ +1

−1
Iν μ dμ. (9.104)

The total luminosity L of an object is defined to be the
net energy flowing outward through a sphere of radius R,
per unit time, per unit frequency (erg/(s1Hz1)). Therefore,

L = (4πR2)

∫
Iν μ dω = πFν(4πR2). (9.105)

This equation involves integration over all directions,
i.e., outward flow of radiation as well as inward through
a surface. If, however, the flow is only outward, and the
source is such that Iν is isotropic, then the integration
implies that at the surface of the source

Fν = Iν (outward flow). (9.106)

The total energy or luminosity L of an isotropic
source with outward flux F , as it flows through successive
spheres of radii r1, r2, etc., can be written as

L = π F(r1) 4π r2
1 = π F(r2) 4π r2

2 , (9.107)

and hence the flux decreases geometrically as

πF = const

r2
. (9.108)
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Exercise 9.7 Assuming a spherical source to be uniformly
bright, show that F = I (R/r)2, where R is the radius of
the source and r is the distance to the observer. [Hint: I is
independent of μ = cos θ for a uniform source.]

The surface flux is π times the μ-weighted average
of Iν . If the mean intensity Jν is thought of as the zeroth
moment of Iν , then by analogy the first moment is

Hν = 1

2

∫ +1

−1
Iν μ dμ = 1

4π
(πFν), (9.109)

which is called the H-moment. This expression for the flux
is referred to as the Eddington flux. Similarly, the second
moment of specific intensity is the K-moment,

Kν = 1

2

∫ +1

−1
Iν μ

2 dμ. (9.110)

Let us re-state the zeroth, first and second moments
of specific intensity Iμν , respectively, in terms of their
physical meaning.

Jν = 1

2

∫ +1

−1
Iμν dμ mean intensity, (9.111)

Hν = 1

2

∫ +1

−1
Iμν μ dμ Eddington flux, (9.112)

Kν = 1

2

∫ +1

−1
Iμν μ

2 dμ radiation pressure. (9.113)

All of these moments are related to general physi-
cal characteristics of astrophysical objects. The Eddington
flux is related to the observed astrophysical flux Fν/4π =
Fν/4 = Hν . It has a simple physical interpretation: the
radiated flux from the surface depends on the specific
intensity Iν and the angle between the direction of propa-
gation of radiation at the surface and the line of sight to the
observer (Fig. 9.9); the factor 4π results from integration
over all solid angles ω, i.e.,

Fν =
∫

Iν cos θ dω = 4πHν . (9.114)

The (monochromatic) radiation pressure is

Pν = 1

c

∫
Iν cos2 θ dω = 4π

c
Kν . (9.115)

If the source is unresolved, and assuming the radiation
to be isotropic, integration over cos2 θ yields a factor of 1

3 .

Radiation pressure, in units of dyne/(cm2 Hz), is related
to the energy density as Pν = uν /3. Isotropic radiation
means integration over all angles, and therefore Iν = Jν ,
and uν = (4π/c)Jν . The total energy density u and the

Surface 0

Interior

Normal

Ray

s = 0

∞

Optical
depth τ

Z

θ

FIGURE 9.9 Schematic variation of the optical depth τ from the
surface where radiation escapes and τ = 0, into the deep
interior of a source (e.g., star) where τ →∞.

total photon number density Nhν are obtained by integrat-
ing over all frequencies. For a black body, for example,
the temperature T determines the density

u =
∫

uν dν = 1

c

∫
Bν dω dν = 4

c
σT 4, (9.116)

and the number of photons,

Nhν =
∫ ∞

0

uν
hν

dν ≈ 20 T 3 cm−3, (9.117)

where the number density uν/hν at each frequency is the
energy density divided by the energy of the photon hν;
Eq. 9.117 also gives an approximate value for the total
number of photons in a black body at temperature T .

9.4.2 Transfer equation and the source
function

For the purpose of the definitions above, we have thus far
assumed that there is no source of absorption or emis-
sion of energy (i.e., matter) along the path of flow of
radiation. But of course the whole point of radiative trans-
fer theory is to deal with situations where we do have
material of various kinds acting as absorbers or emitters
of energy (viz. sink or source). As we have seen, it is not
the geometrical distance but the optical depth τν that is
the meaningful quantity for the propagation of radiation;
if τν = 0 then Iν remains constant. But τν depends on the
absorption coefficient κν , related to the opacity and the
distance s according to

τν = −
∫ s

0
κν(s

′) ds′. (9.118)
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Note that τ is a positive quantity, since the direction
of integration is below the surface at s = 0 (Fig. 9.9). We
therefore seek to study the variation in Iν with respect to
τν , i.e., (dIν/dτν). Again, assuming absorption of radia-
tion to be the only process, the change in Iν with respect
to distance s or optical depth τν is negative. We can for-
mally write this as (neglecting the angular μ-dependence
for the time being),

dIν
ds

= −κν Iν, (9.119)

or, using dτ = κds,

dIν
dτν

= −Iν . (9.120)

To recover the exponential dependence as before,

Iν = I0(ν) e−τν , (9.121)

where I0(ν) is some constant initial value of intensity. In
general the intervening material not only absorbs radiation
but also (re-)emits energy. Therefore, an emission coeffi-
cient ην must be considered in the transfer equation, i.e.,

dIν
ds

= −κν Iν + ην. (9.122)

Note that the signs of the opacity and the emissiv-
ity coefficients are opposite. We may consider absorption
as the loss and emission the gain of energy, subtracting
or adding to the intensity of radiation as it propagates
through a material medium. The units of the emission
coefficient are ην (erg/(cm3 s1 str1 Hz1)). Recall that ear-
lier we had defined the units of the opacity (absorption)
coefficient κ in inverse units of length, cm−1. It may also
be defined as7

κν (cm−1) = ρ (g/cm3)× kν (cm2/g) (9.123)

in terms of the mass absorption coefficient in kν (cm2 g−1).
Since dτν = −κνds, we can write the formal transfer
equation as

dIν
ds

= −κν (Iν − Sν), (9.124)

or

dIν
dτν

= Iν − Sν, (9.125)

where we have introduced the most important quantity in
radiative transfer theory, the source function defined as

7 One needs to guard against the confusion that arises because the total

or the mean opacity κ of matter usually incorporates the density ρ, and

is also measured in cm2 g−1 (i.e., re-define κ as k; see the discussion

on stellar opacities in Chapter 11).

Sν ≡ ην/κν , which is basically the ratio of emissivity
to opacity. The source function carries all the informa-
tion about the material medium, and how it affects the
radiation at each frequency.

9.4.3 Spectral lines

We are particularly interested in atomic transitions for
spectral lines and their source function. The reason we
have carried through the subscript ν in the definitions
of physical quantities of radiative transfer theory is to
note the explicit frequency dependence of radiation. That,
in turn, depends on radiative transitions in atoms and
molecules: interaction of radiation and matter at dis-
crete frequencies associated with bound quantized states.
Therefore, we need to examine how the physical processes
and quantities enter into transfer calculations.

Spectra generally consist of a background continuum
‘c’, and superimposed lines ‘lν ’ at specific frequencies.
Since the underlying physical processes are sufficiently
different for continuum as opposed to line radiation, it is
convenient to divide the source function into Sc

ν and S�ν .
The line source function is then defined as the ratio of
the monochromatic emissivity to the opacity. At this point
we may particularize the meaning of opacity κν in terms
of the absorption coefficient αν at a given frequency for
a bound–bound transition. From above, the line source
function is

Sν ≡ ην

αν
, (9.126)

and the total (continuum + lines) source function is

St
ν =

ηc
ν + η�ν
αc
ν + α�ν

. (9.127)

We next examine the line source function for the
simplest case.

9.4.4 The two-level atom

Disregarding the continuum contribution, it is instruc-
tive to consider the source function for a two-level atom
simply in terms of the Einstein A and B coefficients.
With reference to Fig. 4.1, the monochromatic emissivity8

related to the A-coefficient for spontaneous emission, in a
line at frequency ν corresponding to a transition between
two levels j → i (i < j) is

ην =
hνi j

4π
N j A ji φν, (9.128)

8 Note that in Chapter 8, on emission lines, we had used the notation εν
for emissivity of a line and therefore ην ≡ εν .
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where the line profile function φν depends on surround-
ing plasma conditions, as discussed earlier in this chapter.
The monochromatic opacity is related to the Einstein
B coefficients for absorption, and the inverse process of
stimulated emission, as

κν =
hνi j

4π
(Ni Bi j − N j B ji ) φν. (9.129)

Note that the stimulated emission term on the right-
hand side ‘corrects’ the absorption term, which is
effectively reduced by that same amount, to give the net
absorption.9 Since these expressions generally apply to
any two-level transition, the line source function

Sν(i j) ≡ ην

κν
= N j A ji

Ni Bi j − N j B ji
. (9.130)

In LTE (see Section 9.5), the level populations are
given by the Boltzmann equation,

Ni

N j
= gi

g j
e−hν/kT , (9.131)

and recall that (Chapter 4) the ratio

A ji

B ji
= 2hν3

c2
, (9.132)

and gi Bi j = g j B ji . Putting these together,

ην

κν
= 2hν3

c2
(ehν/kT − 1)−1 ≡ Bν(T ). (9.133)

Thus we arrive at the simple result that the source
function in thermal equilibrium is the Planck function.
This is known as Kirchhoff’s law: ην/κν ≡ Bν . Alter-
natively, considering the level populations and the mean
intensity of the radiation field Jν , the number of transi-
tions into the state i is equal to the number going out, and
therefore

Ni Bi j Jν(i j) = N j A ji + N j B ji Jν(i j). (9.134)

Solving for Jν(i j),

Jν(i j) = A ji/B ji

(gi Bi j/g j B ji ) ehν/kT − 1
, (9.135)

which is equal to the Planck function Bν , given
Eq. 9.133 and the Einstein relations: gi Bi j = g j B ji and
A ji = (2hν3/c2)B ji .

The monochromatic opacity κν in general encom-
passes not only the bound–bound transitions via the

9 What happens if the stimulated ‘correction’ exceeds absorption? That

is how a laser or maser is formed, with population inversion so that

N j > Ni . Usually the population ratio exceeds the statistical weight

ratio, N j /Ni > g j /gi .

absorption coefficient αν , but all other processes related
to absorption, such as bound–free and free–free processes.
We will incorporate those explicitly in the calculation of
opacities, as discussed in Chapter 11.

9.4.5 Scattering

The number of times a photon scatters before absorption
is a measure of the optical depth τ . The number of scat-
terings N is related to the mean free path of the photon.
Applying the random walk principle, the actual distance
travelled is the vectorial sum of the N individual paths the
photon undergoes before escape,

r =
N∑
i

ri . (9.136)

The magnitude of this distance can be approximated
by assuming all path lengths on the right-hand side to
be equal to the photon mean free path 〈r〉. Then |r|2 =
N 〈r〉2, which gives the root mean square distance trav-
elled by the photon in terms of the mean free path and the
number of scatterings

|r| = √
N 〈r〉. (9.137)

If D is the total geometrical thickness of the
medium the photon needs to travel before escaping, then
D≡ |r| ∼√N 〈r〉. The optical depth may be assumed to
be τ ≈ D/〈r〉, and therefore the number of scatterings
before absorption for an optically thick medium N ∼ τ2.
On the other hand, for an optically thin medium the mean
free path would be of the order of its geometrical length,
or less, and the number of scatterings N ∼ τ .

How does scattering enter into the source function,
which thus far has included absorption and emission?
In thermal equilibrium the amount of energy absorbed
is equal to the amount of energy emitted. This is how
Kirchoff’s law applies, and the transfer equation and the
source function have the simple forms discussed before.
However, if the photons have a certainly probability of
being ‘destroyed’ upon absorption, instead of all being
(re-)emitted, then we need to separate the source function
into two parts: absorption and coherent or elastic scatter-
ing of photons by electron scattering. Typical scattering
processes are Thomson, Rayleigh and Compton scattering
(Chapter 11). In terms of the rate coefficients for the two
processes respectively, αν and σ sc

ν , the radiative transfer
equation is

dIν
ds

= − (
αν + σ sc

ν

)
(Iν − Sν). (9.138)
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If we denote the photon destruction probability
(absorbed, and not coherently re-emitted) by εν then

εν = αν

αν + σ sc
ν
. (9.139)

The emitted intensity Jν in the source function is
reduced by the amount −εν Jν . On the other hand the
amount absorbed increases by+εν Bν , where Bν(T ) is the
Planck function distribution at a temperature T . Putting
the two together,

Sν = Jν − εν Jν + ενBν = (1− εν)Jν + ενBν . (9.140)

Another way of expressing the photon destruction
probability ε is in terms of the number of scatterings N
before destruction or escape, i.e., N = 1/ε. Therefore,
the net distance travelled D = ε−1/2〈r〉. We regard the
effective mean free path 〈r〉 due to random walks as the
thermalization or the diffusion length for a photon before
being absorbed (destroyed). Then

τν = D

〈r〉 =
√

N = ε−1/2
ν . (9.141)

It is in this sense – random walk and number of scat-
terings before escape or absorption – that the optical depth
is generally understood. For thermalization length com-
pared with the size of the medium D, τ > 1 → optically
thick medium, and τ < 1 → optically thin medium. Also,
for the optically thin case, the escape probability is high
(εν → 1), and Sν ≈ εBν , from Eq. 9.140.

For the two-level atom, i and j , the collisional destruc-
tion probability may be expressed as the de-excitation
j → i ,

εν(i j) = ne q ji

ne q ji + A ji
, (9.142)

where ne q ji is the electron-collision rate, or the number
of electron impact de-excitations per second at electron
density ne, as discussed in Chapter 5. If level j is colli-
sionally de-excited before radiative decay with probability
A ji , then a net absorption of the photon takes place. Note
also that if ε ∼ 1 → neq ji � A ji , collisions are likely
to de-excite the upper level j and photons are effectively
absorbed (destroyed) in each interaction, since N ∼ 1.

9.4.6 Plane-parallel approximation

In principle, the specific intensity Iν is a function of
the angles (θ, φ), and is a three-dimensional quantity
with a specified direction, like a vector (Fig. 9.9). This
specification is needed because astrophysical objects are
extended, and have several intrinsic physical processes
responsible for the creation or destruction of radiation in

different parts of the object. A simple example is sunspots,
which differ from (are cooler than) other parts of the
Sun’s surface, owing to enhanced magnetic activity. The
specific intensity of emitted radiation varies according to
the surface element. As such, the problem of determining
the Iν(r, θ, φ) or I (x, y, z) appears to be very difficult.
Furthermore, it can only be ascertained in sources that
can be resolved, such as the Sun or bright diffuse neb-
ulae, where we are able to study different regions. Most
astrophysical sources are unresolved. Therefore, we must
necessarily integrate Iν(r, θ, φ) over the entire surface.

A great simplification in radiative transfer theory is to
assume the geometry to consist of one-dimensional par-
allel planes of infinite extent, as shown in Fig. 9.9. With
the optical depth in the normal direction, μ is constant
with height along the direction of Iν . Here we consider the
optical depth in the normal direction, increasing inwards
in a stellar atmosphere. This is often a physically rea-
sonable approximation. Consider a typical main-sequence
star, where the temperature and density vary only with
height denoted by z. The horizontal variation in the x-y
plane is negligible, with non-local variations only with z.
Then the specific intensity in either the spherical or the
rectangular coordinates can be considered to be simply a
function of z,

Iν(r, θ, φ) = I (x, y, z) = Iν(z). (9.143)

Now we revert to include the θ - or μ-dependence, so
that the intensity I+μν directed outward corresponds to 0 <
μ < +1 (−π/2 < θ < π/2), and I−μν (−π < θ < π )
directed inward corresponds to −1 < μ < 0. The formal
solution of the transfer equation, Eq. 9.124, including the
μ-dependence, a first-order linear differential equation, is
straightforward. Using the integrating factor e−τ/μ, we
can write

d

dτ
(Iμνe−τ/μ) = −Sν e−τ/μ

μ
. (9.144)

We obtain the outgoing intensity at the surface (τ→0),
from an object with practically infinite optical depth in the
deep interior (τ→∞), as

Iμν(τν = 0) =
∫ ∞

0
Sν e−tν/μ dtν

μ
. (9.145)

Now consider a plane at optical depth τ . This divides
the whole body of star into two regions in τ -space: 0 − τ
from the surface to the layer in question, and τ −∞ from
the plane to regions of practically infinite opacity. Solving
Eq. 9.145, the intensity of radiation I+ flowing outward
(0 ≤ μ ≤ 1) from the τν -layer is given in terms of
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I+(τν) =
∫ ∞
τ

Sν e−(t−τν)/μ dt

μ
. (9.146)

Similarly, the radiation intensity I− flowing inward
(−1 ≤ μ ≤ 0) from the τ -layer is

I−(τν) =
∫ 0

τ
Sν e−(t−τν)/μ dt

μ

= −
∫ τ

0
Sν e−(t−τν)/μ dt

μ
. (9.147)

Exercise 9.8 Work out the detailed steps in deriving I±μν .

A physically illustrative result (Fig. 9.10) is obtained
by approximating the source function to vary as a linear
function of the optical depth: Sν(t) ≈ a + bt (say, for
example, if we approximate S(τ ) in Fig. 9.10 by a straight
line). Then the emergent intensity is simply

Iμν(τ = 0) = Sν(τν = μ). (9.148)

This is known as the Eddington–Barbier relation:
Sν(τν = μ), which approximates the emergent intensity
for a ray at an angle θ (note that τν/μ = 1 → τν = μ).
If the direction of the emergent ray is normal to the sur-
face (μ = 1), the specific intensity represents the source
function at unit optical depth.

9.4.7 Schwarzschild–Milne equations

The equations for the moments of Iμν given in the previ-
ous section are in terms of both I±. In particular, the mean
intensity is

Jν = 1

2

∫ 1

0
I+μν dμ+ 1

2

∫ 0

−1
I−μν dμ. (9.149)

0
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S(τ)e�τ

S(τ)
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FIGURE 9.10 Convolution of the source function and the
optical depth

The natural boundary condition for a star is that the
incoming radiation on the stellar atmosphere is negligi-
ble, and radiation flows only outward; hence the second
term on right-hand side is zero. The moment equations
of I±μν can be rewritten in terms of exponential integrals,
and are known as the Schwarzschild–Milne relations. For
example,

Jν(τν) = 1

2

[∫ ∞
τν

Sν(tν) E1(tν − τν) dtν

+
∫ τν

0
Sν(tν) E1(τν − tν) dtν

]
. (9.150)

9.4.8 The $-operator

We now have expressions for the physical quantities given
by the Schwarzschild–Milne relations, Eq. 9.150. Their
mathematical form suggests an important and powerful
method for calculating those quantities. Since the mean
intensity of the source is the most useful such quantity,
we rewrite Eq. 9.150 as

Jν(τν) = 1

2

∫ ∞
0

Sν(tν) E1(|tν − τν |) dtν . (9.151)

It is now useful to convert this equation to an ‘operator’
form – the Laplace transform – by defining the so-called
$-operator as J = $ [S], or

Jν(τ ) = $τ [Sν(t)] ≡ 1

2

∫ ∞
0

Sν(t) E1(|t − τ |) dt.

(9.152)

The $-operator yields the mean intensity Jν , given an
approximate source function Sν . The exponential integral
satisfies the property

∫∞
0 E1(x)dx = 1. Therefore at large

τ , say in the semi-infinite case with no incident radiation
[246], J = S; and at the surface J = S/2. It follows that
for sufficiently large τ where LTE prevails, $[S(τ )] →
B(τ ), the Planck function.

We know that we cannot ascertain the source function
Sν ≡ ην/κν exactly, or even sufficiently precisely in many
cases. That would entail (i) taking account of all atomic
processes and transitions that determine the emissivity ην
and the opacity κν at all frequencies, and (ii) measuring
all atomic parameters that correspond to (i) with suffi-
cient accuracy. A priori, the source function therefore has
a certain degree of ‘error’. The relevant question then is:
can one ‘improve’ on an initial estimate of the source
function? Before answering the question, it is useful to
put it in perspective. One often encounters such problems
in physics. Among the notable ones is the calculation of
atomic wavefunctions themselves. As we have seen, much
of the theoretical atomic physics machinery rests on the
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Hartree–Fock approximation, which is a self-consistent
iterative procedure involving the wavefunctions and the
atomic potential that generates them. This is how the
$-operator form becomes useful – in deriving a numer-
ically self-consistent iterative procedure to solve for Jν ,
given a (‘trial’) source function Sν , i.e., Jν = $ν [Sν ].

Elaborate numerical procedures have been devised to
solve the operator equation J =$ S, and implement the$-
operator formalism. Advanced versions of the method are
aimed at ‘accelerating’ its convergence and are referred
to as the accelerated lambda iterative (ALI) schemes (or
for ‘multi-level’ atoms, as MALI) (e.g. [260]). Special-
ized expositions are, for example, calculations of NLTE
line-blanketed stellar atmospheres [261]. These methods
are highly specialized and form the basis of state-of-
the-art research on NLTE spectral models. This section
is intended only as a brief introduction leading into the
NLTE methodologies, described in detail in these and
other works [244, 245, 246]. Although they are outside
the scope of this text, the atomic physics input into the
vast computational framework of radiative transfer and
spectroscopy are very much the focus of our effort.

Next, we point out the connection between LTE and
NLTE approximations, which relates to quantum statistics
and quantum mechanics.

9.5 LTE and non-LTE

The physical concepts underlying LTE, and depar-
tures therefrom, are of fundamental significance in
astrophysics. Non-LTE situations are the raison d’etre for
a detailed radiative transfer treatment when the assump-
tions underlying LTE are not valid. Heretofore, we
have referred to LTE without going into the statistical
foundation upon which it is based. This is now addressed
in the next section.

9.5.1 Maxwell–Boltzmann statistics

We begin with quantum statistics formulae that describe
the distribution of quantized (bound) and free particles in
thermodynamic equilibrium. The probabilities are subject
to three rules: (i) all quantum states of equal energy have
equal probability of being populated, (ii) the probability
of populating a state with energy ε at kinetic temperature
T is exp−ε/kT and (iii) no more than one electron may
occupy a quantum state (spin is considered explicitly).

For free electrons with velocity v and energy
ε=mv2/2, the wavenumber is k = mv/�. Then the num-
ber of electron states per unit energy per unit volume – the
statistical weight of free electrons – is

ge(ε) = 2× m2v

2π2�3
, (9.153)

where the factor of two refers to spin degeneracy. With
ne as the number of electrons per unit volume, we denote
the number of electrons in the energy range (ε, ε + dε)
as ne F(ε) dε, where the probability distribution function
F(ε) is normalized as∫ ∞

0
F(ε) dε = 1. (9.154)

According to the three rules mentioned just now we
can express

F(ε) = ge(ε) e−ε/kT

Ue
, (9.155)

with the fractional population of free electrons defined by
the electron partition function

Ue = 2

(
mekT

2π�2

)3/2
. (9.156)

For a Maxwellian distribution, we have

F(ε) = 4πm2
e (2πmekT )−3/2 v2 e−ε/kT . (9.157)

Since there cannot be more than one electron per
quantum state, the fraction of occupied states is

ne F(ε)

ge(ε)
= ne

Ue
e−ε/kT . (9.158)

Maxwell–Boltzmann statistics expressed by this
equation refers to non-degenerate electrons subject to the
three rules,10 and is valid only if the number of available
quantum states is much greater than the number of elec-
trons, i.e., ne F(ε)/ge(ε) � 1, or Ue � ne. This is true
for most of the interior of the star (at Te and ne given in
Table 11.1). But it is not entirely valid for some important
cases, such as the central cores of stars where the den-
sities reach ∼ 100 g cm−3, even at temperatures greater
than 107 K. In the degenerate cores of stars therefore,
Maxwell–Boltzmann statistics is not strictly valid and a
different equation-of-state should be used.

9.5.2 Boltzmann equation

As we know, the quantized electron distribution among
the atomic energy levels is given by the Boltzmann equa-
tion,
ni

n j
= gi

g j
exp(−Ei j/kT ). (9.159)

10 As mentioned in Chapter 1, for degenerate fermions we need

Fermi–Dirac statistics, and for bosons (naturally degenerate) we

employ Bose–Einstein statistics.
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Let the total number of ions in all occupied levels be

N =
∑

i

ni . (9.160)

We then define the internal atomic partition function,

U =
∑

i

gi e−Ei /kT , (9.161)

so that the level populations are

ni = gi e−Ei /kT N

U
. (9.162)

The partition function describes the level-by-level
population of the occupied levels in an atom in a plasma
in thermal equilibrium characterized by local temperature
T . The atomic partition function U is a difficult quan-
tity to compute, since it embodies not only the atomic
structure of all levels in the atom, but is also a diver-
gent sum over the infinite number of levels with statistical
weights increasing as gi ∼ 2n2

i . However, in real sit-
uations the truncation of the partition function naturally
occurs, owing to the interaction of the atom with surround-
ing particles. The more highly excited an atomic level, the
higher the magnitude of plasma perturbations, since the
radii of atomic orbitals also increase as ∼ n2. Likewise,
the higher the plasma density the stronger the perturba-
tions, and consequent truncation of the atomic partition
function at a limited number of levels. We return to the
proper solution of this problem, by considering the prob-
ability of occupation of an atomic state as part of defining
an equation-of-state for opacities calculations, in the next
chapter.

9.5.3 Saha equation

Whereas the Boltzmann equation relates the populations
of levels within an atom (ion) of any one ionization state,
the Saha equation relates the distribution among different
ionization states of an element, or the ionization fractions,
in thermodynamic equilibrium. Using the terminology of
the Boltzmann equation developed here, the Saha equation
also entails energies above the ionization energy Eim of a
level i of ionization stage m. The population distribution
therefore needs to specify both the ionization stage and
the atomic level. Given two successive ionization stages
m and m + 1

ni,m+1 ne F(ε)

n j ,m
= gi,m+1 e−Ei,m+1/kT ge(ε) e−ε/kT

g j,m e−E j,m/kT
,

(9.163)

where Ei,m+1 and E j,m are the energies of levels i
and j in each ionization stage, and gi,m+1 g j,m are

their statistical weights. The Saha equation can now be
written as

nm+1 ne

nm
= Um+1 Ue

Um
. (9.164)

The ionization fraction is specified as nm/N , with the
total number distributed among all ionization stages of an
element, N = ∑

m nm (Eq. 9.164). A simplified form of
the Saha equation that is often used is the assumption that
adjacent ionic populations (nm , nm+1) are in their ground
states only. This allows us to replace the partition func-
tions with the statistical weights of the ground states of
respective ionization stages, i.e., Um+1 → g1,m+1 and
Um → g1,m . Referring only to level index ‘1’ then,

nm+1 ne

nm
≈ g1,m+1

g1,m
Ue e−Im/kT , (9.165)

where Im ≡ (E1,m+1 − E1,m) or the ionization energy
from the ground state of ion m into the ground state of
ion (m + 1). Since we know the free-electron partition
function Ue (Eq. 9.156) we can rewrite this equation more
explicitly, as

nm+1ne

nm
= 2

[
mekT

2π�2

]3/2 (
g1,m+1

g1,m

)
e−Im/kT .

(9.166)

Of particular interest is the ionization stage with the
maximum abundance of an element X (also denoted as
m for convenience), i.e., n(Xm+)/n(X). We note that (i)
usually the ratio of statistical weights g1,m/g1,m+1 ≈ 1
(or of the order of unity) and (ii) close to maximal abun-
dance, the ionization state distribution would tend to be
nm+1/nm = g1,m/g1,m+1 ≈ 1. Then from Eq. 9.165,

ne ≈ Ue exp(−Im/kT ). (9.167)

Now we recall one of the basic characteristics of
Maxwell–Boltzmann statistics: Ue � ne, and thence,

Im � kT . (9.168)

This implies that the ionization state with the maxi-
mum abundance of an element occurs at a kinetic temper-
ature much lower than that corresponding to the ionization
energy of that state, typically Im ≈ 10kT . The LTE tem-
perature distribution is such that most photon energies
are insufficient to ionize the ground states of ions, but
are capable of inducing transitions by absorption from
excited levels. This, in turn, has far-reaching implica-
tions in calculations of fundamental quantities, such as the
plasma opacities discussed in Chapter 10. Excited states
contribute significantly to photon opacities even though
the abundances of ions in excited states may be low.
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Put another way, the Planck function is such that most
photons have hν ≈ kT , and therefore the (black-body)
radiation is absorbed by excited states that have low ion-
ization or excitation energies – which is preferentially the
case for highly excited levels, as opposed to low-lying
ones.

The combination of the Saha–Boltzmann equations
specify the quantum statistical nature of the plasma, or the
equation-of-state (EOS), in LTE. They yield both (i) the
ionization fractions of a given element and (ii) their level
populations. However, we still need to consider plasma
effects. The electrons, being lighter than ions, are the
dominant colliding species in a plasma, and are assumed
to follow a Maxwellian distribution of velocities. Local
thermal equilibrium is usually a safe assumption at suf-
ficiently high electron densities when collisions would
establish a Boltzmann distribution. Referring to the two-
level atom, if the densities are not sufficiently high and
the upper levels are not collisionally de-excited before
radiative decay, then the photons could escape and the
level populations would deviate from their Boltzmann sta-
tistical values. In the next chapter we shall discuss the
Saha–Boltzmann equations further, modified to describe
stellar interiors in LTE.

9.5.4 Non-LTE rate equation and
equation-of-state

As mentioned, departures from LTE – and hence from the
analytical Saha and Boltzmann formulae – lead to a huge
increase in the level of complexity of the atomic physics,
coupled with the radiation field and plasma effects. Thus
a proper non-LTE (NLTE) formulation requires elaborate
numerical methods needed to solve the coupled atom–
radiation problem. Since the Saha–Boltzmann equations
are no longer valid in NLTE, the level populations must
be ascertained explicitly. That means taking account of
all radiative and collisional processes that determine level
populations. Often though, one saving grace is that we
may generally assume time invariance, i.e., the popula-
tion of a given level does not change with time in most
astrophysical situations. As we have seen, the rate equa-
tions in statistical equilibrium can be quite involved if a
number of physical processes are to be considered (see
Eq. 8.15). The NLTE problem is further complicated by
the fact that the radiation field Jν is itself to be derived
self-consistently from an iterative process. It is instructive
first to study each situation physically to identify the dom-
inant processes, and then to write down the rate equations
correspondingly. If we begin simply as before, with the

time-independent level population for a given ionization
state (as in Chapter 8),

dNi

dt
= 0 =

∑
j �=i

N j Pji − Ni
∑
j �=i

Pi j , (9.169)

where Pi j = Ri j + neqi j is the sum of individual radia-
tive and collisional rates, respectively. The radiative term
Ri j on the right-hand side involves the radiation field for
bound–bound transitions at frequency νi j , i.e.,

Ri j = Ai j + Jνi j Bi j . (9.170)

The coupling of the atomic level populations to the
radiation field is clear: each depends on the other. The
atomic collisional and radiative rates (the Einstein coef-
ficients) must be computed explicitly for all levels likely
to be of interest in the model.

An important point to note is that in general the
monochromatic radiation field intensity may not be
given by the Planck function that characterizes LTE,
i.e., Jν �= Bν in NLTE. But we may attempt to treat
this inequality by modifying the source function Sν to
include departure from LTE. Writing the line source
function as

Sν(i j) ≈ bi

b j
Bν(i j), (9.171)

or more explicitly,

Sν(i j) =
(

2hν3

c2

) (
bi/b j

ehν/kT − 1

)
, (9.172)

where bi , b j are the departure coefficients for the
lower and upper levels takes account of the deviation
of their populations from Boltzmann statistical values
in LTE.

Now for the NLTE equation-of-state, we also need
to consider explicitly the ionization and recombination
processes that determine the ionization fractions of a given
element. First, let us consider ionization – photoionization
by a radiation field Jν , and electron impact ionization –
and the deviation from LTE given by Bν . The population
ratio affecting ionization of a level i (neglecting all other
levels) is

Ni

N LTE
i

=
neCI (i)+

∫ ∞
νi

σν(i) [4πBν/hν)] dν

neCI (i)+
∫ ∞
νi

σν(i) [4π Jν/hν] dν
.

(9.173)

Here the electron impact ionization rate neCI (i) remains
the same in both cases; σν(i) is the photoionization cross
section of level i with ionization threshold energy hνu .
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Written as above, it is trivial to conclude that if Jν → Bν
then Ni → N LTE

i . But this result is quite significant
physically. It also implies that when the radiation field
is relatively insignificant compared to the collisional rate,
the LTE limit would be approached. That would always
be the case at high electron densities ne → ∞, even if
Jν �= Bν , such as when the optical depth τ may not be too
large and radiation escapes. In other words, the fractional
ionization populations would be in local equilibrium at a
temperature T , and may be given by the Saha equation (or
variant thereof, see Section 11.4.1).

In Chapters 6 and 7, on photoionization and
recombination, we had written down expressions for
two particular cases of plasma equilibrium: coronal
or collisional equilibrium, and nebular or photoioniza-
tion equilibrium. They represent the opposite limits of
the equation above (Eq. 9.173). When the radiation
field is negligible, then successive ionization states are
determined by a detailed balance between collisional
ionization and (e + ion) recombination in the coro-
nal approximation (characteristic of conditions in the
solar corona). Then, for any two successive ionization
stages,

N (Xm+)
N (Xm+1)

= αR(Te;Xm+1)

CI(Te; Xm+1)
. (9.174)

Here CI(Te) and αR(Te) are total ionization and
recombination rate coefficients for the ionization stages
m + and (m +1) respectively. We note that αR(Te) here is
assumed to include both the radiative and the dielectronic
recombination processes, as in the unified formulation of
(e + ion) recombination given in Chapter 7, or by adding
the two rate coefficients separately. In collisional or coro-
nal equilibrium the ionization fractions depend only on the
temperature, and not the density.

In the nebular case, when electron densities are low
and photoionization occurs predominantly by the radia-
tion field of a hot star, we may have significant deviations
of ionization fractions from that in LTE, depending on the
difference between Jν impacting on the nebular gas at a
distance from the star, and the ideal black-body radiation
Bν . Since atomic levels in a given ion may have widely
varying level-specific photoionization or recombination
rate coefficients, level populations (or ionization fractions)

may be overpopulated or underpopulated. Again, an
approach in terms of departure coefficients may be
adopted for level populations to account for deviations
from the Saha–Boltzmann equations, and a combined
excitation–ionization form of the two equations above
can be written down explicitly. For example, in photoion-
ization equilibrium (neglecting collisional ionization) the
level population for level j is∑

i

(A ji + neq ji ) N j +
∫ ∞
ν j

4π Jν
hν

aν( j) dν

= ne αR( j)+
∑

k

ne αR(k) Ckj + (Akj + neqk j ) Nk ,

(9.175)

where Ckj are the cascade coefficients for all indirect
radiative transitions from k → j , Akj is the direct
radiative decay rate, and q ji , qk j are electron impact
(de-)excitation coefficients (Chapter 5).

But generally, how do we ascertain the radiation field
intensity Jν , which, while acting locally, must depend on
non-local input from other atoms in different regions?
That is the crux of the non-LTE problem: to derive the
source function that yields the radiation intensity, as out-
lined in this brief treatment of radiative transfer. But we
are faced with the formidable problem of considering all
collisional and radiative processes that determine ionic
distributions and level populations. The radiative trans-
fer equations must then be solved self-consistently for
the mutually interacting radiation field Jν and the level
populations. The problem obviously becomes more com-
plicated as the number of atomic levels that need to be
considered in the NLTE model increases. Thus, the needs
of atomic data for radiative transfer models are vast. While
experimental measurements may be made for selected
transitions and processes, most of the atomic parameters
need to be computed theoretically (much of this textbook
is aimed at a detailed exposition of those processes). The
primary processes that determine the line source func-
tion in NLTE are: (i) bound–bound radiative transitions
(Chapter 4), (ii) bound–free transitions, viz. level-specific
and total photoionization and (e + ion) recombination
(Chapters 6 and 7), (iii) collisional excitation and ioniza-
tion (Chapter 5) and (iv) free–free transitions and plasma
line broadening (this chapter and Chapters 10 and 11).



10 Stellar properties and spectra

Stars exist in great variety. They are among the most
stable, as well as occasionally the most unstable, objects
in the Universe. While extremely massive stars have
short but very active lifetimes of only millions of years
after birth, the oldest stars have estimated ages of up to
14 billion years at the present epoch, not much shorter
(though it must be) than the estimated age of the
Universe obtained by other means, such as the cosmo-
logical Hubble expansion. In fact, the estimates of the
age of the Universe are thereby constrained, since the
Universe cannot be younger than the derived age of the
oldest stars – an obvious impossibility.1 Stellar ages are
estimated using well-understood stellar astrophysics. On
the other hand, variations in the rate of Hubble expan-
sion may depend on the observed matter density in the
Universe, the gravitational ‘deceleration parameter’, the
‘cosmological constant’, ‘dark’ (unobserved) matter and
energy, and other exotic and poorly understood entities.
Needless to say, this is an interesting and rather con-
troversial area of research, and is further discussed in
Chapter 14.

But stars are the most basic astronomical objects, and
astronomers are confident that stellar physics is well-
understood. This confidence is grounded in over a century
of detailed study of stars, with the Sun as the obvi-
ous prototype. Most of this knowledge is derived from
spectroscopy which, in turn, yields a wealth of informa-
tion on nearly every aspect of stellar astrophysics; stellar
luminosities, colours, temperatures, sizes, ages, compo-
sition, etc. Most of these depend on one single physical
quantity of overwhelming importance: the mass of a star.
Other stellar parameters, such as the luminosity, size, and
surface temperature, largely depend on the mass. To be
sure, other parameters such as the chemical composi-
tion are also critical. Radiation transport through stellar
matter – characterized by the fundamental quantity, the

1 After all, one can’t be older than one’s parents!

opacity – determines or affects observed properties such
as stellar spectra, evolutionary paths, stellar ages, etc.

In this chapter, we first describe the categorization of
stars based on their overall luminosity and spectra. This
is followed by a brief and general discussion of over-
all stellar structure: the stellar core, the envelope and the
atmosphere. This is underpinned by a detailed exposition
on the radiative opacity, which depends on the atomic and
plasma physics in the stellar interior (described in the next
chapter). We also discuss in some detail spectral formation
in the upper layers of stellar atmospheres, exemplified by
the Sun and its immediate environment, the solar corona
and associated phenomena, such as winds, flares and coro-
nal mass ejections. We begin with the basics of stellar
classification scheme. That also embodies a discussion of
stellar evolution, and the precursors of sources such as
planetary nebulae (PNe) and supernovae (SNe) in later
stages.

10.1 Luminosity

The energy output of a star and its spectrum are related.
Its luminosity is a measure of the total emitted energy and
depends on the effective temperature by the black-body
Stefan–Boltzmann law, as well as on its spherical surface
area with radius R,

L = 4πR2σT 4
eff. (10.1)

For example, a star with twice the radius and twice
the effective temperature of the Sun is 64 times more
luminous. The total energy output, referred to as the
bolometric luminosity, may be measured by a bolome-
ter – a detector of emitted energy at all wavelengths.
Figure 10.1 shows a black-body function at Teff = 5770 K,
which provides the best fit to the radiation field of the
Sun [81]. The differences with a pure Planck function
arise due to line blanketing caused by attenuation of
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FIGURE 10.1 Black-body Planck function at
5770 K (solid curve) compared with the solar
radiation distribution (dashed curve with data
points [81].

radiation by the multitude of radiative transitions in stellar
atmospheres. Spectral formation by the ionic, atomic and
molecular species dominant at the particular Teff of a
star, on the one hand, and its total luminosity L , on the
other hand, are found to be connected in a phenomeno-
logical manner, which provides the foundation for stellar
classification.

10.2 Spectral classification – HR
diagram

The relationship between L and Teff for all of the great
variety of stars is revealed remarkably by the so-called
Hertzsprung–Russell (HR) diagram in Fig. 10.2.2 Most
stars lie in a fairly narrow (curved) strip in the middle of
the diagram diagram called the main sequence. The L–T
relation manifests itself in the spectra of stars and pro-
vides the basis for the spectral classification scheme. The
energy emitted by the star as a black body is absorbed by
the atomic species in the cooler regions of the stellar atmo-
sphere through which radiation escapes. The observed
stellar spectra therefore resemble a Planckian radiation
field distribution modulated by absorption and emission at
discrete wavelengths. Recall that the peak wavelength of
emission from a black body at effective temperature Teff
is given by Wien’s law (Chapter 1) λp = 0.0029/Teff.

2 We again note the seminal role played by Henry Norris Russell in the

development of atomic physics itself, as pointed out in Chapter 1. It is

astonishing, and not well-known, that even as the new science of

quantum mechanics was being developed in 1925, Russell teamed up

with physicist Frederick Albert Saunders to develop the

Russell–Saunders or LS coupling scheme. It was devised to explain

atomic structure and spectra of stars, discussed in this chapter.

Wien’s law can be used to approximate the wavelength at
which the star at surface temperature Teff emits maximum
light.

It is natural to begin with the observed strength of
absorption lines of hydrogen, as in Table 10.1. Initially,
stars were classified in decreasing order of the strength
of Balmer lines, beginning as A, B, etc. But it was real-
ized that the temperature does not quite correlate with
the strength of H-lines. Although B stars have weaker H-
lines than A stars, they have higher temperature, and so
need to be placed ahead of A stars. This is where other
atomic species enter the picture. Neutral helium lines are
strong in B stars, owing to the higher temperature, which
correlates with the higher ionization potential of He I,
24.6 eV, as opposed to that of H I, 13.6 eV. Another type of
star is even hotter than the B stars. These are labelled
as O stars and exhibit ionized helium lines; the ioniza-
tion energy of He II is 4 Ry or 54.4 eV. In general, the
ionization fraction of an element increases with hotter
spectral types. Several such departures from the originally
intended sequence based on H-lines resulted in the final
classification scheme as we have it today (Table 10.1): O,
B, A, F, G, K, M, R, N, S.3 It ranges from the hot O stars to
the cool M (and R, N, S) stars, and is based on bright opti-
cal lines from characteristic atomic species. About 90%
of all stars lie on the main sequence. This is because
most stars spend most of their lives in the hydrogen-
to-helium fusion phase in their cores, which defines the
physical characteristic of main-sequence stars. As hydro-
gen fusion wanes, stars evolve away, and upward, from

3 The well-known mnemonic for spectral classes of stars is: Oh Be A

Fine Girl(Guy) Kiss Me Right Now (Smack). In addition to these, some

cooler spectral classes have recently been added.
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FIGURE 10.2 The HR diagram: stellar spectral types
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the main sequence as a result of further nucleosynthesis
(Section 9.2.1). Subsequent evolution is usually on a rapid
timescale compared with their main sequence lifetime. It
is customary to trace stellar evolutionary tracks on the HR
diagram to depict the post-main-sequence phase of stellar
lifetimes (Fig. 10.6, discussed later).

The spectral types are further subdivided according
to the strengths of spectral lines, indicated by numer-
als following the letter, on a scale of zero to nine. Peak
absorption from atomic species can be associated with
each spectral type. A more detailed scheme is the divi-
sion into spectral subtypes by W. W. Morgan and P. C.
Keenan, known as the MK system, as in Table 10.1.
The hottest stars, with Teff = 30 000–40 000 K, and spec-
tral types O 3–9, show strong lines of He II (λλ 4026,
4200, 4541 Å); doubly or triply ionized elements are also
seen, along with a strong UV continuum. Next, B 0–9
stars, in the 15 000–28 000 K range, have no He II, but
strong He I (λ 4471 Å), and stronger H I lines than in
O stars; strong lines from some ions are also present,
with Ca II making its appearance weakly. Type A stars
are distinguished by strong H I lines, strongest of all stel-
lar types; the strength is maximum for A0 and weakens

towards higher A subtypes approaching A9; Mg II and
S III are strong, and Ca II is present but still weak. In
F stars, H I begins to weaken, ions of lighter elements
are generally weaker, but Ca II strengthens. Solar-type G
stars (5500–6000 K) have the strongest Ca II lines, the so-
called H and K lines due to valence electron excitations:
4s 2S1/2 → 4p 2Po

1/2,3/2 transitions; neutral atomic and
molecular lines appear. K stars (3500–4000 K) have the
weakest H I, but strong neutral metals and stronger molec-
ular bands. M stars (2500–3500 K) have the strongest
molecular bands, especially TiO. Carbon stars C (R, N)
are distinguished by carbon compounds, such as CO. The
last three classes, S, L and T, of low-temperature stars,
have molecular bands of compounds (metal oxides and
sulphides) with heavy elements up to the Lanthanides
(nuclear charge Z = 57–71).

In additon to the dominant ionic, atomic or molecu-
lar species for each spectral type, the relative strengths of
lines are also indicated qualitatively in Table 10.1. The
usual convention is that the lines of a given species appear
weakly in the preceding and succeeding types. As men-
tioned, H lines are strongest in spectral type A0, and
weakening towards A9. To some extent there is bound
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TABLE 10.1 Morgan–Keenan (MK) system of spectral types and features in optical spectra.

Spectral type Characteristic spectral features

O He II, He I (weaker), C III, N III, O III, Si IV, H I (weak)
B No He II, H I (stronger), He I (strong) C II, O II, Si III

A H I (strongest), Mg II and S III (strong), Ca II (weak)
F H I (weaker), Ca II (stronger), neutrals appear
G H I (weaker), Ca II (strongest), neutral atoms (stronger), ions (weaker), molecules (CH)
K Ca I (strong), H I (weakest), neutrals dominate, molecular bands (CN, CH)
M Molecules (strong), TiO, neutrals (Ca I strong)
C (R, N) Carbon stars, no TiO, carbon compounds C2, CN
S Heavy-element stars, molecular bands of LaO, ZrO, etc., neutrals
L, T Molecules CO, H2O, CaH, FeH, CH4, NH3; substellar masses

FIGURE 10.3 Progression of
stellar spectra from G to K
spectral types according to the
MK classification scheme –
luminosity Class V stars in the
lower main sequence in Fig. 10.2.
The legends on the left refer to
the (abbreviated) name of the
constellation and star. The
similarities in the spectra imply
near-solar composition. In the
early G stars of normal solar
composition, the temperature
types are determined by the ratio
of H to metal lines, for example,
through the Hδ/Fe 4143 ratio.

to be some ambiguity and overlap in attempting to fit
a huge number of stars into this rather limited scheme.
In addition, there are categories of stars that have unex-
pected spectral features, although they may satisfy the
general criteria for a spectral type. For example, there are
‘peculiar’ metal-rich stars denoted by a suffix ‘p’, such as
Ap stars.

There is another division, according to luminosity
class, that extends to post-main sequence stages of
evolution on the HR diagram: Ia – bright supergiants,
Ib – supergiants, II – bright giants, III – giants,
IV – subgiants, and V – main-sequence stars (also referred
to as ‘dwarfs’ on the part lower than the Sun). These
luminosity classes are denoted above the lines or curves
in Fig. 10.2, running almost horizontally across the HR
diagram, with the exception of the main sequence. This

scheme is imprecise, since, for example, stars of all
spectral types are said to have the same luminosity class
(V); many of those that lie lower than, and including, the
Sun are called ‘dwarfs’. But their physical characteristics
are distinct from white dwarfs that are more than a hun-
dred times smaller in radius and less in brightness than the
Sun, and in fact do not lie on the main sequence at all but
form a separate sequence lying below the main sequence.
The spectral classification of the Sun is G2 V. On the other
hand, a G2 III star would be a larger and more luminous
star of similar temperature. A K4 III star is a red giant,
whereas an O5 Ia star would be a luminous supergiant and
an O5 Ib less so.

As an example of the extensive stellar spectroscopy
necessary to ascertain the spectral and luminosity types
precisely, Fig. 10.3 is a collection of spectra of a number
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of stars around the solar type G2 V. Figure 10.3 shows the
progression in spectral features between the G and K stars
along the lower main sequence. The similarity in their
spectra implies near-solar chemical composition (note the
spectrum of the Sun as inferred from light reflected from
the Moon). The strength of various lines and elements may
be followed from each sub-class to adjoining ones; for
instance, the H/Fe ratio may be tracked by the Balmer Hδ
to Fe 4143 ratio. The legends on the ordinate of Fig. 10.3
are the names of the stars, as they progressively fit into the
MK classification scheme.4

10.3 Stellar population – mass and age

The most important physical quantity of a star is its
mass. In the HR diagram, the masses of main sequence
stars are higher towards the left and upwards, i.e., higher
T or L . To enable a stable stellar structure, the ionized
gas pressure (and radiation pressure, when significant)
in the interior must counterbalance the force of gravity
M(r)/r2 at any given point r . The more massive the main
sequence star, the more energy it produces in the core, and
the more luminous it is. But the mass–luminosity rela-
tionship is non-linear, approximately L ∼ M3.5. Stars
ten times more massive than the Sun are nearly 10 000
times brighter. The lifetime of a star depends on its mass,
since the more luminous the star, the faster it burns up
the fuel in the core. The stellar lifetime is proportional
to the ratio M/L ∼ M−2.5. Therefore, the most mas-
sive stars are also the shortest lived. O stars typically have
lifetimes of tens of millions of years, compared with the
almost 10 billion years for the Sun. Stellar populations are
also roughly divided into young or old stars. Young stars
with relatively high metal abundances, found in the disc
or the spiral arm of a galaxy, are called Population I or
Pop I stars. On the other hand, stars in the halo of a galaxy
and globular clusters are older, and called Population II or
Pop II stars, which are metal-poor. Therefore, Pop I or II
broadly refers to stellar age and metallicity. At 4.5 billion
years in age, and with its location in a spiral arm of our
Milky Way, the Sun is an old Pop I star. Pop II stars have
metal abundance of the order of one percent that of the
Sun.5

4 We are grateful to R. F. Wing for making available the original plates of

stellar spectra, used to establish the MK scheme, from the collection of

P. C. Keenan and R. C. McMeil (Ohio State University Press).
5 There is another class of stars, Pop III, which refers to the

first-generation stars formed early after the big bang and containing

only primordial elements. The isotopes produced were
1H1,

2 H1,
3 He2,

4 He2,
7 Li3. Nucleosynthesis of all heavier elements

occured in subsequent generations of stars.

Exercise 10.1 From Eq. 10.1 and the effective tempera-
ture, estimate the luminosity ratio of an O5 star to an M
dwarf star, say M8, and compare with that in Fig. 10.2.

The rate at which the Sun radiates energy is approx-
imately 4 ×1026 watts (joule/second). Attempts to
explain such a huge generation of energy by means
other than nuclear fusion – gravitational contraction
or chemical reactions – were unsuccessful. Kelvin
and Helmholtz had proposed that gravitational poten-
tial energy was the source of the Sun’s energy.
But the total gravitational potential energy of the
Sun would yield no more than about 6 × 1041 J.
Radiating at the given rate (present luminosity), the Sun
would radiate its entire energy in the Kelvin–Helmholtz
timescale

tKH� = G M2�/R�
L�

≈ 3× 107 years. (10.2)

The Kelvin–Helmholtz timescale for the Sun of only
about 30 million years is far shorter than the known
geological age of the Earth. Similarly, chemical reactions
are far too inefficient to produce the needed energy. For
example, burning ordinary carbon-based fuel yields about
10−19 J per atom. Given that the mass of the Sun cor-
responds to about 1057 atoms, the lifetime for sustained
radiation would lead to burnout of the Sun in less than
10 000 years.

It was not until the recognition that nuclear processes
in the core of stars, mainly fusion of H→ He, are respon-
sible for the continuous generation of energy, that the
problem was solved. Thus a star may be thought of as
a continuously exploding hydrogen bomb through most
of its lifetime. The primary nuclear reactions are dis-
cussed later in this chapter. Here we note only that we
can use them to calculate the ‘nuclear lifetime’ of the
Sun, balancing energy generation with hydrogen fuel,
against expenditure of energy via radiation at its cur-
rent luminosity. The fractional amount of energy released
by fusing a given mass of hydrogen MH into helium is
0.007MHc2, so that all of the Sun’s hydrogen will be
exhausted in

t fusion� = 0.007M�c2

L�
≈ 1011 years. (10.3)

This is actually not too far from the projected lifespan of
the Sun of about 10 billion years, calculated from more
elaborate models, especially if one allows for the increase
in the Sun’s luminosity when it expands into the red giant
phase, about five billion years from now.
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10.4 Distances and magnitudes

The observed brightness of a star obviously depends on
its distance, and does not indicate its true luminosity.
Therefore, a distinction between apparent vs. intrinsic
luminosity needs to be made, and quantified in terms of
magnitude and distance. The relative apparent brightness
B of two stars is measured according to their appar-
ent magnitude m on a logarithmic scale. Each magnitude
(often abbreviated as ‘mag’) change corresponds to a
2.5-factor change in brightness, i.e.,

m2 − m1 = 2.5 log

(
B1

B2

)
. (10.4)

This scale is based on the ability of the human eye
to judge brightness, which happens to be logarithmic. In
ancient times, the Greek astronomer Hipparcus divided
the brightness of stars, as they appear to the naked eye,
into six categories, which are now known to span a fac-
tor of 100. The relation above follows that convention,
since 2.55 ≈ 100 or, more precisely, 2.5125 = 100. In
recognition of this fact, Eq. 10.4 was adopted as the exact
relationship, such that a change of 5 mag → × 100. In
other words, an increase in brightness by a factor of 100
implies a decrease in magnitude m by a factor of five.

But we also need to establish an absolute scale that
relates the apparent brightness to its intrisic brightness.
Clearly, this must involve the distance. The absolute mag-
nitude M is defined as the apparent magnitude the star
would have if it were located at a distance of 10 parsecs
(pc) from the Earth (1 pc = 3.26 light years = 3.09
×1013 km). Thus the absolute and apparent magnitudes
are related as

m = M + 5 log

(
d(pc)

10

)
. (10.5)

Note that (i) the factor 5 = 2 × 2.5 arises from the
geometrical dilution of apparent brightness with distance,
according to the inverse square law ∼ d−2. Also note that
when d = 10 pc, m = M . Thus we can rewrite,

m − M = 5 log d − 5, (10.6)

where (m − M) is referred to as the distance modulus.
The more negative the magnitude, the brighter the object.
The Sun is the brightest astronomical source, owing to its
proximity, with m(Sun) = −26.9; however, its absolute
magnitude is M(Sun) = +4.85, a star of rather ordinary
brightness. A star a thousand times more luminous than
the Sun has M = 4.85 − 7.5 = −2.65. Some of the
brightest stars in the sky, such as Betelgeuse, Deneb and
Rigel, are over 10 000 times brighter than the Sun, with
M < −5.

10.5 Colour, extinction and reddening

Colour and temperature are qualitatively related in the
visible range as blue–white–red hot, with decreasing
temperature. In stellar astronomy, the HR diagram rep-
resents the most useful phenomenological relationship
used to analyze the colour-luminosity of stellar groups. A
black body at an effective temperature apparently emits
energy according to the Planck distribution (Chapter 1).
Stars emit radiation at all wavelengths, with a distribu-
tion that peaks at a particular wavelength that charac-
terizes the dominant ‘colour’ of the star. Figure 10.1
shows that the Sun, with Teff = 5770 K has peak emis-
sion at around 5500 Å, corresponding to the colour
yellow.6 But while the overall colour of a star reflects
its temperature, its spectral energy distribution spans
other wavelength bands as well. The measured value
of apparent or absolute magnitudes is with reference to
a particular photometric band of energy or colour in
which the star is observed. For example, MV implies
an absolute magnitude in the visual band. Therefore, it
is useful to observe and measure the energy emitted in
several bands, and quantified by observed or apparent
magnitudes in each band. Most common are the UBV
magnitudes: ultraviolet (mU or U), visible (mV or V)
and blue (mB or B). The observations are carried out
using filters in each band, with central wavelengths as:
λ U ≈ 3650 Å, λ B ≈ 4400 Å, λ V ≈ 5500 Å. In addition
to the visible and near-UV, other bands often employed
towards the red end of the spectrum include R (∼ 0.7 μm)
and I (∼ 1 μm). Three other near IR bands are particularly
useful in obervations: J (λ J ≈ 1.2 μm), H (λ H ≈ 1.6 μm)
and K (λ K ≈ 2.2 μm); their utility stems from the fact
that they correspond to spectral ‘windows’ in the water
vapour absorption in the Earth’s atmosphere (shown in
Fig. 1.5).

However, the spectral energy observed in each photo-
metric band may be affected by the presence of interven-
ing interstellar material, mainly dust grains. The observed
magnitude is thus a lower bound on the actual value
which, assuming no interstellar matter, may be repre-
sented by Eq. 10.6. The effect of interstellar matter on
magnitude and colour is referred to as extinction. The
absorption A (in magnitudes) enters the equation as a pos-
itive quantity, since it implies a reduction in brightness and
an increase in m, i.e.,

m − M = 5 log d − 5+ A, (10.7)

6 It is not a conincidence that human beings evolved so as to have the

human eye most sensitive to yellow colour, right in the middle of the

visible band, flanked by the red and the blue extremities.
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where A refers to the same wavelength band as m and
M . Roughly, Aλ ∼ 1/λ, because shorter wavelength, or
higher energy, blue or UV light suffers more extinction
than red light, owing to preferential scattering by dust;
wavelengths longer than the size of dust particles tend not
to scatter or undergo significant extinction.

Having associated colours with wavelength bands in
(logarithmic) magnitudes, it follows that, quantitatively,
the ‘colour’ of an object is actually a magnitude dif-
ference, i.e., a slope measured between two wavelength
bands. The overall extinction of radiation from a star may
also be attenuated differentially according to colour. We
therefore define a quantity called the colour excess E . For
example, the difference in the B and V bands of the light
from a star, relative to what it would be without colour
attenuation by interstellar matter, is

E(B − V ) = (B − V )− (B − V )0. (10.8)

For the same reason as higher extinction in the UV,
this colour excess results in shifting the observed colour
towards the red, and is called reddening. Dust or grains of
matter are the predominant source of reddening. But spec-
troscopically, whereas absorption line strengths in stellar
spectra are unaffected, the observed intensities of emis-
sion lines from sources such as nebulae do depend on
extinction in their wavelength region. Measured nebular
spectral line intensities therefore need to be de-reddened
to obtain the true intensities from the source. A recent
discussion of uncertainties in extinction curves and de-
reddening of optical spectra is given in [262]. For sources
within the Galaxy7 we may express both the visual
extinction and reddening or colour excess together, by the
approximate relation

AV = 3.1 E(B − V ), (10.9)

where AV is the extinction in the visual band.

10.6 Stellar structure and evolution

We see a star only through the light that escapes. This
implies that only the uppermost part of the star, the atmo-
sphere, is visible. The energy generated in the core of the
star by nuclear processes takes a long time to make its
way to the surface, as it is repeatedly reprocessed by stel-
lar material in the main body of the star. Photons scatter
coherently and incoherently a large number of times in
the interior, in a random-walk behaviour, before escaping
to the outer (visible) layers of the atmosphere. In the Sun,

7 It is customary to refer to our own galaxy, the Milky Way, as the

Galaxy.

for example, it takes of the order of a million years (!) for
the energy of photons produced in the core to cover the
distance out to the surface. The radiation–matter interac-
tions that underlie this process determine the opacity of
the matter inside the star. Based on elementary consider-
ations, the stellar interior is divided into three regions: (I)
nuclear core, (II) radiation zone and (III) convection zone,
shown in Fig. 10.4. Together, regions (II) and (III) com-
prise what is referred to as the stellar envelope, discussed
in the next chapter. In addition, the outermost layers of
the star constitute the stellar atmosphere through which
radiation escapes, and which are therefore most relevant
to spectroscopy. As nuclear energy produced in the core
diffuses outward, there is a huge variation in tempera-
tures and densities within the star. Figure 10.5 displays
the temperature and density profiles in the Sun as a func-
tion of the radius. For example, central temperatures are
in excess of 10 million kelvin in the Sun, whereas the
atmospheric temperatures are a few thousand kelvin. Solar
core densities range to over 100 g cm−3, but densities out-
side the core and throughout the envelope and atmosphere
are orders of magnitude less, down to 10−9 g cm−13 (see
Table 11.1). The mean density of the Sun still works out
to about 1.4 g cm−13. Exactly how the nuclear energy
from the core is processed through the vast middle enve-
lope, the radiative and convective zones (Fig. 10.4), and
released through the atmosphere, depends mainly on the
opacity and composition (abundances) of the stellar mate-
rial (Chapter 11). Qualitatively, the three regions of the
star may be described as follows.

The extremely high temperatures and densities in stel-
lar cores enable substantial energy to be produced via
nuclear reactions. Fusion in stellar cores is extremely sen-
sitive to the central temperature Tc of the star, that has
no direct relation to the effective ‘surface’ temperature,
which corresponds to the effective black-body tempera-
ture of the surface. Since the temperatures Tc required

FIGURE 10.4 The main regions of the stellar interior.
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for fusion are greater than 107 K, only the central core is
sufficiently hot for the plasma to undergo nuclear burn-
ing of even the lightest element hydrogen into helium
through pp reactions or CNO reactions. Atoms of all
elements in the core are highly or fully ionized nuclei.
Most belong to different isotopes, such as 1H (ordinary
hydrogen), 2H (deuterium or heavy hydrogen), 3He and
4He. Heavier nuclei than the proton would, of course,
require higher temperatures for fusion, owing to greater

TABLE 10.2 Basic stellar nuclear reactions.

pp reaction

Step Reaction Energy (MeV)

1 2[1 H(p, β+ν)2 H ] 1.2
2 2[2 H(p, γ )3 He] 5.5
3 3 He(3 He, 2p)4 He 12.9

CNO cycle

1 12C(p, γ )13 N 1.9
2 13 N→13C + β+ + ν 1.5
3 13C(p, γ )14 N 7.5
4 14 N (p, γ )15 O 7.3
5 15 O→14 N + β+ν 1.8
6 15 N (p, α)12C 5.0

Triple-α process

1 2(4 He)+ γ→8 Be
2 4 He +8 Be→12C 7.7 MeV

Coulomb repulsion. Main sequence stars produce energy
via the proton–proton (pp) reactions at core temperatures
Tc< 16 million K, and via the CNO cycle at higher tem-
peratures. Table 10.2 gives the primary nuclear rections,
as well as related cyclic processes. The CNO cycle con-
verts H to He without change in the 12C abundance, since
carbon acts as a catalyst and remains after each cycle. But
it requires higher temperatures to overcome the greater
Coulomb repulsion of nuclei than the pp reaction. Since
Tc(Sun) is about 15 million K, the pp chain accounts for
85% of the solar energy and the carbon cycle the rest.
Main sequence stars more massive than the Sun have
higher central temperatures and produce energy mainly
via the CNO cycle.

Nuclear reactions given in Table 10.2 are read as
follows: [A+a→b+B], with reactants on the left side and
products on the right, formatted as A(a, b)B. In addition,
the decay of an unstable nuclear isotope with very short
lifetime is designated as: A→B+a+b (here ν stands for
a neutrino, γ for a photon, β+ for a positron and β− for
an electron). Note that the two protons produced in Step
3 of the pp reaction continue the cycle with deuterium
production as in Step 1. Likewise, the 12C isotope in Step
6 of the CNO cycle feeds back to Step 1. The complemen-
tary triple-α process – the fusion of three helium nuclei or
α-particles into carbon – while not significant during the
main sequence phase, is the dominant source of energy
in the ‘helium burning’ phase of a red giant, whose core
is exhausted of hydrogen. Thermonculear reactions with
fusion of carbon, oxygen, etc., continue in massive stars
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at the very high temperatures in their cores up to the pro-
duction of iron, which does not fuse further to provide
nuclear energy by exothermic reactions.

10.6.1 Nucleosynthesis and evolutionary
stages

All natural elements except hydrogen are made in stars
during their myriad phases of evolution. Thus far we have
described only the fusion processes that underlie most
of the stellar energy generation mechanism. But nuclear
reactions are also responsible for nucleosynthesis of other
natural elements in the periodic table (Appendix A).
Nucleosynthesis and stellar evolution are inextricably
linked, and affect stellar structure in gradual (adiabatic)
to explosive scenarios. Nucleosynthesis first begins with
the primordial elements, H, D (2H) and He, that were
made during the big bang. These would have been the
constituent elements of the very first stars or objects in the
history of the Universe. Later generations of stars, such
as the Sun, contain all of the natural elements a priori
(although not all have been detected), having been pro-
duced in previous stellar cycles. The initial mass and the
chemical composition – a given mixture of elements – are
the main determinants of stellar evolution. We sketch this
in Fig. 10.6, which depicts the evolutionary sequence of
events known as evolutionary tracks on the HR diagram
through different phases of the life of stars.

10.6.2 Red giants

The HR diagram reflects the fact that stars spend most
of their lifetimes on the main sequence, characterized by
H→He burning in the core. As the H supply is exhausted,
stars evolve away from (not along) the main sequence.
If M∗ < 8 M� the evolution proceeds along evolution-
ary tracks similar to that shown in Fig. 10.6 for a solar
mass (1 M�) star. As the He in the core builds up, and
the H burning shell moves outward, the star expands and
becomes more luminous but cooler (redder). This is the
red giant phase, which continues until the star ignites
He→C fusion.

10.6.3 White dwarfs

The He core is extremely dense and consists of ‘degen-
erate’ matter (all available quantum mechanical states of
fermions are filled). Degenerate matter does not obey the
ideal gas law PV = nkT , i.e., a rise in temperature T does
not result in expansion of the core, nor does a decrease in
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FIGURE 10.6 Stellar evolutionary tracks across the HR
diagram. The shaded area contains pulsating stars, the Cepheids
and the RR Lyrae stars. The horizontal branch stars, following
the helium flash, are in the He-burning phase with the triple-α
process; the RR Lyrae are a subset thereof. The ‘SNe’ refer only
to massive stellar core-collapse supernovae, and not those with
white dwarf progenitors (discussed further in Chapter 14). To
elucidate a number of stellar phases, the diagram above is not
drawn to any scale.

T lead to further contraction of the core. At some point
along this part of the evolutionary track, temperatures in
the core reach T ≈ 108 K, when the He core ignites into
a more rapid and energetic He → C fusion reaction via
the triple-α process, which is responsible for 85% of the
energy production at this stage. This point on the HR dia-
gram is referred to as the helium flash, which terminates
the ascent along the red giant branch. Initially, although
the helium flash raises Tc, it does not manifest itself in
increased surface luminosity of the star, since the energy
produced by helium burning is confined to the otherwise
inert core. The electron pressure of the non-relativistic
degenerate gas is P ≈ n

5 3
e , independent of T . However,

the electrons may attain relativistic speeds, in which case
the gas law becomes P ≈ n

4 3
e ; such a situation prevails

at the extreme densities in white dwarfs.
During the helium flash, the temperature in the core

rises rapidly, further enhancing the energy generation rate
of He → C through the triple-α process, which has a very
sharp dependence on the temperature: E ≈ T 18. This, in
turn, raises the temperature further and the core gets into
a ‘runaway fusion’ mode. Nearly 3

4 of the helium in the
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degenerate core can be ignited within minutes during the
helium flash. However, paradoxically, the luminosity of
the star decreases somewhat in the immediate aftermath
of the helium flash (Fig. 10.6). This is because the outer
layers are still cooling and the ignited core does not yet
provide additional energy to maintain the luminosity. So
the star rapidly moves down its evolutionary track in the
HR diagram. Subsequently, steady He burning in the core
raises the internal temperature, though not the luminosity,
and stars bunch up horizontally on a leftward track, called
the horizontal branch (not shown in Fig. 10.6, but near the
arrow below the ‘helium flash’ mark). Eventually, the rise
in temperature lifts the degeneracy of the core, as elec-
trons gain energy and the highest-energy electrons begin
to behave more like an ideal gas, leading to expansion and
a rise in the star’s luminosity. Another way of saying it is
that the electrons evaporate from the Fermi sea (Fig. 1.7),
towards forming an ideal gas.

10.6.4 Asymptotic giant branch and planetary
nebulae

Following the helium flash, the star has a double-shell
structure, with a helium-burning core and a hydrogen-
burning surrounding shell. As the helium in the inner core
becomes depleted, and fusion moves to outer regions, the
star rises in luminosity and again ascends the HR diagram
along the so-called asymptotic giant branch (AGB). The
AGB is a short-lived phase, since the star ejects its outer
layers of ionized material, which form a surrounding
quasi-spherical shell of ionized gas called the plane-
tary nebula (PNe).8 Eventually, the inert carbon core
(with some oxygen) cools and goes on to form a white
dwarf. Gravity in low-mass stars (M < 8 M�) is not able
to compress the carbon core further to ignite fusion to
heavier elements. Most white dwarfs are therefore made
up mostly of carbon, with significant amounts of oxygen.

10.6.5 Massive stars

Higher-mass stars, with M > 8 M�, can, however, con-
tinue fusion to produce elements heavier than carbon.
Such stars may traverse the HR diagram along horizontal
tracks, fusing successively heavier elements in their cores.
The evolutionary track for a 10 M� star is shown (albeit
approximately) in the upper part of Fig. 10.6. Nuclear

8 No relation to planets; the name historically originated with

low-resolution images that showed blobs of matter surrounding the hot

central star, which were misinterpreted as planet-like structures. The

PNe are discussed in Chapter 11.

reaction rates with α-particles, at temperatures in excess
of 100 million K, are much higher than the pp rates at
lower temperatures. Therefore, the so-called α-elements,
with even numbered nuclei starting with oxygen, are syn-
thesized with a higher abundance than elements with odd
atomic number. In the heaviest stars (supergiants) the
fusion process continues up to iron. Those massive stars
thus accumulate a number of layers of α-elements – C, O,
Ne, Mg, Si, S, Ar, Ca and Ti (not all of which are pro-
duced evenly). However, the reaction rates are low and
the energy released during the production of α-elements
is relatively small. Consequently, the overall luminosity
of a high-mass star does not rise appreciably, even as ele-
ments heavier than carbon are synthesized in their cores.
It criss-crosses the HR diagram horizontally, expanding
and cooling in a relatively unstable state as different types
of nuclear reactions take place in the core and heavy
elements are produced. Such stars are often observed in
a region of HR diagram called the instability strip (the
shaded region in Fig. 10.6).

10.6.6 Pulsating stars

Massive stars within the instability strip have an additional
and extremely useful property. They ‘pulsate’ with
remarkable regularity. Their luminosity varies by factors
of up to two or three periodically, usually within a mat-
ter of days (see Fig. 14.12). Such stars are known as
Cepheid variables. There is an empirical relation, known
as the period–luminosity relation between the pulsation
period and the absolute luminosity of Cepheids (discussed
in Chapter 14, in connection with the cosmic distance
scale). A measurement of their observed periods thereby
gives their intrinsic or absolute luminosities, as opposed
to their apparent magnitudes, which depend upon their
distance via the distance–modulus relation, Eq. 10.6. As
they are very bright stars, the Cepheids are prominently
observable to large distances and, as reliable distance
indicators, they serve to establish the distance scale in
astronomy, acting as ‘standard candles’ of known lumi-
nosity. The Cepheids are massive and high-metallicity
stars; their pulsation periods depend on their elemental
composition or the heavy metal-content that is related to
the opacity (discussed in Chapter 11). Metal-poor low-
mass stars may also pulsate, and are called RR Lyrae stars.
These are confined to a small region on the horizontal
branch in the HR diagram (Fig. 10.6). The RR Lyrae stars
generally have periods of about a day, and nearly the same
absolute magnitude. While not as bright as the Cepheids,
the period–luminosity relation of the RR Lyrae stars is
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particularly useful in determining distances to older Pop II
stars, such as in globular clusters.

10.6.7 Supernovae

A high-mass star may repeatedly reach up to the AGB,
in the red supergiant phase, until available nuclear fuel is
exhausted. Since fusion reactions to nuclei heavier than
iron are mostly endothermic, evolutionary stellar nucle-
osynthesis beyond iron no longer yields energy to sustain
stellar luminosity or structure. With an inert iron core, the
star cannot generate energy and resulant pressure to sup-
port the ‘weight’ of the outer massive layers. Sufficiently
massive stars may begin their ascent up the AGB as red
supergiants, but then at some point the iron core under-
goes gravitational collapse, ending up as what is known as
a Type II supernova (SN). Although Fig. 10.6 shows mas-
sive stars (M>10 M�) ending up as core-collapse Type II
SNe, there is a caveat. Massive stars in late stages of evo-
lution may show extreme volatility and become extremely
luminous, apparently in an attempt to ward off impending
collapse. A famous example is that of one of the most mas-
sive stars known: Eta Carinae or ηCar. It is estimated to
be ∼ 100 M�, with massive outflows forming the dumb-
bell-shaped Homunculus nebula, shown on the cover, and
discussed later (also in [263] and references therein).

Here, it is useful to mention an important and
fairly precise astrophysical concept that applies to white
dwarfs as well as to high-mass stars. It was shown
by S. Chandrasekhar that there is a natural gravitational
limit associated with a mass of 1.4 M�, known as the
Chandrasekhar limit. This mass corresponds to internal
pressure due to quantum mechanical degeneracy of elec-
trons, following from the Pauli exclusion principle. Owing
to high densities in the cores, the degeneracy pressure
builds up to a maximum value, which can support at most
the weight (downward pressure) of 1.4 M�. Low-mass
stars, M<8 M�, eventually end up as while dwarfs with
core masses below the Chandrasekhar limit. When a
degenerate mass exceeds the Chandrasekhar limit, elec-
tron degeneracy pressure is not sufficient to counteract
gravitational pressure, and electrons fall back onto nuclei
forming neutrons. The iron core thus collapses into what
becomes a neutron star. Immediately following core col-
lapse there is (as must be) a ‘core bounce’ as the infalling
matter from the outer layers hits the extremely dense neu-
tron core, and bounces back with tremendous force to
eject nearly the entire stellar envelope – observed as a
Type II supernova (see the stellar evolutionary track of
a 10 M� star in Fig. 10.6). But since neutrons are also

fermions, they are also subject to degeneracy pressure like
electrons, and have a particular degeneracy limit. If the
mass of the neutron core exceeds 3 M�, then the core
further collapses into a black hole since neutron degener-
acy pressure cannot support M>3 M�. Gravitational core
collapse, and the explosive end of massive supergiants as
progenitors, gives rise to the Type II SNe, leaving behind
either a neutron star or a black hole. Spinning neutron stars
are known as pulsars, and emit radiation from radio waves
to gamma rays. For example, the Crab pulsar at the centre
of the Crab nebula has a spin rate of about 30 revolutions
per second (the optical spectrum is shown in Fig. 8.3).

Novae and Type Ia supernovae
Whereas massive blue and red supergiants are likely to
end up as core-collapse Type II supernovae, less massive
stars that form white dwarfs may also become super-
novae – if they are binary stars or undergo a cataclysmic
merger with another white dwarf. There is another type of
supernovae, the Type Ia, also related to the Chandrasekhar
limit. Although the mass of white dwarfs M ∼M�, their
compact formation ensures high densities and surface
gravity g∼ 106g�. If a white dwarf is in a close binary
formation with another star then stellar matter from the
other star can be gravitationally drawn to and accrete onto
the surface of the white dwarf. Such a situation often
occurs when the other star is a giant with an extended
envelope.

One evolutionary scenario is that the increasing pres-
sure on the surface of the already dense white dwarf leads
to the onset of thermonuclear fusion. Since this occurs on
the surface, the stellar system dramatically increases in
luminosity and becomes a nova. Novae are often recurring
phenomena since the surface fusion is automatically shut
off when the accreting gas fuses and is no longer avail-
able as nuclear fuel. Also, as the degeneracy of the outer
layers of the white dwarf is lifted, following fusion on the
surface, they expand and cool.

The other scenario is more extreme. Owing to
accretion, if the mass of the white dwarf increases beyond
the Chandrasekhar limit of ∼1.4 M�, then the ensuing
gravitational collapse ignites thermonuclear fusion. The
entire star is rapidly engulfed by fast-paced fusion reac-
tions and is blown up in a gigantic explosion, referred to as
a Type Ia supernova. Since the masses of all white dwarfs
that reach the Chandrasekhar limit are similar ≈ 1 M�,
the energy released in Type Ia SNe is similar, i.e., their
absolute luminosity is roughly the same. This is of great
importance since Type Ia SNe events are so powerful and
luminous that they can be observed out to cosmological
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distances at high redshift. With known absolute luminosi-
ties, Type Ia SNe also act as standard candles at much
greater distances than the Cepheid stars, and are the pre-
ferred means of studying deviations from the Hubble law
and related quantities, such as the deceleration parameter
and matter–energy density, that underlie the cosmological
model. The situation becomes rather more complicated
if the Type Ia supernovae occur as a result of merger of
white dwarfs. In that case, there is a range of progenitor
masses close to the Chandrasekhar limit, and the absolute
luminosity is more uncertain. Chapter 14 provides a more
extended discussion of SNe spectra. There are also super-
novae classified as Type Ib and Ic, which are similar to
Type II and are also discussed in Chapter 14.

10.7 High-Z elements

If evolutionary stellar nucleosynthesis terminates at iron,
then how are heavier high-Z elements of the periodic table
produced? They must be produced during events whereby
energy may be available for nuclear fusion beyond iron to
occur, which, as noted above, are endothermic and require
external energy input. We note two such scenarios. During
the AGB phase, with a twin-shell H and He fusion in
progress, the structure of the star is in considerable tur-
moil. Deep convective motions in AGB stars can dredge
up the synthesized elements from the interiors. Nuclear
reactions involving heavy nuclei may now occur via ‘slow
neutron capture’, called the s-process, producing elements
along a chain of elements in the periodic table termi-
nating with (and including) bismuth, 209Bi83. Successive
capture of neutrons by nuclei is slow and takes about a
year each; unstable nuclei may decay during this time.
The s-process does not proceed beyond Bi, since the
nuclei undergo radioactive decay back to Bi as fast as
they form. However, the AGB phase is sufficiently long
to synthesize high-Z elements, such as Cu, Pb, Ag and
Au. Another nuclear process, called the ‘rapid nuclear
capture’, or the r-process, occurs in core-collapse Type
II SNe, producing heavier elements beyond iron along
a chain terminating with the end of the periodic table,
up to thorium and uranium, 232Th90 and 238U92 [264].
The r-process takes place within a few minutes of the
onset of the supernova explosion, when a copious supply
of fast neutrons is available. Nucleosynthesis of high-Z
elements via the s-process or the r-process occurs under
different physical conditions and sources, such as evolu-
tionary epochs of AGB stars or supernova activity early
in the history of galaxy formation [265, 266, 267]. The
abundances of the s-process and r-process elements along

distinct branches of the periodic table are ascertained by
studying photospheric lines due to the corresponding ele-
ments; this requires rather elaborate three-dimensional
non-LTE models with a large number of atomic
parameters [268, 269].

Stellar evolution results not only in the formation of
elements other than H and He, but also in their dispersal
into the interstellar medium following either the AGB
phase or supernovae explosions. The heavy elements
thereby ‘seed’ cold gas in molecular clouds which, when
they undergo stellar formation, give birth to newer gen-
erations of stars. It is thus that stars like the Sun contain
trace elements of all stable naturally produced elements.
While nuclear physics and plasma physics determines the
origin of elements, the measurement of abundances in
a star depends on atomic physics, radiative transfer and
spectroscopy. Assuming evolutionary nucleosynthesis in
stars as described above, it is a non-trivial effort to ascer-
tain quantitatively the amount of each element formed in
a given object. Observational spectroscopy provides the
vital clues to the strengths of spectral lines from which
relative abundances may be deduced by modelling based
on the physical conditions in the source. But before stellar
energy from the nuclear core escapes the surface, it tra-
verses the rest of the star through widely varying physical
conditions, eventually manifest in the characteristics of
stellar atmospheres.

10.8 Atmospheres

Above the convection zone in lower-mass stars lies a
relatively thin layer that constitutes the stellar atmosphere.
It is physically distinct in that convective pressure is no
longer sufficient to generate bulk motions. Thus, once
photons make their way through the convection zone, their
mean free path is much longer as they escape from the
atmosphere. Stellar spectroscopy is confined to the outer
layers comprising the stellar atmosphere, and the mate-
rial surrounding the main body of the star, primarily the
corona. While radiation escapes through the visible layer
of stars – the photosphere – it is not quite optically thin.
But it is also far from the assumption of LTE that is
valid in most of the interior of the star. The Boltzmann–
Saha equations, which are the operational forms of LTE,
are no longer sufficient to describe the population dis-
tribution of an element among atomic levels and the
different ionization fractions (Chapter 11). However, the
atmospheres are sufficiently dense that radiation trans-
port through them, and spectral analysis thereof, requires
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a thorough understanding of radiative transfer and related
atomic physics (Chapter 9).

Owing to non-LTE effects, quantitative modelling of
stellar atmospheres requires elaborate radiative trans-
fer codes. Sophisticated computational mechanisms to
implement departures from LTE – essentially microscopic
coupling of radiation field with atomic excitation or ion-
ization – result in intricate numerical problems related
to convergence of the relevant operators that yield the
source function and the radiation field.9 Suffice it to say,
that radiative transfer is the link that connects atomic
spectroscopy to the astrophysics of a vast number of astro-
physical situations, from stellar atmospheres to black hole
environments, where thermodynamic equilibrium defined
at a local temperature no longer holds. For example, the
analysis of stellar spectra including non-LTE radiative
transfer is crucial to the accurate determination of the
abundances of elements.

Stellar spectroscopy not only underpins the analysis
of stellar atmospheres, but also yields indirect informa-
tion that can be derived from spectra about activity in the
interior. Since the Sun naturally forms the ‘standard’ for
stellar astrophysics, and provides the most detailed and
comprehensive test of stellar models, it is with reference
to the Sun that we describe spectral formation.

10.9 Solar spectroscopy

The solar atmosphere shows a multi-layered structure. In
addition, the atmosphere generates or reflects solar activ-
ity that manifests itself not only in the environs surround-
ing the disc of the Sun, but also out to the farthest reaches
of the solar system. In particular, the solar magnetic field
underlies phenomena that are inextricably linked to, if not
the cause of, much of the Sun’s activity, such as solar
flares and mass ejection of copious amounts of ionized
matter. In this section, we describe the various layers of
the solar atmosphere, and the spectroscopic analysis that
is employed to study related features.

10.9.1 Photosphere

The visible layer of the atmosphere is the photosphere,
which characterizes the colour-temperature of the star.
The black-body temperature of the star determines the
colour of the photosphere, and hence that of the star.
The photosphere is the effective ‘surface’ of the star.

9 The underlying physics and the computational infrastructure is

described by D. Mihalas [244] in Stellar Atmospheres (latest edition

in press)

The surface temperature of the Sun is T� = 5850 K,10

corresponding to the colour of a predominantly yellow
object. Stars cooler than this are red-hot or redder, and
those at higher temperature are blue-hot or bluer. The
solar photosphere is a thin layer of only about 600 km
as opposed to the solar radius R� = 700 000 km, fur-
ther supporting the analogy between a surface and the
photosphere.

But why is it that the Sun appears to have such a sharp
surface boundary? The answer lies partly in the pecu-
liar source of opacity in the solar atmosphere. One might
expect ionized H in the interior to recombine to neutral
H in the cooler atmosphere, and thus H I to be the main
source of opacity. But photoabsorption and photoioniza-
tion by H I is in the UV range; visible photons are not
effectively absorbed by H I except in the Balmer lines.
This is because the lowest atomic photoabsorption tran-
sition in H is the Lyα (1215 Å) at about 10 eV, and the
photoionization energy of the ground state is 13.6 eV
(912 Å); both energies (wavelengths) are in the UV range.
Clearly, photo-excitation or photoionization of H I is not
going to be an important opacity process, since the solar
flux peaks in the visible, as shown in Fig. 10.1.

In regions where neutral H is the dominant species,
the black-body radiation field, at a few thousand kelvin,
ionizes only a small fraction of H. But free electrons are
still produced from ionization of metals with lower ion-
ization energy than H I. These free electrons attach to H
forming (e + H)→H−, via long-range attractive poten-
tials (Eq. 6.76). Now, low energy photons with energies
of a few electron volts are transparent to H, since they are
insufficient to excite or ionize H. But the photons in the
visible region of the spectrum, red (7000 Å)–blue (3500
Å), are in the range 1.8–3.5 eV. These visible and lower-
energy photons are instead absorbed by H−, starting in
the near-infrared region at λ < 1.63 μm, corresponding
to a threshold ionization energy of H− of only 0.75 eV.
Therefore, H− is the major source of stellar opacity in
the visible to near-infrared range. In the Sun, the H−
opacity determines the phenomenon that causes the Sun
to appear as a disc, with a fairly well-defined boundary,
rather than a more diffuse object.11 Thus, instead of H I,
the dominant source of opacity in the solar atmosphere is
the bound–free photodetachment

hν + H−→ e+ H, (10.10)

10 One often finds values quoted in literature that differ by about 100 K

regarding the effective temperature of the Sun (c.f. the black-body

temperatures in Fig. 10.1 and Fig. 1.5).
11 The Sun is a perfect disc to a remarkable 0.002% [270].
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FIGURE 10.7 The bound–free photodetachment
cross section of H− [161]. The H− opacity peaks
in the visible to near-infrared range (Fig. 10.1).

which occurs from photon eneriges as low as 0.75 eV, the
electron affinity of H− (Chapter 6). The photodetachment
cross section of the He-like ground state 1S of H− is given
in Fig. 10.7 [161] around 1 eV, just above the threshold
photodetachment energy of 0.75 eV. It is worth noting that
the Shape and Feshbach resonances, disussed in Chapter 6
(Fig. 6.18), lie at much higher energies around 10 eV, or in
the UV range, which does not directly correlate with the
peak output of solar flux in the visible (Fig. 10.1).12 At
those lower energies, H− accounts for the absorption of
visible solar radiation effectively. The H− cross section
is appreciable throughout the near-infrared, visible and
near-ultraviolet range, and peaks at 8500 Å, where it is
40 Mb. By contrast, the neutral H I photoionization cross
section starts out well into the UV, at 912 Å at 6.4 Mb
(Chapter 6). In additon to H− opacity, the free–free
process

e+ hν + H→e′ + H, (10.11)

is also a contributor to the solar atomospheric opacity
dominating in the IR beyond 1.6 μm. So the total H−
opacity is related to the sum of the bound–free cross
section in Fig. 10.7 and the free–free cross section (e.g.,
Fig. 4.2 in [244]).

Temperature decreases with height in the solar pho-
tosphere, from about 7000 to 4400 K. Since the lower
photosphere is hotter, with cooler material in front, as seen
from the Earth, the spectrum of the photosphere contains

12 Physicists and astronomers have rather different interests regarding

H−. The 10 eV resonance features shown in Fig. 6.18 are important to

both experimentalists and theorists in physics to study the simplest

two-electron system. On the other hand, and quite fortuitously, H−
happens to be an important opacity source in astronomy, but at an

energy about an order of magnitude lower, ∼ 1 eV.

prominent absorption lines. As noted in Chapter 1, the
absorption lines from the solar photosphere were among
the earliest spectrocopic observations in astrophysics –
the Fraunhofer lines corresponding to a number of
elements. It is worth emphasizing that while none of
the elements, including hydrogen, absorb solar radia-
tion sufficiently to affect its overall shape compared
to a black body (Fig. 10.1), the solar spectrum shows
signficant attenuation of the underlying photon flux
via absorption in many atomic transitions in the range
3000–10 000 Å by essentially all elements up to iron.
Determination of photospheric abundances of elements
is made from these photospheric absorption lines seen
at high resolution, superimposed on the broad black-
body shape (note the blue side of the solar flux
in Fig. 10.1).

High resolution spectroscopic observations, and
numerical simulations based on the underlying atomic
physics, yield a much more detailed picture. Figure 10.8
is a synthetic spectrum computed by R. L. Kurucz and
collaborators [271], simulating the monochromatic solar
flux received at one particular point on the Earth’s
surface, the Kitt Peak National Observatory in Ari-
zona. Some of the prominent features and atomic
transitions are described here (however, note that in
Fig. 10.8 the x-scale is in nanometres, and that
10 Å = 1 nm).

The Hα feature at 6563 Å (656.3 nm), due to absorp-
tion n = 2→ 3, lies in the middle of panel 4 in Fig. 10.8.
In addition to the first few members of the Balmer
series of H, Hα–Hδ in the optical, we see the well-
known lines of sodium (Na D lines in Fig. 10.8) at
λλ 5890, 5896 due to the fine structure doublet tran-
sitions 3s2S1/2→ 3p2Po

3/2,1/2. Similarly, isoelectronic
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FIGURE 10.8 Simulated solar spectrum at the surface of the Earth transmitted through the atmosphere, computed in
correspondence with observations at the Kitt Peak National Observatory [271] (Courtesy: R. Kurucz). Note that the left side of
the top panel has maximum line blanketing with λ < 400 nm (4000 Å), and the right side of the third panel from top, with
600 > λ > 550 nm, has about the least. The latter is around the yellow band (before the orange Na D lines), which determines the
characterstic colour of the Sun.

with Na I, Mg II has the same transitions at λλ 2795.528,
2802.704 Å. These Mg II lines are called the h and
k lines, in analogy with the Ca II H and K lines,
due to transitions 3p64s 2S1/2→3p64p 2Po

3/2,1/2 at λλ

3933.663, 3968.469 Å (Fig. 10.8). However, the low-lying
energy levels of Ca II are different from those of Mg II.
While the ground configuration of Ca II is 3p64s (analo-
gous to the Mg II 2p63s), the next higher levels are due
to 3p63d, which lies below the 3p64p. A schematic dia-
gram of the Ca II H and K lines and three near-IR lines
is shown in Fig. 10.9. In the near-infrared stellar spec-
tra of spectral type A–M stars lie these so-called ‘calcium
triplet’ lines in Ca II at λλ 8498.02, 8542.09 and 8662.04
Å, due to transitions within the 3p6(3d 2D−4p 2Po)mul-
tiplet: 2D3/2 −2 Po

3/2,
2 D5/2 −2 Po

3/2,
2 D3/2 −2 Po

1/2,

respectively.13 Note that there is no allowed transition
between the J = 5/2 and 1/2 levels, since 
J > 1. This
set of three Ca II lines is sometimes labelled ‘CaT’

13 We again note that the use of the terms ‘doublet’ and ‘triplet’ in

astronomy refers only to the set of two or three lines respectively, not

to spin multiplicity (2s + 1), which is the common spectroscopic

usage.

(e.g., [272]). From an atomic physics point of view, the
interesting point about the CaT lines is that they involve
an excited initial state, 3p64d 2D, which may be signif-
icantly populated, since it is metastable, owing to same
parity as the ground state 3p64s 2S. Therefore, the CaT
transition array is quite prominent in stellar atmospheres,
in addition to the ‘resonance doublet’, H and K. Fur-
thermore, it follows that the 3p6(4s − 3d − 4p) system
of energy levels shown in Fig. 10.9 would be highly
coupled in terms of collisional and radiative calculations
[273].

The near-ultraviolet part of the solar spectrum in
Fig. 10.8 is dominated by iron lines, as is the spectrum
of other stars and astronomical objects. The predominant
ionization state of iron in many astrophysical objects is
singly ionized Fe II, which has a multitude of transitions
ranging from the near-infrared one-micron (1 μm) lines
(Chapter 13), to far-ultraviolet below the Lyman limit at
912 Å (the Fe II lines are discussed in detail in Chapters 8
and 13). But in the Sun, and cooler stars, Fe I dominates
and has hundreds of lines. These many lines in stellar
models are referred to as line blanketing of the underly-
ing black-body continuum. This explains the significant
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FIGURE 10.9 The Ca II H and K lines in the visible,
and the ‘calcium triplet’ lines in the near-infrared.

deviation from the Planck function on the blue side, shown
in Fig. 10.1.

10.9.2 Chromosphere

Above the photosphere, there are other regions related
to the stellar surface and interior activity. These are the
chromosphere and the corona, connected by a transition
region. The chromosphere is actually cooler than the pho-
tosphere. But contrary to the situation in the photosphere,
the temperature rises with height, from 7000 K at the
lower interface with the photosphere, to about 20 000 K
at the upper interface with the transition region which, in
turn, leads into the corona at very high temperatures of
the order of 106 K. The chromosphere may be thought of
as the ‘bubbling up’ of the solar material, seen as spikes,
called ‘spicules’, above the ‘surface’ (photosphere). The
chromosphere, and the hot plasma above in the corona,
are intimately related to the solar magnetic field. The Sun
is a rotating ball of hot electrically charged particles. As
such, it acts like a dynamo, generating a strong magnetic
field. The chromosphere and the corona are visible dur-
ing total solar eclipses, when the solar disc is occulted
by the moon. Satellite observations of the outer regions
can be similarly made by creating an artificial ‘eclipse’
by blocking out the solar disc. Such observations pro-
vide valuable information on the magnetically driven solar
activity.

As the temperature rises with height above the
photosphere, the chromosphere is the source of emis-
sion lines, as opposed to mainly absorption lines from
the photosphere. Since both layers have much the same
composition, the emission and absorption lines are from
the same elements. Chromospheric lines include atomic
species such as H I, Ca II, Ca I, Mg II, He I, and also a
few doubly ionized ions, C III, Si III and Fe III. Hα is seen
in emission, produced by electron–proton recombination

into high-lying levels and cascades downward from the
n = 3 → 2 (Hα is also seen in absorption at the limb
against the disc). The Ca II H and K lines discussed above
are also seen in emission. In addition, several other lines
from excited levels with radiative transitions in the ultra-
violet are observed, such as the C II ‘resonance’ multiplet
at ∼1335 Å due to dipole allowed transition in the array

2s2p2(2D5/2,3/2,1/2)→2s22p
(

2Po
3/1,1/2

)
.

10.9.3 Transition region

As mentioned already, the transition region between the
chromosphere and the corona is a relatively sharp bound-
ary with large temperature gradients. At the lower end
towards the chromosphere the temperatures are of the
order of 103 K, but at the higher end into the corona they
jump to more than 106 K.

10.9.4 Solar corona

The most intriguing part of the solar atmosphere is the
corona. It consists of a tenuous and optically thin hot
plasma surrounding the Sun, rising millions of kilome-
tres into space. Characteristic of hot gas at millions of
kelvins, the coronal spectrum is dominated by emission
lines of highly ionized atomic species that radiate pre-
dominantly in the EUV and X-ray regions. It is important
here to again distinguish the sense in which we define
a black-body temperature. It refers to the total amount
of energy radiated by an object in thermal equilibrium
given by the Planck distribution. On the other hand, the
kinetic temperature of a gas is determined by particle
velocities, generally as a Maxwellian distribution. In the
corona the temperature refers to the electron temperature
Te, assuming a Maxwllian distribution, whereas in the
photosphere temperature refers to the surface temperature
approximated by a Planckian function with Teff ≈ 5800
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(Fig. 10.1). In addition, ionization balance is also achieved
by different physical processes. In the interior of the Sun
(and most other stars) we have LTE, but considerable
departures from LTE in the atmosphere. However, in the
solar corona the ionization balance is between collisional
ionization, on the one hand, and electron–ion recombina-
tion on the other. In earlier discussions we have referred to
it by the generic term ‘coronal equilibrium’ (Chapter 6).

The crucial question, to a significant extent still a mys-
tery, is: what is the exact nature of the energy source
and kinematics of the corona? A partial answer, related
to magnetic activity, is that gigantic flares rise from the
base of the solar atmosphere into the corona, and pro-
vide the energy and the material. Additionally, there is
thought to be a continuous supply of energy to the corona
from microflares all over the Sun. The answer is also
related to such important phenomena as coronal mass
ejections (CMEs); streams that carry away subtantial mass
and energy in the form of high-energy charged particles
and radiation. Owing to the tremendous activity and tem-
perature in the corona, there is a continuous solar wind
blowing out of the Sun into the heliosphere, and way
beyond to the farthest planets. Flares and other coronal
activity can be readily observed, and affect the atmosphere
of the Earth in ways that are not entirely understood.

Solar activity is also governed by an 11-year cycle,
wherein it undergoes a maximum and a minimum. The
next solar maximum is due in 2012, and it is obvious
that solar astronomers would particularly like to observe
the Sun during the solar maximum. Among the most
extensive recent observations of the Sun are those by
the satellite Solar and Heliospheric Observatory (SOHO),
which has several spectroscopic instruments (e.g., [274]):
the Coronal Diagnostic Spectrometer (CDS), the Solar
Ultraviolet Measurement of Emitted Radiation (SUMER)
and the Ultraviolet Coronograph Spectrograph (UVCS).
The high-resolution ultraviolet wavelength coverage of
SOHO instruments is about 300–1500 Å. For example,
the CDS observes a number of pairs of density-sensitive
lines, such as the Mg VIII multiplet with lines around
430 Å and 335 Å; the UVCS obtains data for a variety
of lines that can be used to determine O, Mg, Si and Fe
abundances, such as O VI 1032, 1037 Å, Mg X 610, 625
Å, Si XII 495, 521 Å and Fe XII 1242 Å. The electron
densities derived from these and other measurements are
about 109 cm−3 for the active but non-flaring regions of
the corona, and up to 1012 cm−3 in the flares.14

14 A collisional–radiative model, as described in Chapter 8, may be used

for emission-line diagnostics in collisional equilibrium or the coronal

approximation (Chapter 6). Several codes and databases are devoted

Exercise 10.2 Write down the atomic transitions respon-
sible for the lines observed by the SOHO instruments.
Explain which lines provide good density diagnostics and
why. Hint: the SOHO website describes its imaging and
spectroscopic capabilities, with related explanations of
coronal physics. Prepare a list of lines that may be used
to determine densities, temperatures and abundances.

The X-ray lines from the solar corona provide equally
important diagnostics. Coronal temperatures are in the
range 1–10 MK. Atomic species ionized up to He-like
ions of many elements are observed in the X-ray region. In
Chapter 8, we have discussed spectral formation of O VII

and Fe XXV line due to excitation of Kα complexes. The
density sensitivity of the O VII line ratios lies in the criti-
cal range for coronal densities ne ∼ 109 cm−3 (Figs 8.8
and 8.10). Similarly, the Kα complexes of He-like Ca Fe,
and Ni lie at 3.8, 6.7 and 7.1 keV, respectively. The com-
plex spectral analysis relevant to the flaring and rapidly
transient coronal activity, including dielectronic satellite
lines, has been described in Chapter 8, using the Kα com-
plex of Fe XXV. Another particularly useful example of
a strong X-ray feature is that due to L-shell excitations
in Ne-like Fe XVII, shown in Fig. 5.5. A more complex
spectral analysis relevant to the flaring and rapidly tran-
sient coronal activity involves dielectronic satellite lines
of He-like ions, described in Chapter 8.

10.10 Cool and hot stars

Given the elaborate stellar classification and complex
mechanisms for spectral formation (some described
herein), it might seem outlandish to refer simply to groups
of ‘cool’ stars or ‘hot’ stars. Yet, there are some general
characteristics that do warrant such apparently simple ter-
minology, albeit with many caveats. First, cool stars form
the largest such group, including all spectral classes later
than A in age, and cooler than about 7000 K in surface
temperature [276]. The Sun is an ordinary G-type cool
star, and in many ways prototypical of this group, with
much of the structure and characteristics discussed in the
previous section on solar spectroscopy. One prominent
example is the magnetic phenomena that link the activ-
ity on the relatively cool stellar surface to the hot corona,
leading up to X-ray emission.

Hot stars have much higher temperatures than cool
stars, and range up to 40 000 K for main sequence O stars.
Massive hot stars are very luminous, up to 105–106 L�.

to such efforts, e.g., CHIANTI (http://chianti.nrl.navy.mil/chianti.html.

APEC/APED (http://hea-www.harvard.edu/APEC) and MEKAL [275].
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Relating wavelength and colour to temperature simply
according to Wien’s law (Eq. 1.7), hot stars are blue and
cool stars are red. One property that distinguishes cool
stars from the hot O and B stars is stellar wind and
mass loss. Hot stars generate high-speed and dense stel-
lar winds that carry sufficient matter to cause significant
mass loss, up to 10−8–10−4 M�/year. In contrast, stel-
lar winds from cool stars are much weaker, and carry
relatively little material; the bulk of stellar matter is mag-
netically confined to the surface, with the exception of
occasional coronal mass ejections and flaring activity that
maintains the corona. A particular class of ultraluminous
hot stars, the Wolf–Rayet stars (WR), may have winds up
to about 2000 km s−1, and temperatures up to 50 000 K.

The radiation-driven winds of hot stars largely obscure
the underlying atmospheres. Their spectral analysis
requires consideration of dynamical phenomena, partic-
ularly as related to line formation in rapidly expanding
media – quite different from the relatively quiescent atmo-
spheres of cool stars. Non-LTE line blanketing models in
spherically expanding outflows (e.g., [277]) may be used
to analyze prominent CNO lines. A significant effect is the
two to five-fold increase in the strengths of optical lines,
such as the C III 5696 and C IV 5805 in WR stars, owing
to extensive line blanketing by Fe lines.

The most common signature of outflows is the char-
acteristic line shape known as the P-Cygni profile, first
analyzed from the hot B star P Cygni. As one might expect
in a symmetric outflow from a source, the Doppler effect
in the fast winds, moving both away from and towards the
observer, leads to large broadening widths. The resulting
line profile is asymmetrical, and exhibits both absorption
and emission features, as shown in Fig. 10.10. The trough
at wavelengths less than the line centre λ < λ0, is caused

P-Cygni
line profile

λ0 λ

Fλ

Observer

Blue-shifted
photons

Red-shifted
photons

FIGURE 10.10 The P-Cygni line profile from a spherically
symmetrical outflow.

by absorption by atoms in the material moving towards the
observer. Photons emitted by those atoms are blueshifted,
and are likely to find other atoms ahead moving in the
same direction; hence, the blueshifted absorption. On the
other hand, redshifted photons are emitted from atoms
moving away from the observer and are not absorbed
by the intervening material, which is largely moving
towards the observer. Therefore, the red wing of the line
is unaffected, and dominates the emission line profile.

The P-Cygni profile is a general feature of outflows,
seen not only from stars (and not only in the optical) but
from all sources with winds carrying significant material.
An interesting example is the outflow from a Galactic
X-ray binary stellar system called Circinus X-1, compris-
ing a neutron star and a main-sequence hydrogen burning
star.15 The outflow is driven gravitationally by matter
accreting from the main-sequence star on and around
the surface of the compact neutron star. As the stars
orbit each other, X-ray line emission is highly variable
and exhibits P-Cygni profiles. A time-dependent anima-
tion of the H-like Si XIV Kα line at 6.18 Å observed
by the Chadra X-ray Observatory may be viewed at
http://www.astro.psu.edu/users/niel/cirx1/cirx1.html.

10.11 Luminous blue variables

Because luminosity increases rapidly in a highly non-
linear way with mass, approximately L ∝M3.5, very mas-
sive stars are naturally extremely luminous. Such stars
occupy the upper left-hand corner of the HR diagram
(Fig. 10.2). The sub-class of stars with M � 10M� are
referred to as luminous blue variables or LBVs. We
have already noted that such massive stars are expected
to undergo core collapse and end up as Type II SNe.
However, LBVs are thought to avoid this fate (albeit tem-
porarily, according to astronomical timescales) by ejecting
large amounts of their masses. The mass loss may be
continuous in the form of high-velocity stellar winds (as
in Wolf–Rayet stars), about 10−4−10−1 M�, or periodic
outbursts of massive ejections of up to 1 M� or more for
extreme LBVs.

Currently the most prominent LBV is Eta Carinae
(ηCar), shown on the cover page [278]. It is one of most
massive stars known, with an estimated mass >100M�,
and luminosity >106L�. It is thus highly unstable, with
gigantic outflows from equatorial regions that constitute

15 Conventionally, the upper case ‘Galactic’ refers to our own galaxy, the

Milky Way. Otherwise it is lower case ‘galactic’ for galaxies in

general.
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the so-called Homunculus nebula, with its characteris-
tic dumb-bell shape (as shown in the HST image on the
cover). There is considerable evidence based on spec-
troscopic and morphological analysis [184] that it is a
close interacting binary star in a symbiotic formation –
a common envelope with two stars in different stages of
evolution; a compact object, such as a white dwarf, and a
voluminous massive main-sequence O star. The periodic
variation in luminosity and kinematics expected in such a
situation has been observed in several wavelength ranges,
including in the X-ray region, from the Chandra X-ray
Observatory. However, spectroscopic measurements are
rendered uncertain by significant variations and anoma-
lous line intensities. For example, a number of forbidden

and allowed lines from Fe II and Fe III are seen from the
infrared to the ultraviolet. But the Fe II UV line ratios are
difficult to reconcile with a straightforward collisional–
radiative analysis of the Fe II atomic model (Fig. 12.5).
Hubble Space Telescope observations of λλ 2507, 2509
lines, arising from transitions between the excited LS
multiplets, require a model based on Lyα pumping and
laser-like transitions, coupled with interesting geometry,
to explain their anomalous strengths [279]. In any event,
ηCar is close to the limit of stability, and it is likely that
ηCar would end up as a Type II supernova. Meanwhile
Eta Carinae continues to be the most extensively studied
LBV, and a remarkable laboratory of atomic physics and
astrophysical processes.
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An elaborate radiative transfer treatment (Chapter 9) is
necessary for stellar atmospheres through which radiation
escapes the star. But that, in a manner of speaking, is only
the visible ‘skin’ of the star, with the remainder of the
body opaque to the observer. Radiation transport through-
out most of the star is therefore fundamentally different
from that through the stellar atmosphere. Since radiation
is essentially trapped locally, quite different methods need
to be employed to determine the opacity in the interior of
the star. However, since there is net outward propagation
of radiation from the interior to the surface, it must depend
on the variation of temperature and pressure with radius,
as in Fig. 10.5.

Perhaps nowhere else is the application of large-scale
quantum mechanics to astronomy more valuable than in
the computation of astrophysical opacities.1 Whereas the
primary problem to be solved is radiation transport in stel-
lar models, the opacities and atomic parameters needed
to calculate them are applicable to a wide variety of
problems. One interesting example is that of abundances
of elements in stars, including the Sun. Observationally,
the composition of the star is inferred from spectral
measurements of the atmospheres of stars, i.e. surface
abundances, because most of the interior of the star is
not amenable to direct observation. However, radiative
forces acting on certain elements may affect surface abun-
dances that may be considered abnormal in some stars. In
previous chapters, we laid the groundwork for the treat-
ment of a specialized, but highly important, topic of opac-
ities in the stellar context. We begin with the definitions
of physical quantities and elucidation of basic concepts,

1 Atomic physics assumes a central role in opacities of all high-energy

density (HED) plasma sources, in particular laboratory fusion devices.

Of course, the dynamics is quite different in the laboratory.

Non-equilibrium, time-dependent and three-dimensional

hydrodynamics all play important roles in radiation transport on

extremely small spatial–temporal scales, but otherwise at temperatures

and densities required to achieve nuclear fusion, as in stellar cores.

and end with a description of the state-of-the-art electronic
facilities for on-line computation of stellar opacities, and
radiative forces or accelerations.

11.1 Radiative and convective envelope

Most of the stellar interior consists of the envelope
region through which energy generated in the nuclear
core propagates upwards to the surface. Depending on
the stellar type and mass, the envelope is further sub-
divided into two regions, depending on the relative
dominance of the two competing physical processes of
energy transport: (i) radiative diffusion and (ii) con-
vection.2 Generally, stellar envelopes can be defined
as ‘those regions of stellar interiors where atoms exist
and are not markedly perturbed by the plasma envi-
ronment’ [36]. The envelope densities are much less
than that of water, ρ(envelope) < 1 g cm−3, and decreas-
ing towards the outer-most atmospheric regions. Typical,
though approximate, temperatures and densities in stel-
lar envelopes are given in Table 11.1. The free-electron
partition function Ue, and the ionization potential Im of
the ionization state close to the maximum abundance
of an element, are discussed in Section 11.4.1. The
phrase ‘markedly perturbed’ implies that we may retain
the isolated atom(ion) description of quantized levels up
to a certain quantum number where the plasma effects
cause broadening, dissolution, and ionization of high-
lying levels. The internal dynamics and structure of stellar

2 For energy transport through the low densities outside stellar cores, the

third process of energy transport, conduction, is not viable for most

stars, since it requires metallic densities that are only found in stars

with degenerate cores, such as white dwarfs, where conduction is in

fact the dominant mechanism. However, even at low densities, where

the electron mean free path is large, conduction of electrical charges

may play an important role, such as energy transfer from magnetic

activity in the chromosphere into the corona, and in stellar flares and

coronal mass ejections.
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TABLE 11.1 Typical stellar temperatures and densities (solar composition).

Log T (K) ρ(g cm−3) ne(cm−3) ne/Ue Im/kT

4.5 3.2× 10−9 2.1× 1015 7.9× 10−8 16
5.0 1.0× 10−7 6.8× 1015 4.0× 10−7 15
5.5 3.2× 10−6 2.2× 1018 3.2× 10−6 13
6.0 4.0× 10−4 2.2× 1020 5.0× 10−5 10
6.2 2.0× 10−2 1.0× 1022 6.3× 10−4 8
6.5 2.0× 10−1 1.0× 1023 7.9× 10−4 7
7.0 2.0× 101 1.0× 1025 − −
7.2 2.0× 102 1.0× 1026 − −

envelopes is governed by a set of equations discussed in
the next section.

11.2 Equations of stellar structure

A theoretical model of a star depends on several phys-
ical quantities inter-related by four equations of stellar
structure, supplemented by an equation-of-state of the
plasma in the interior. We consider stars to be the idealized
geometrical shape of a sphere (neglecting stellar rotation
and magnetic fields, not because they are not important but
because they require specialized treatment not covered in
this text).

The first equation is simply mass conservation. At any
radius r , measured from the centre at r = 0, the mass inside
a spherical shell with radius r is

M(r) =
∫ r

0
ρ(r ′)4πr ′2dr ′, (11.1)

where ρ(r ′) is the local mass density in shell r ′. The
second relation governs energy generation, equal to the
energy flowing outward from a similar spherical shell,

L(r) =
∫ r

0
ε(r ′)ρ(r ′)4πr ′2dr ′, (11.2)

where ε is the rate of energy generation (e.g., W g−1).
The basic dynamics of the star is that each layer in the
star is balanced by the gravitational pressure inward and
the gas pressure outward. The equation of this hydrostatic
equilibrium is then

dP(r)

dr
= −ρ(r)G M(r)

r2
. (11.3)

Exercise 11.1 Using order-of-magnitude estimates for
typical stars, show that P(r) has generally negligi-
ble contribution from radiation pressure due to the

radiated photon flux. Hint: black-body radiation pressure
is (4σ /3c)T 4.

The fourth equation is related to the mechanism of
radiation transport. Since conduction is not a viable mech-
anism, it is the competition between radiative diffusion
and convective motions that governs energy transport at
any given point r in the interior of the star. The equation
of energy transport depends on the local temperature
gradient, which for the radiative mode can be written as

dT (r)

dr
= − L(r)

K 4πr2
(diffusion). (11.4)

Here we introduce a diffusion constant K dependent
on material properties, mainly the opacity. Alternatively,
the other mode for energy transport is governed by the
gradient

dT (r)

dr
=

(
1− 1

γ

)
T (r)

P(r)

dP(r)

dr
(convection). (11.5)

The convective mode depends on the quantity γ in
the adiabatic equation-of-state Pρ−γ = constant, and is
equal to the ratio of specific heats. For a perfect gas
P = kρT/μ, where μ is the mean molecular weight.

Exercise 11.2 Considering the Sun to be made of ion-
ized hydrogen only, and using the equations of stellar
structure in Section 11.2 and the perfect gas law, show
that the order of magnitude of the central temperature is
about 10 million kelvin (sufficient to ignite thermonuclear
fusion of H to He).

If the radiative diffusion temperature gradient Eq. 11.4
is smaller than the one for adiabatic convection, Eq. 11.5,
i.e., (dT/dr)diff(r) < (dT/dr)conv(r), then energy trans-
port by radiative diffusion is more efficient and convective
bulk motions of stellar material would not start. If the
temperature gradient at a given r is large, say due to
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large local opacity, then pressure from inside builds up
and the bulk material rises; energy transport by convective
motions becomes more efficient. Thus deep inside the star
radiative diffusion transport is important, but gradually
gives way to convection, which becomes more efficient
at increasing radius (except in high-mass main-sequence
stars where the situation may sometimes be the opposite,
owing to fusion of successively heavier elements, He, C,
etc., in the core). This balance determines a well-defined
boundary known as the depth of the convection zone (CZ).
In the Sun, the CZ boundary lies at about 0.73 R�, i.e.,
more than a quarter of the Sun is convective rather than
radiative in terms of energy transport outward. It follows
that, by volume, half the Sun is convective, but by mass
only a small fraction. In more massive sars, the radiative
zone is much bigger, and extends throughout the star. This
is the reason that in classical Cepheid stars, with masses
several times M�, the opacity in the radiative zone is the
crucial determinant of pulsation properties that drive the
periodic variation in luminosity but in very massive stars
with ongoing CNO cycles, convective interiors dominate.

We have introduced the equation-of-state in the form
of the perfect gas law – a relationship among macroscopic
quantities pressure, temperature and density defined in
accordance with the equations of stellar structure. But the
quantity K , the radiative diffusion constant, is still unde-
fined. It depends on the local opacity, which, in turn, is
due to microscopic absorption and scattering of photons
by atoms and ions of elements in the star. Therefore, the
diffusion constant or the opacities need to be computed
taking into account all the microscopic physical processes
throughout the star.

11.3 Radiative flux and diffusion

Nuclear fusion energy produced in the core of the star is
transported through stellar matter via radiative diffusion
and convection. As we have seen, the structure of the star
is divided into stellar interior (core), envelope and atmo-
sphere. The conditions of the matter in these three regions
are sufficiently distinct that different approximations need
to be employed. From an atomic physics point of view we
adopt the following characterizations.
Stellar core:

(a) highly ionized ions (e.g., bare nuclei, H- and He-like),

(b) energy levels of ions perturbed by plasma interactions
to an extent that the isolated atom approximation may
not be valid,

(c) densities and temperatures: T > 106.5 K and ρ >
11 g cm−3).

Stellar envelope:

(a) atoms and ions exist and may be considered free of
bulk plasma effects,

(b) radiation field may be treated by the black-body
Planck function (also, of course, in the stellar core),
and first-order deviations therefrom, but essentially in
LTE,

(c) (T, ρ) as in the range given in Table 11.1.

Stellar atmospheres:

(a) LTE is not valid and non-LTE approximations must be
employed,

(b) atomic structure and radiative transfer are coupled
and need to be treated in detail.

In the previous chapter, we introduced the opacity κ
to define the optical depth τ , but without recourse to
the underlying physics. The physical nature of the opac-
ity depends on several parameters – temperature, density
and composition. We can introduce the atomic density
dependence nA explicitly by redefining κ as

ρ(g cm−3)κ(cm−2 g) = nA(cm−3 )σν . (11.6)

The left-hand side provides the macroscopic definition
of κ , whereas the right-hand side includes the microscopic
quantity, the cross section. The units of κ on the left-hand
side imply an opacity cross section per unit gram of mate-
rial. The mass density ρ = mAnA, where mA(g) is the
atomic mass. The monochromatic opacity is, similarly,

κν = σν

mA
(cm2 g−1), (11.7)

where σν is the photoabsorption cross section. The optical
depth is then expressed as

τν =
∫ ∞

r
ρ(r ′)κν(r ′)dr ′, (11.8)

for a photon to escape from a distance r inside the star to
the surface (or r→∞). The main topic of this chapter is
to develop an understanding of the astrophysical opacity,
and its application to stellar astrophysics in regions where
the optical depth τν � 1.

11.3.1 Diffusion approximation

Radiative diffusion is the primary mechanism for radiation
transport throughout most of the body of main-sequence
stars. The radiation field in the interior is described as
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a black body and its intensity Iν given by the Planck
function, so long as the photon mean free path is shorter
than the distance over which the temperature varies signif-
icantly. The deeper one goes into the star the photons are
trapped with smaller mean free paths and hence escape
probability. As we discussed in Chapter 9, in a perfect
black body there is no escape of radiation, i.e., dI/dτ = 0
and Iν = Sν is the Planck function Bν . The emissivity and
the opacity in the radiative transfer equation yield the sim-
ple form given by Kirchhoff’s law: jν/κν = Bν(T ). The
radiative transfer problem would be particularly simple if
the source function were indeed Bν . However, this limit is
not strictly realized through much of the star, since, after
all, there is a net outward flux. But a working assumption
can be made: the source function approaches the Planck
function, with relatively small deviations therefrom. To
obtain the actual source function Sν at frequency ν, taking
account of deviations from the ideal black-body form Bν ,
we employ the usual method of expansion at a point x in
a Taylor series within some depth τ , i.e.,

Sν(xν) =
∞∑
k

(xν − τν)k
k!

(
dk Bν
dτ k

)
. (11.9)

The specific intensity (Chapter 9) is, then,

Iν(τ, μ) =
∞∑
k

μk dk Bν

dτ k
ν

= Bν(τnu)+ μdBν
dτν

+ μ2 d2 Bν
dτ2
ν

+ · · · · (11.10)

Assuming the deviations from a black body source
function in the interior to be small, we retain only the first
derivative. Then the moments of the radiation field are

Iν ≈ Bν + μ
(

dBν
dτν

)
Jν ≈ Bν

Hν ≈ 1

3

dBν
dτν

(11.11)

Kν ≈ 1

3
Bν(τν).

It follows that in near-LTE situations, with small
deviations from a black-body source function are, at large
optical depths, limτ→∞ Jν→ 3Kν . This is known as
the Eddington approximation. Assuming the Eddington
approximation, J = 3K , to be valid in the atmosphere,
explains the so-called limb darkening effect quite well. It
can be seen that the emergent radiation from the centre
of a stellar disc appears more intense to the observer than
the radiation from the circular edge of the stellar disc. The
edge of the solar disc or the limb, corresponding to a view-
ing angle μ= cos 90◦ = 0, is significantly darker than

the brightest part, the centre of the disc corresponding to
μ= cos 0◦ = 1. As the temperature decreases with height
in the photosphere, the observer’s line of sight towards the
edge of the disc passes through higher, cooler and there-
fore less bright material, than when it passes through the
central regions with hotter matter radiating more brightly.
It can be shown that limb darkening depends on the deriva-
tive of the source function with optical depth and, using
the Eddington approximation, the limb/centre intensity
ratio is 0.4. In addition, the Sun appears disc-like with a
discernible boundary due to the absorption by the nega-
tive ion H− found above the solar atmosphere, discussed
in the previous chapter.

Now we recall (Chapter 9) that the Eddington flux Hν
determines the outward radiation flow. If we express the
optical depth in terms of the density ρν and the opacity
κν explicitly, i.e., dτν = κνρνdr , the transfer equation
becomes

Hν = −1

3

1

ρνκν

dBν
dT

dT

dr
. (11.12)

In the equations of stellar structure we had introduced
the diffusion constant K in the radiative temperature gradi-
ent (Eq. 11.4). The standard form of a diffusion equation
is: flux (flow) = (rate of change) × (diffusion coefficient).
In the present case the radiative diffusion coefficient K
depends on microphysical atomic processes. Diffusion of
radiation through ionized matter is governed by scatter-
ing and absorption of photons by electrons and ions, and
determines the opacity. Since the flux F = (4π/3) H ,
when radiative diffusion is the dominant form of radiation
transport, the diffusion approximation discussed above
yields

Fν = −4π

3

1

ρκν

dBν
dT

dT

dr
. (11.13)

This equation pertains to photons at a single frequency
ν, and to the monochromatic opacity κν of the plasma
encountered by those photons. Note that the κν appears in
the denominator, as one might expect physically. Wher-
ever the opacity is lower, the radiation flow is greater,
hence the inverse relation between the radiative flux and
the opacity. But in describing the total flow of radiation
through a star we must integrate over all frequencies, i.e.,

F =
∫

Fνdν = −4π

3

1

ρκR

dB

dT
. (11.14)

The interesting quantity on the right-hand side, 1/κR,
is defined as

1

κR

dB

dT
=

∫
1

κν

dB

dT
dν. (11.15)
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The symbol κR stands for the Rosseland mean opacity
(RMO). The physical analogy of radiation flow through
a plasma is that it is like the flow of current in an
electrical circuit with many resistors in parallel at dif-
ferent resistances. In that case, the total resistance of the
circuit is given by the harmonic mean 1/R = ∑

i (1/Ri ).
Moreover, the flow of current is obviously the greatest
through the resistor with the least resistance. Similarly,
the escape of radiation from a star would occur most effi-
ciently through ‘windows’ at frequencies with the lowest
material opacity κν , so long as there is sufficient flux at
ν. But note that the mathematical form of RMO includes
the factor 1/κν . Therefore, if κν→0 the integral Eq. 11.15
for RMO diverges. In practical terms, this implies that
care must be exercised for bound–bound or bound–free
transitions, where the cross sections might have deep
depressions or minima, corresponding to very low opac-
ities. Of course, in reality the radiative cross sections of
many atomic species and levels overlap, and such ‘zeros’
in the opacity do not occur.

Another mean opacity, the Planck mean opacity
(PMO), is the usual mean, defined as

κP B(T ) =
∫
κν Bνdν . (11.16)

The PMO is the integrated opacity and related to the
total radiation absorbed; as such, it is complementary to
the RMO, which determines the amount of radiation that
gets through. The PMO is required to calculate the radi-
ation pressure exerted on matter, and thereby radiative
forces or accelerations induced, as discussed later. Finally,
recall that the integrated Planck function B(T ) = ∫

Bνdν
= (2π4/15c2h3)(kT 4).

We have formulated simplified radiation transport
through the radiative envelope, using small departures
from the black-body radiation field and the diffusion
approximation. But we are now faced with a major prob-
lem with no easy solution. How do we know the opacity?

11.4 Opacity

The flow of radiation through matter depends on its opac-
ity. The opacity of a medium is related to plasma proper-
ties on the one hand, and intrinsic atomic physics on the
other hand. The plasma conditions determine the atomic
species encountered by the photons, as affected by particle
interactions and defined by the local temperature, density
and composition. The atomic properties come into play to
determine the microscopic quantities due to absorption via
atomic transitions and scattering. The atomic and plasma
effects are both responsible for the ionization states of

an element, at a given temperature and density, and the
number of levels in an ion that are effective in absorption.
Since an atom(ion) has an infinite number of levels, we
need to ascertain how many and how much they are pop-
ulated, so as to impose a physically and computationally
realistic limit. Such a prescription is the equation-of-state
(EOS) of the plasma. Whereas macroscopically, the ideal
gas law is approximately the equation-of-state, we have
seen that the microscopic atomic and plasma properties
in LTE are described by the Saha–Boltzmann equations.
But it needs to be modified to account for plasma effects
explicitly.

The atomic physics is the biggest problem. Since
a star, and most astrophysical sources, span a huge
range of temperatures and densities, all atomic quanti-
ties related to absorption and scattering of radiation at
all frequencies must be computed, for all astrophysically
abundant elements in all ionization states. Furthermore,
and consistent with the EOS, a large number of levels
required in each atom (ion) must be explicitly taken into
account.

The most recent calculations on astrophysical opacities
have been carried out by two groups: the OPAL group at
the Lawrence Livermore National Laboratory ([280] and
references therein) and the Opacity Project (OP) [36].
The final results from the two projects are in very good
broad agreement for the mean opacities, averaged over all
frequencies using the Planck function Bν(T ). However,
there are some significant differences in monochromatic
opacities ([281], see also Section 9.5.2). In our discussion
we will describe the OP methods since they place their
main emphasis on using state-of-the-art atomic physics
methods, including the R-matrix method described in
Chapter 4. Large amounts of atomic data have been com-
puted using the atomic codes developed under the OP, and
a follow-up project called the Iron Project [38]. Before we
compare the results and physical interpretation of the dif-
ferences, we outline the steps and nature of the opacity
calculations.

11.4.1 Equation-of-state

The basic EOS in stellar and many non-stellar sources in
LTE is the Saha–Boltzmann equation, which combines,
at a local temperature T , (i) the population among dif-
ferent atomic levels according to the Boltzmann equation,
and (ii) the distribution among different ionization states
according to the Saha equation. There are, however, sev-
eral physical considerations in adapting the combined
Saha–Boltzmann equation for the calculation of opacities.
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But first we describe the physical components of the
opacity.

11.4.1.1 Partition function and occupation
probability

As noted in Chapter 9 in the discussion of the partition
function, the problem with using the Saha–Boltzmann
equation to compute numerical values of ionization
fractions and level populations is immediately apparent:
the partition function diverges since Ei j approaches a
constant value equal to the ionization potential, but the
sum is over an infinite number of atomic levels with the
statistical weight increasing as 2n2 as n→∞ at the ion-
ization limit, although d f/dE does not diverge and the
total absorption oscillator strength f is finite. In real-
ity, the mean radii of atomic levels also increase as n2,
and interparticle effects perturb these levels, depending
on the density and hence the mean interparticle distance.
Therefore, we expect that plasma effects would lead to
a ‘cut-off’ at some critical value of nc, where levels
with n > nc are not populated but are replaced by free
electrons. Intuitively, we also expect that, rather than an
abrupt cut-off, the levels might be ‘dissolved’ as n→nc

due to plasma fields and effects, such as line broadening
(Section 9.2). Thus the cut-off is not altogether sudden
but gradual, as the increasingly excited levels broaden,
dissolve or ionize (in that order). The effective level popu-
lation in a plasma environment at a given temperature and
density needs to be computed with a realistic EOS that
also determines the ionization fractions of an element.

There are several ways to modify the Saha–Boltzmann
equations to incorporate the effect of plasma interactions
into the EOS. The latest work on astrophysical opaci-
ties is based on two approaches. One is the so-called
physical picture, adopted by the OPAL group [280], that
formulates the EOS in terms of fundamental particles,
electrons and nuclei, interacting through the Coulomb
potential. An elaborate quantum-statistical treatment then
enables the properties of composite particles (atoms, ions,
molecules) to be computed. Negative energy solutions of
the Hamiltonian correspond to bound states of these sys-
tems. The physical picture is appealing from a plasma
physics point of view, without distinction between free or
loosely bound states, and therefore with no modification
of the internal partition function.

The alternative approach, adopted by the OP group is
the Mihalas–Hummer–Däppen (MHD3) EOS [282, 283,
284, 285, 286, 287]. It pertains to the so-called chemical

3 We remind the readers to keep in mind the confusion with the

widespread terminology for magnetic hydrodynamics!

picture, which begins with isolated atoms and ions and
discrete (spectroscopic) energy levels as the basic enti-
ties [282]. The atomic energy levels are then modified
according to prevailing plasma interactions as a func-
tion of temperature and density. The chemical picture
is more amenable to advanced atomic physics meth-
ods, which compute atomic properties for isolated atoms.
Below, we describe the EOS in the chemical picture, but
re-emphasize that the final mean opacities differ little
between the two EOS formulations.

The modified Saha–Boltzmann equation is based on
the concept of occupation probability w of an atomic
level being populated, taking into account perturbations
of energy levels by the plasma environment. We rewrite

Ni j =
N j gi jwi j e(−Ei j /kT )

U j
(11.17)

The wi j are the occupation probabilities of levels i
in ionization state j . The occupation probabilities do not
have a sharp cut-off, but approach zero for high-n as they
are ‘dissolved’ due to plasma interactions. The partition
function is redefined as

U j =
∑

i

gi jwi j e(−Ei j /kT ). (11.18)

The EOS adopted by the OP, based on the chemical
picture of isolated atoms perturbed by the plasma envi-
ronment, entails a procedure for calculating thewi j . Here,
we recall the discussion for collisional line broadening as
it perturbs atomic levels (Section 9.2). In particular, the
Stark effect in the presence of the plasma microfield of
nearby ions broadens the bound states, which would even-
tually ionize either as a function of n or sufficiently intense
microfields. One combines both of these criteria by requir-
ing that the occupation probabilitywn is such that a bound
state exists only if the field strength F is smaller than a
critical value Fc

n for level n. Then

wn =
∫ Fc

n

0
P(F)dF, (11.19)

where P(F) is the microfield distribution.
In the presence of an external Coulomb field, owing

to other slowly moving and sufficiently nearby ions, the
break-up of levels into sublevels constitutes Stark man-
ifolds for each n; these are labelled as n,m. However,
oscillations in the plasma microfield lead to overlap-
ping Stark manifolds, as shown in Fig. 11.1. In particu-
lar, Fig. 11.1 shows the effect of interaction among the
extreme members of consecutive manifolds, n and (n +1).
If the field strength exceeds some critical value, i.e., F >
Fc

n , then the highest m-sublevels of the n manifold could
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FIGURE 11.1 Stark manifolds of successive principal quantum
numbers n, (n+1), etc., showing level crossings among extreme
states (adapted from [288]). The field strengths F c

n , F
c
n+1 are

such that the manifolds n and n+1 intersect and the electrons
move along arrows as shown.

cross over to the lowest ones in the (n + 1) manifold.
The process could go on in a similar manner, driven by
microfield oscillations, and the electron could move on
to the (n + 2) manifold, and so on, until it is ionized. In
this way, the m-sublevels are mixed or ionized together
by oscillations in the plasma microfield. The critical field
value decreases rapidly as n increases; higher states ionize
in weaker fields, since Fc

n ∼ n−5. With these assumptions
made, dissolution of states occurs when the highest Stark
component of level n has an energy equal to the lowest
component of level (n + 1). It may be shown that Stark
splitting is an efficient mechanism for bound state dis-
solution for n > 3. For a hydrogenic ion with nuclear
charge Z , and applying first-order perturbation theory,
we have

Fc
n =

Z3(2n + 1)

6n4(n + 1)2
. (11.20)

One may employ several approximations of varying
complexity to compute Fc

n , and hence wn , such as the
nearest-neighbour or the Holtsmark theory discussed in
in Chapter 9. We use the Holtsmark microfield distribu-
tion PH discussed in relation to collisional broadening.
Indeed, dissolution of bound states may be viewed as one
extreme of line broadening; eventually, dissolution leads
to ionization. Another way of looking at ionization due
to plasma microfields and electron impact is that effec-
tively we have lowering of the continuum. The continuum
refers to the energy needed to ionize an electron leaving
a residual ion; plasma effects reduce this energy relative

to that in an isolated atom. In the OP EOS formalism, the
occupation probability is

wn =
∫ βc

n

0
PH(β)dβ, (11.21)

where

PH(β) =
(

2β

π

)∫ ∞
0

e−y3/2
sinβydy (11.22)

is the Holtsmark distribution function and β ≡ Fc
n /F0,

where F0 is the field strength due to a perturber ion of
charge Zp at the mean inter-ionic distance r p . Then

F0 =
Zp

r2
p
= Zp

(
4πNp

3

)2
a2

0 . (11.23)

For the sake of developing approximate formulae,
in astrophysical situations we may assume a hydrogen
plasma with protons as the dominant perturbing ionic
species, i.e., Z p = 1, and that the proton density equals
the free-electron density Np = Ne. A modified treatment
taking account of all ionic species z yields, with Fc

n as
above,

β = Kn

(
I 2
n

4Zi

)(
4πa3

0
3

)−2/3

N−1
e N 1/3

ion , (11.24)

where Nion =
∑

z Nz , and

Kn =
{

1 for n ≤ 3
16n/[3(n + 1)2] for n > 3.

(11.25)

The different values are adopted to reflect that Stark
manifolds are assumed not to overlap for n ≤ 3. For non-
hydrogenic ions we replace the nuclear charge Z with the
effective charge z j in ionization state j , and n with the
effective quantum number νi j for level i . Then the result
for the occupation probability is,4

wi j = exp

⎛
⎜⎝−64π

3

⎡
⎣ (z j + 1)1/2e2

K 1/2
i j Ii j

⎤
⎦

3 ∑
j

z3/2
j N jk

⎞
⎟⎠

(11.26)

This treatment involves several approximations, and it
is therefore important to verify the results. Experimental
data are very sparse for non-hydrogenic systems. How-
ever, the lowest hydrogen Balmer line profiles have been
measured [291], and are in good agreement with those
predicted by the OP EOS [286, 292]. Figure 11.2, from
[288], shows the Balmer lines lying between λ = 3600
and 5200 Å, at a temperature 104 K and electron density

4 A more explicit formulation is provided by [289]; see also [290].
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FIGURE 11.2 Density–temperature dependence of line
widths and emissivities (Fig. 4 from [288]) – experiment vs.
theory (EOS): hydrogen Balmer line emissivities at
Ne = 1.8× 1016cm−3 and T=104 K. Dotted line – experiment
(absolute values) [291], Solid line – unit probabiliites and sharp
cut-off: wn= 1 for n≤ 30 and wn= 0 for n> 30, long dashed
line – chemical picture EOS [286].

1.8 ×1016 cm−3, typical of stellar photospheres.
Figure 11.2 also compares the emissivities derived using
occupation probabilities from (i) the OP EOS formalism
in the chemical picture described above, and (ii) an ad-hoc
approximation with a sharp cut-off in occupation prob-
abilities as mentioned. The various EOS approximations
are in good agreement with the experimental results in
Fig. 11.2 for the Balmer line broadening.5

11.4.1.2 Electron degeneracy
In addition to divergent level populations, another prob-
lem with the basic Saha–Boltzmann equation is that the
plasma density effects, and interparticle potential inter-
actions at high densities, are not considered in the dis-
tribution of ionization states of a given element. To
formulate a realistic EOS valid over a large range of den-
sities and temperatures, these effects must be taken into
account. Throughout most of the star, except inside the
core, at any temperature T , the electron density Ne is
much less than the total number of quantum states avail-
able to the non-degenerate electrons in phase space, i.e.,
Ne � Ue, or Ne/Ue � 1, as given in Table 11.1
for typical stellar temperatures and densities [293]. We
also recall from Chapter 9 that assuming most ions
to be in the ground state, the Saha–Boltzmann equa-
tion gives the ratio to two successive ionization states,

5 A full discussion is given in [286], and the EOS in the physical picture

used by the OPAL group is discussed in [282, 283, 284, 285, 286, 288].

Nm/Nm+1 ≈ (gm/gm+1) exp(−Im/kT ). If m is the ion-
ization state with maximum fractional abundance, then the
ratio Im/kT ≈ 10, as also given in Table 11.1.

Since no more than one electron can be in each quan-
tum state, or element of phase space, in situations where
the densities are extremely high, electrons are forced into
degenerate states, which get filled up to the Fermi momen-
tum. In normal stars we do not encounter such densities.
However, it occurs in white dwarfs (and more extremely,
in neutron stars) where roughly a solar mass is condensed
to a small Earth-size volume, and requires a different
kind of EOS, which we do not consider here [290]. Nev-
ertheless, the general EOS for stars needs to account
for electron degeneracy encountered in the high density
regime, as in stellar cores. We therefore define the electron
degeneracy parameter

η = ln

(
Ne

Ue

)
, (11.27)

introduced into the EOS formulation. In addition to elec-
tron degeneracy, the Saha–Boltzmann equation also needs
to take account of Coulomb interactions of free charged
particles in the plasma when calculating ionization bal-
ance. This efffect is parametrized with another parameter
φ j (not to be confused with line profile). In the chemi-
cal picture of the EOS, both the η and the φ are obtained
by minimizing the total free energy [282, 286]. We then
obtain the equation

ln

(
N j+1/U j+1

N j/U j

)
+ I j

kT
+ η + φ j = 0. (11.28)

Neglecting the electron degeneracy and Coulomb
interaction parameters, η and φ j , yields the orginial form
of the Saha ionization equation. With the general outline
of EOS formulation as above, we now turn to the atomic
processes relevant to opacity calculations.

11.4.2 Radiative atomic processes

The main atomic processes related to photon absorp-
tion are: bound–bound (bb), bound–free (bf) and inverse
bremsstrahlung free–free (ff). In addition, photon–electron
scattering (sc) is a contributor to overall opacity, mainly
Thomson scattering by free electrons and Rayleigh
scattering by bound atomic and molecular electrons.
The total monochromatic opacity consists of these four
components, i.e.,

κν = κν(bb)+ κν(bf)+ κν(ff)+ κν(sc). (11.29)

The quantities of interest related to the first three
components are the photoionization cross section σν
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for bound–free transitions, the oscillator strength fν for
bound–bound transitions and collisional damping con-
stants for free–free transitions. These are discussed next
individually.

11.4.2.1 Bound–bound opacity: spectral lines
For a transition between two atomic levels, 1 and 2

X1 + hν12→X2, (11.30)

by an atomic species X in lower state 1, the contribution
to monochromatic opacity is expressed in terms of the
absorption oscillator strength f12 as

κ12
ν (bb) =

(
πe2

mec

)
N1 f12φν, (11.31)

where φν is the line profile factor that distributes the
line oscillator strength over a certain frequency range
according to the plasma environment via line broaden-
ing mechanisms (Section 9.2). The f -value is related
to the line strength S in terms of the wavefunctions as
(Chapter 3),

f12 =
(

4π2me

e2h

)(
ν12

3g1

)
S12, (11.32)

where the dipole line strength6

S12 = e|<�2||D||�1>|2, (11.33)

with the usual dipole operator D = ∑
i ri. Since the line

oscillator strength can be related to an absorption cross
section over a frequency range, given its line profile, it
is useful to express the line opacity in terms of a cross
section as well,

κν(bb; 1→2) = N1σν(1→2), (11.34)

where

σ bb
ν (1→2) =

(
πe2

mec

)
f12 φν. (11.35)

This expression puts the bound–bound line opacity
κν(bb) in the same units (area) as the bound–free opacity
κν(bf) described next.

6 We ignore higher multipole moments in the calculation of opacities

since their magnitudes relative to the dipole moment are orders of

magnitude smaller, as discussed in Chapter 4.

11.4.2.2 Bound–free opacity: photoionization
The bound–free transition occurs when the photon is suffi-
ciently energetic to ionize an electron from atomic species
X in initial bound state b:

Xb + hνbε→X+ + e(ε) (11.36)

where hνbε is the photon energy in excess of the ioniza-
tion energy EI, and ε is the energy carried away by the
ejected photoelectron, i.e.,

hνbε = EI + ε. (11.37)

The bound–free opacity is therefore expressed in terms
of the photoionization cross section

σν(b→ε) =
(

2πν

3gbc

)
S(b→ε), (11.38)

where S is now generalized to refer to the dipole matrix
element between the initial bound state wavefunction �b
and a free-electron wavefunction �ε at an energy ε in the
continuum

S(b→ε) = |<�ε ||D||�b>|2. (11.39)

Now we can express the bound–free component of the
opacity as

κν(bf; b→ε) = 2πνNb

3gbc
S(b→ε), (11.40)

in terms of the generalized dipole line strength S.

11.4.2.3 Free–free transitions: inverse
bremsstrahlung

Radiation is emitted when an electric charge accelerates
in an electromagnetic field: the bremsstrahlung process.
A free electron scattering from a positive ion X+ can, in
general, result in the emission of a photon. The principle
of detailed balance requires the existence of the inverse
bremsstrahlung process: absorption of radiation by a free
electron and ion (e + ion) system, or

hν +
[
X+1 + e(ε)

]
→X+2 + e(ε′), (11.41)

with the ion X+ in the initial and final states 1 and 2,
respectively. The total (e + ion) initial and final energies,
E and E ′, are

E = E
(

X+1
)
+ ε, (11.42)

E ′ = E
(

X+2
)
+ ε′, (11.43)

and the photon energy hν = E−E ′. Both the initial
and final states of the (e + ion) system have a free
electron, and therefore this process is said to entail a
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free–free transition. Since the free electron(s) can be at
a wide continuum of energies, we write the differential
contribution to the free–free opacity from a range dE as

dκν(ff) =
(

2π

3c

)
N1

g1

Ne Fe

Ue(ε)
S(E ′2, E1)dE, (11.44)

where the factor Ne Fe/Ue(ε) is the fraction of initial elec-
tron continuum states occupied, as computed using the
partition functions in the Boltzmann–Saha equations. The
total free–free opacity is

κν(1, 2; ff) = N (X+)
U (X+)

Ne

Ue

2πν

3c

∑
1,2

∫
exp(−E/kT )

×
⎡
⎣∑

1,2

S(E + hν, 2; E, 1)

⎤
⎦ dE, (11.45)

where the line strength is summed over all initial and
final bound states 1 and 2, and the integral ranges over
all continuum energies. It is also computed in the dipole
approximation as

S(E ′2; E1) =
∑
1,2

| < �(E ′2)||D||�(E1) > |2. (11.46)

Note that we have expressed all the atomic transi-
tion probabilities for bb, bf and ff processes in terms
of the same quantity, the line strength S (Chapter 4).
Accurate coupled channel or configuration interaction
type wavefunctions � may be used to compute S. For
example, the ff transition strength may be computed using
coupled-channel wavefunctions for the bound state and a
continuum electron, as in the electron–ion scattering prob-
lem Chapter 5. Explicit calculations may be made using
the elastic scattering matrix elements for electron impact
excitation of ions ([292], Chapter 9). For comparison, an
approximate expression for free–free transitions is given
in terms of a Gaunt factor,

κff
ν (1, 2) = 3.7× 108 Ne Ni gff

Z2

T 1/2ν3
. (11.47)

Note the pseudo-hydrogenic form κ ∼ 1/ν3, similar
to the Kramer’s bound–free hydrogenic cross section for
photoionization.

11.4.2.4 Photon–electron scattering
Most of the scattering contribution to opacity is accounted
for by Thomson scattering, using

κ(sc) = NeσTh, (11.48)

where the Thomson cross section is

σTh = 8πe4

3m 2
e c4

= 6.65× 10−25 cm2. (11.49)

The Rayleigh scattering of photons by bound electrons
may be approximated by the expression

σR
ν ≈ ft σTh

(
ν

νI

)4
, (11.50)

where hνI is the binding energy and ft is the total
oscillator strength associated with the bound electron, i.e.,
the sum of all possible transitions, such as the Lyman
series of transitions 1s→np in hydrogen (Chapter 2). The
Rayleigh opacity for H I is

κR
ν = nHσ

R
ν (H). (11.51)

Eqs. 11.50 and Eq. 11.51 imply that the cross section
or the opacity increases inversely and rapidly with
wavelength.7 We note that Eq. 11.51 expresses the opacity
in the oft-used units of inverse length (cm−1).

Once the radiative atomic processes discussed above
have been taken into consideration, the calculation of
detailed opacities proceeds as follows.

11.4.3 Monochromatic opacities

The MHD EOS prescription described previously gives
the ionization fractions and level populations of each ion
of an element in levels with non-negligible occupation
probability. The opacity of the plasma results from the
interaction of photons with ions via absorption, as well
as scattering by free particles. We are now in a posi-
tion to express the monochromatic opacity κν in terms of
basic atomic quantities: bound–bound oscillator strengths,
bound–free photoionization cross sections and free–free
(inverse bremsstrahlung) cross sections for each ion. To
relate the EOS and opacities calculations, we define, with
element k in ionization state j and level i : level population
fraction Fi jk = Ni jk/Nk , ion fractions Fjk = N jk/Nk ,
electrons per atom εk =

∑
j z j Fjk , and chemical abun-

dance fractions Ak = Nk/N , where N is the total density.
Electrons in the plasma exist either bound to ions or free;
the latter are ionized from atoms of all elements present.
Then the free electron density is

Ne =
∑

k

εk Nk = N
∑

k

εk Ak , (11.52)

and the mass density is

ρ =
∑

k

Mk Nk = N
∑

k

Mk Ak , (11.53)

7 The ν4 dependence implies that blue light is scattered more than red

light; the phenomenon that makes the sky appear blue.
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where Mk is the atomic mass of element k. From
the two equations above, we can eliminate N to
obtain

ρ = Ne

(∑
k Mk Ak∑
k εk Ak

)
, (11.54)

which relates the mass density ρ and the electron density
Ne (the Te dependence is implicit through the number of
free ionized electrons per atom). Table 11.1 lists the ρ
and Ne so derived. In opacity calculations, it is conve-
nient to introduce a dimensionless parameter u ≡ hν/kT .
Monochromatic opacities κ(u) are then computed at a
range of log u, given by

κ(u) =
(

1− e(−u)
)⎡
⎣∑

i jk

Ni jkσi jk(u)

+
∑
jk

N jk Neσff(u)

⎤
⎦+ Neσe(u), (11.55)

where (1 − e−u) is the correction factor for stimulated
emission, and σff and σe are the cross sections for
free–free transitions and electron scattering, respectively.
The σi jk is the total absorption cross section from level
i , due to both lines (bound–bound) and photoioniza-
tion (bound–free). Given the monochromatic opacities
κ(u) the Rosseland and the Planck mean opacities, κR
and κP in units of cm2 g−1, are calculated from expres-
sions given earlier (Eqs 11.15, 11.16), at a mesh of
temperature–density [T (r), Ne(r)], all along the stellar
radius r . When radiation pressure is dominant, the ratio
of matter pressure to radiation pressure is essentially con-
stant. Then the ideal gas law and the Stefan–Boltzmann
law ensure that the quantity ρ/T 3 is also approximately
constant. Therefore, a convenient variable for tabulat-
ing opacities that describes both the density and the
temperature is

R(ρ, T ) = ρ

T 3
6

, (11.56)

where the density is in g cm−3 and T6 is in units of 106 K,
i.e. T6 = T ∗ 10−6. The parameter R is a combination
of density and temperature, since both physical quanti-
ties vary similarly in stellar interiors (Fig. 10.5). Then,
log10 R is a small number lying between −1 and −6 for
the conditions in the Sun (Fig. 11.4). For example: for
log R = −3, at T = 106 K, the corresponding density is
ρ = 0.001 g cm−3. In the core of the Sun, with nuclear
fusion energy production environment via pp reactions
(Table 10.2), T ∼ 1.5×107 K and ρ ∼ 80 g cm−3, so that
log R = −1.625. We next describe the manner in which

atomic data for the processes discussed above are utilized
in opacity calculations.

11.4.4 Abundances, mixtures and atomic data

It is clear that an immense amount of atomic data
are needed for opacity calculations. The main problem
is not only the generality – all transitions in various
ionization stages of the elements in different types of
stellar compositions – but also the fact that in specific
regions of a star different atomic species and processes
could be vitally important. Since hydrogen is the most
abundant element, approximately 90% by number and
70% as mass fraction in the Sun, it is usual practice
to measure the abundances of all other elements rela-
tive to hydrogen. The next most abundant element is
helium, approximately almost 10% by number and 28%
by mass fraction in the Sun.8 The remainder is all other
elements, generically called ‘metals’ but their abundance
by number is less than 1%, and about 2% by mass
fraction.

The stellar element mixtures are often specified by
X, Y and Z. For instance, the solar H abundance is
denoted as X = 0.7, the He abundance as Y = 0.28,
and the overall metal abundance, in its totality, as Z
= 0.02. The abundances (Ak) of elements vary over sev-
eral orders of magnitude, and are usually expressed on a
log10 scale. It is traditional to take log(AH) = 12. Then
the abundances of other elements, on a log scale up to
12, are given relative to H. For example, a representa-
tive mixture of the ‘standard’ abundances for the Sun is
given in Table 11.2 [36]. Stellar abundances are relative
to solar abundances, and are sometimes taken to be repre-
sentative of cosmic values as well. A few points deserve
mention. The C and O abundances are the highest among
metals, as expected from nucleosynthesis processes; O
is the most abundant element of all metals, with O/C
∼ 2.0. That is followed by the α-elements, Ne, Mg,
Si and S, whose abundances are lower by a factor of
10 to 20. Also note that A(Fe) is comparable to these
elements.

However, the accuracy of stellar opacities is being
examined in connection with rather large discrepancies
found recently in solar photospheric abundances deter-
mined spectroscopically [269, 294]. Serious differences
arise with helioseismological data in stellar interior mod-
els when the standard or the new solar abundances
(Table 11.2) are employed. Helioseismology is capable of

8 Measured cosmological abundances are somewhat different, hydrogen

about 73% and helium about 25%.



250 Opacity and radiative forces

TABLE 11.2 Solar photospheric abundance mixture [36]. Columns 2 and 3 compare the standard solar
abundances with the new abundances recently proposed [294]. The uncertainties in each set are generally within a
few percent. Calculated opacities presented in this text use standard solar abundances (Figs 11.3 and 11.4).

Element (k) Log Ak (standard) Log Ak (new) Ak/AH (standard)

H 12.0 12.0 1.0
He 11.0 10.93 1.00× 10−1

C 8.55 8.43 3.55× 10−4

N 7.97 7.83 9.33× 10−5

O 8.87 8.69 7.41× 10−4

Ne 8.07 7.93 1.18× 10−4

Na 6.33 6.24 2.14× 10−6

Mg 7.58 7.60 3.80× 10−5

Al 6.47 6.45 2.95× 10−6

Si 7.55 7.51 3.55× 10−5

S 7.21 7.12 1.62× 10−5

Ar 6.52 6.40 3.31× 10−6

Ca 6.36 6.34 2.29× 10−6

Cr 5.67 5.50 4.68× 10−7

Mn 5.39 5.43 2.46× 10−7

Fe 7.51 7.50 3.24× 10−5

Ni 6.25 6.22 1.78× 10−6

measuring solar oscillations to high accuracy and is poten-
tially an accurate probe of internal solar material and
structure. Stellar models thereby constrain solar abun-
dances and crucial stellar parameters, such as the sound
speed, depth of the convection zone, and surface abun-
dance ratios of elements. The solar abundance prob-
lem has been discussed by several researchers [295,
296]. The recent work [269, 294], based on revised
spectroscopic analysis and new three-dimensional time-
dependent hydrodynamical NLTE models, yields signif-
icantly lower abundances for the light volatile elements,
especially C, N, O and Ne. To wit: the oxygen abundance
is over 40% lower. The third column in Table 11.2 also
lists the new solar abundances [294]. There is consider-
able controversy over these new solar abundances, and it
is a very active area of contemporary research in stellar
astrophysics, with a crucial role concerning the precision
of currently available opacities [297].

The data needed for line opacity consist of oscillator
strengths for all bound–bound transitions in elements
in the stellar mixture used to model a particular
type of star. Generally, the H and He abundances in
normal main-sequence stars are primordial in nature,
and therefore largely invariant. It is often the small
but significant abundances of other elements (met-
als) that characterize the properties of stars and other

astrophysical objects. Moreover, the role of metals
and heavy elements can be crucial in the interior
of stars in driving stellar phenomena, such as pulsa-
tion in metal-rich bright stars, e.g., Cepheid variables.
The connection between opacity and pulsation becomes
evident on considering the sound speed cs in ionized
material;

cs = 9.79× 103
[
γ Z Te

μ

]1/2

m s−1. (11.57)

As evident from the kinetic relation 1
2 mv2 = 3

2 kT , the

sound speed increases with temperature as cs ∼ T 1/2
e .

That is quite physical, since particle velocities increase
with temperature and ‘sound’, or any material disturbance,
such as pulsation, is transmitted more readily through
the medium. But, as mentioned, the temperature distri-
bution is governed by the local opacity (see Fig. 11.3,
discussed next). Since the Cepheid pulsation period is pro-
portional to the diameter or the stellar radius, we have the
relation [219]

P ∝ R∗
cs

∝ R∗
T 1/2

∝ R∗
κ

n/2
, (11.58)

where R∗ is the stellar radius. Strictly speaking, the
κ ∼ T−n proportionality between the opacity and temper-
ature inherent in this equation is not quite accurate; the
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FIGURE 11.3 Rosseland mean opacities at
R = −3 for element groups (a) H and He,
(b) H to Ne, (c) H to Ca and (d) H to Ni.
The composition is as in Table 11.2,
normalized with X = 0.7 and Z = 0.2, with
addition of elements going from (a) to (d).
The different ‘bumps’ reflect
corresponding opacity enhancements. The
temperature may be related to the density
and radius according to Fig. 10.5. The
figure is drawn using on-line opacities from
the publicly accessible electronic database
OPserver at the Ohio Supercomputer
Center in Columbus Ohio ([300],
http://opacities.osc.edu).

general period–opacity relation is more complicated and
depends on the elemental composition (see Fig. 11.3).
The Cepheid pulsation periods are discussed further in
Chapter 14, in connection with the universal distance scale
and expansion. Other examples where detailed opacities
are important are radiatively driven winds, which depend
critically on the radiation absorbing metal content of out-
flowing material. Surface abundances of stars depend on
the interplay of hydrodynamic (convective) and radiative
forces on constituent elements in stellar atmospheres. For
these reasons and more it is necessary to carry out opacity
calculations for a variety of mixtures and at a sufficiently
fine grid of temperature–density points to enable accurate
interpolation in (T, Ne).

Figure 11.3 [36] shows the Rosseland mean opac-
ity κR as a function of temperature, which is related to
various depths r in a star. The several bumps are asso-
ciated with excitation or ionization of different atomic
species at those temperatures. The first (lowest κR) curve
(a) has three bumps corresponding to the ionization of
neutral H, He and He II, at log T ≈ 4, 4.6 and 5.2, respec-
tively. The temperatures associated with these bumps
mark the ionization zones at corresponding depths in
the star. Including elements up to Ne raises the opacity
towards higher temperatures, as shown in curve (b). In
addition, another bump appears at log T ≈ 6−6.5. This
because the second row elements from Li to Ne have two
electronic shells that ionize succesively, the L-shell (n =
2) and the K-shell (n = 1); the latter typically ionizes
at a million degrees or more depending on the atomic
number. Addition of further elements up to Ca raises
the overall opacity significantly as shown in curve (c);
in particular, we no longer have a dip in opacity seen

in curve (b) just below log T = 6. It is, however, the
topmost curve (d), due to the further inclusion of the
iron group elements up to Ni, that gives rise to a consid-
erable increase in opacity for all T > 104 K. The most
outstanding enhancement in opacity due to iron occurs
around log T = 5.2−5.6, referred to as the Z -bump. It
is mainly due to excitation and ionization of Fe ions
with a partially filled M-shell (n = 3): Fe IX–Fe XVI. We
also notice that the high-temperature K-shell bump due
to inner-shell processes is also signficantly increased and
moved to higher temperatures, log T ≈ 6.4–6.5, compared
with (b) [298].

Figure 11.4 shows a more detailed behaviour of
the OP Rosseland mean opacity for the Sun. The
standard mixture of elements given in Table 11.2 is
used, and computations carried out for several values
of log R at temperatures that range throughout the
Sun, from photospheric temperatures of a few thou-
sand degrees to core temperatures of tens of millions of
degrees.9

Whereas the frequency integrated Rosseland mean
opacities show only a few bumps in the T–ρ plane,
the monochromatic opacities can be extremely complex
even for single ions. Figure 11.5 shows the monochro-
matic opacity of Fe II at log T = 4.1 and log Ne= 16.0,
plotted as a function of the wavelength in the range
∼1000<λ< 100 000 Å, in atomic units a2

0. At that
temperature–density Fe II is the dominant ionization
species with ionization fraction Fe II/Fe = 0.91. The cal-
culations include 1242 bound levels of Fe II, with over

9 The OP values generally agree with those from OPAL to within a few

percent [298].
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34 007 lines (bb-transitions) [299]. Photoionization or bf
cross sections for all levels are also included, together with
scattering and ff contributions. The RMO (Eq. 11.15) is
κR(Fe II) = 63.7 cm2 g−1. Note that radiative absorp-
tion or the opacity cross section for Fe II ranges over
seven orders of magnitude in a2

0, the hydrogen atom cross
section. Moreover, the Fe II absorption occurs mostly in
the wavelength range from near-ultraviolet λ < 1000 Å to
near-infrared λ ∼ 30 000 Å.

Of crucial importance are the wiggles and bumps in
the RMOs and PMOs at certain temperatures correspond-
ing to specific radii in the star (see Fig. 10.5). These, in
turn, depend on the enormously complex structure of the
total monochromatic opacity from all ions prevalent in
those T –ρ regimes. If there is sufficient enhancement of
opacities in these regions then radiative forces can cause
acceleration of matter in the stellar interior, as discussed
next.

11.5 Radiative forces and levitation

The opacity of matter at any point inside the star is related
to the radiation force or pressure. Given the mass and
composition, the internal dynamics and structure of a star
is determined by the balance between gravitational and
radiative forces according to the equations of stellar struc-
ture (Section 11.2). The bulk radiative force on matter
(plasma) is due to photon–atom interactions, discussed
above, which taken together constitute the opacity. The
competition between gravity and radiation can manifest
itself in interesting ways.

We consider photon–atom interactions of individual
elements. If the gravitational force downward (towards the
centre of the star), on the atoms of a given element, dom-
inate over kinetic gas pressure and radiation pressure out-
ward, then gravitational settling occurs. Stratification of
elements tends to take place: heavier elements move down
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towards the centre, and separate from the ligher elements,
which should move up correspondingly. But we now need
to consider radiation pressure, in addition to normal gas
pressure that ensures hydrostatic equilibrium in the stel-
lar interior. When the differential perturbation due to an
additional radiative force or acceleration, combined with
the gas pressure, exceeds the gravitational force then the
element would be levitated, and rise or move up towards
the surface – the opposite of gravitational settling. At
first, one might assume that heavier elements would be
more subject to gravitational settling, rather than levita-
tion, in proportion to their atomic masses. However, this
is where atomic structure and detailed atomic physics
come into play, with interesting consequences. Whereas
the gravitational force is certainly proportional only to the
atomic mass of the element, the radiative force depends
on the total absorption of radiation, or its opacity. The
monochromatic opacity of an element varies greatly with
the ionization stage, which determines the number of elec-
trons interacting with the radiation field. The ionization
stage, in turn, depends on the local temperature and den-
sity. Therefore, the balance of radiative and gravitational
accelerations of an element fluctuates according to local
physical conditions at different points in the star. So a
heavier atomic system, with more active electrons than a
lighter one, can absorb sufficiently more radiation to be
relatively levitated.

It is simple to see how gravity and radiation would
compete differently in the interior of the star. For exam-
ple, the gravitational acceleration downward on iron, with
atomic mass A(Fe) = 55.85 amu, is little affected by its
ionization stage since the masses of electrons are irrele-
vant. But radiative absorption depends almost entirely on
the number of electrons in the ion, and the atomic tran-
sitions that the electrons can undergo. Radiative forces
on the highest ionization stages, H-like or He-like, are
vastly smaller than in lower ionization stages. However,
that does imply that the neutral atom would experience
the largest radiative force. The frequency distribution
of the radiation field depends on the particular type of
star. Therefore, certain ionization stages of an element
absorb stellar radiation more effectively than others. In
most stars, the ionization stages of Fe with L- and M-
shells open are the most efficient absorbers. It follows
that in the interior regions of the star, where those ioniza-
tion stages exist, the opacity, and consequently radiative
levitation, would be the greatest. Indeed, the Z -bump
in the Rosseland mean opacity at Teff ≈ 2 × 105 K
corresponds to the region of maximum radiative accelera-
tions (Figs 11.3 and 11.4), via Fe ions Fe IX–Fe XIX with
open M-shell electrons.

That radiative levitation affects the internal dynamics
and structure of the star can now be inferred: con-
vective motions driven by radiative forces can start
deep within a star, and thereby affect even the sur-
face abundances of elements. There are classes of stars,
e.g., mercury-manganese (HgMn) stars, where high-Z
elements beyond the Fe-peak elements are observed.
Large abundance anomalies are found in heavy ele-
ments up to Pt, Au, Hg, Tl and Bi [301, 302].
Heavy-particle transport in such stars occurs due to
radiative accelerations, which manifest themselves in
anomalous photospheric abundances relative to solar val-
ues. Perhaps the best-studied star showing the high-Z
element spikes is χ Lupi [303], observed in the ultraviolet
with the Goddard High Resolution Spectrograph (GHRS)
aboard the Hubble Space Telescope. High-resolution spec-
tral observations of high-Z elements are often in the ultra-
violet, since the lowest allowed transition (‘resonance’
line) corresponds to relatively high energies, in contrast
to low-Z elements, where the lowest transitions may be
in the optical or infrared. Another example of radiative
levitation is the observed overabundance of iron in the
atmospheres of hot, young white dwarfs despite their high
surface gravity. The spectra of young white dwarfs born
out of the hot central stars of PNe are predominantly in
the EUV, and were observed extensively by the Explorer
class satellite launched by NASA, the Extreme Ultravio-
let Explorer (EUVE) ([304], see also [290] and references
therein).

11.5.1 Atomic processes and momemtum
transfer

The four processes contributing to the opacity (bb, bf,
ff, sc) have somewhat different forms for transferring
radiative momentum to the free electrons and ions in
the plasma. We express the total cross section as for
opacities,

σν = σν(bb)+ σν(bf)+ σν(ff)+ σν(sc). (11.59)

These components are computed taking into accout the
following physical factors.

(i) In bound–bound (bb) line transitions

hν + Xi→X j , (11.60)

the entire momentum of the incident photon is
absorbed within the atom in transition i → j . There-
fore, the transfer cross section is related to the full
absorption oscillator strength distributed along a line
profile; we compute σν(bb) to obtain κν(bb).
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(ii) The photoionization bf process is, however, different.
After photoionization,

hν + X→X+ + e, (11.61)

the photon momentum is carried away by the ion,
and the ejected electron. Therefore, the cross section
for net radiative momentum transfer σmt

ν that accel-
erates the atom(ion) of an element is related to the
total bf cross section, minus the cross section for the
momentum transferred to the free electron σν(e),

σmt
ν = σν(bf)− σν(e). (11.62)

The σν(e) can be calculated in a variety of
approximations. A simple expression is obtained by
introducing a factor K , which represents the fraction
of the total bf cross section, and

σν(e) = σν(bf)K ×
(

1− ν0

ν

)
, (11.63)

with K = 1.6 and ν0 the ionization threshold.
The treatment in the OP work is more sophis-
ticated, but with similar values that include
the dependence on the principal quantum num-
ber and angular distribution of the photoionized
electrons.

(iii) As we have seen in the calculation of κ(ff), the free–
free process is more complicated, since it involves
the initial and final states of the (e + ion) system, as
well as the electron density[
X+(i)+ e

]+ hν→X+( j)+ e′. (11.64)

However, for momentum transfer the ff process
is not significant, and a hydrogenic approximation
is sufficient, assuming that nearly all of the photon
momentum is absorbed by the ion.

(iv) The photon–electron scattering component is related
to the electron density and the Thomson scattering
cross section

σν(sc) =
(ne

N

)
σTh, (11.65)

where σTh = (8πe4/3mec4) = 6.65 × 10−25 cm2,
and N is the total number of atoms per unit volume.

11.5.2 Radiative acceleration

The theory of radiative accelerations and numerical
calculations has been described, for example, in [305,
306, 307]. The OP data have been used in some of
these earlier references. More recently, M. J. Seaton ([308]
and references therein) recomputed radiative accelerations

using more extensive and consistent sets of OP data.
We first obtain an expression for radiative acceleration.
Energy flow is governed by the monochromatic radiative
flux

Fν = −
(

4π

3

)
1

ρκν

dBν
dT

dT

dr
, (11.66)

and the total radiative flux

F =
∫

Fνdν = −
(

4π

3

)
1

ρκR

dB

dT

dT

dr
, (11.67)

per unit area per unit time. The momentum associated
with radiation in frequency range dν is

1

c
Fνdν. (11.68)

The momentum actually transferred to the atom
depends on its absorption cross section. We denote
the radiation momentum transfer cross section (in units
of area) as σmt

ν (k), for an atom of element k. Then
the momentum transfer per atom per unit time by all
photons is

G(k) = 1

c

∫
ν
σmt
ν (k)Fνdν, (11.69)

which is the radiative force per atom. We can relate
this to the gravitational acceleration grad and atomic
mass Mk as

grad = G(k)

Mk
. (11.70)

This equation refers to levitation due to radiation
pressure, as a perturbation to hydrostatic equlibrium
between kinetic gas pressure and gravitational pres-
sure (Section 11.2). Keeping in mind the units of
the opacity and mass, κ (cm2 g−1) and M (g), we
define the opacity cross section σν = κMk , and simi-
larly the Rosseland cross section as σR= κR Mk . From
Eqs 11.64 and 11.65,

Fν =
(

dBν/dT

dB/dT

) FκR

κν
. (11.71)

The total radiative flux at depth r in a star with
temperature Teff and radius R∗ is

F(r) = πB(Teff)

(
R∗
r

)2
. (11.72)

Combining Eqs 11.68–11.70, we obtain the radiative
acceleration

grad =
(

1

c

)
M

M(k)
κRγ (k)F , (11.73)

where M is the mean atomic mass M = ∑
k Ak Mk ,

with normalized fractional abundances Ak , such that
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∑
k Ak = 1. An important new dimensionless quantity γ ,

for each element k in the above equation, is
defined as

γk =
∫
σmt
ν (k)

σν

(
dBν/dT

dB/dT

)
dν. (11.74)

The Rosseland cross section, analogous to the Rosse-
land opacity, Eq. 11.15, is

1

σR
=

∫
1

σν

(
dBν/dT

dB/dT

)
dν. (11.75)

Using the variable u = hν/kt used to define the
frequency–temperature mesh in opacity computations, we
obtain

dBν/dT

dB/dT
= 15hu4

4π4kT
e−u [1− e−u ]−2. (11.76)

It is the quantity γk that contains all the information
about the atomic physics of radiative acceleration in terms
of detailed atomic cross sections for momentum transfer
from a radiation flow.10 With M as the mean atomic mass,
κν (cm2 g−1) = σν(cm2)/M (g). Then the mass density
ρ = M × N , where N is the total number of atoms per
unit volume, and the opacity per unit length is ρκν = nσν
(cm−1).

The calculation of the gravitational acceleration grad,
for a given element k, may be made approximately
(e.g., [301, 307]). For instance, we may include only
the bound–bound lines and set σmt

k = σ bb
ν , and the

Rosseland mean for the background, σν = σR. These
approximations yield

γk ≈
∫

σ bb
ν (k)

σR + χ Akσ
bb
ν (k)

(
dBν/dT

dB/dT

)
dν, (11.77)

where we also introduce a factor χ , of importance in prac-
tical calculations, which multiplies the abundance Ak of
element k, keeping fixed the relative abundances of all
other elements. That enables the study of radiative forces
that accelerate (levitate) a given element inside the star.
For comparison, an approximate expression for grad in
stellar interiors at radius r is [301],

10 One may consider the quantity γk as the radiation strength, in analogy

with other dimensionless quantities, viz. the collision strength and the

oscillator strength.

grad(k) =
[ F(r)

4πr2c

]
κR

Ak

15

4π4

×
∫ ∞

0

κu(k)

κu(total)

u4eu

(eu − 1)2
du, (11.78)

in terms of the monochromatic and Rosseland mean
opacities. The detailed OP results for radiative accelera-
tions are electronically archived, as described in the next
section.

11.6 Opacities and accelerations
database

As we have seen, the opacity is the fundamental quan-
tity in stellar models. It determines radiation transport, in
addition to convection in the outer regions, and thereby
stellar structure and evolution. The opacities are also
interconnected with surface elemental abundances and
internal physical processes, such as the sound speed and
the depth of the convection zone (Fig. 10.4). Furthermore,
our understanding of chemical evolution and stellar ages
also depends on the underlying opacities. Thus, accurate
calculation of opacities throughout the stellar interiors is a
vital necessity in astrophysics.11 Stellar opacities need to
be computed at all temperatures and densities, which may
be transformed as a function of stellar radius, as shown
in Fig. 10.5. In addition, since different stars may have
quite different elemental compositions, opacities need to
be correspond to a variety of abundance mixtures, that
may deviate considerably from the solar abundances listed
in Table 11.2.

The OP team has established an interactive on-line
database called OPserver to compute such ‘customized
opacities’ [300].12 Rosseland and Planck means may be
computed for an arbitrary mixture of elements, and a
fine mesh in temperature and density. Monochromatic
opacities are tabulated as a function of u = hν/kT ,
at photon frequencies relevant to the Planck function
at a temperature T , for each element. These opacity
spectra or cross sectons can be immensely complicated,

11 With the advent of nuclear fusion devices, such as the Z -pinch

machines and laser-induced inertial confinement facilities, stellar

interior conditions may be recreated in the laboratory (e.g.,

[309, 310]). Monochromatic opacities can now be measured in LTE, at

temperatures and densities close to, or deeper than, the solar

convection zone. Benchmarking laboratory and astrophysical opacities

to high precision is of great interest in the emerging field of

high-energy density (HED) physics, as well as for the solution of

outstanding problems in astronomy, such as the anomalous solar

abundances [294].
12 The OPserver website is: http://opacities.osc.edu.
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FIGURE 11.6 Iron monochromatic
opacity and its complex structure at
high resolution (Fig. 10 from [36], at
the Z-bump temperature and density
(Fig. 11.3). The two lower panels
show progressively higher resolution.

since they incorporate the contributions to absorption
by all bound–bound and bound–free transitions of all
ionization states of an element. Figure 11.6 shows the

opacity cross section σ
(

a2
0

)
for iron, the most com-

plex of all species with high abundance. The tem-
perature is log(Te) = 5.3 (T = 2 × 105 K), and
the electron density is log(Ne) = 18.0; these corre-
spond to log(R) = −3.604 [36], close to values at
the Z -bump shown in Figs 11.3 and 11.4. The top
panel shows the full opacity spectrum, whereas the
lower two panels are enlargements with successively
finer resolution, from 10 000 to a million points on the
u-mesh.

The interactive computations in OPserver depend on
the parameters[
κR,

∂κR

∂χ j
, γ,

∂γ

∂χ j

]
(T, Ne, χ j ) (11.79)

where χ j is known as the abundance multiplier for ele-
ment j . The output consists of

[log κR, log γ, log grad] (χ j ), (11.80)

at each point r in the user-specified stellar depth profile
(T, ρ, r/R∗). The variable χ j enables stellar models to
experiment with element abundances, which may depend
on stellar opacity due to radiative accelarations.



12 Gaseous nebulae and H II regions

Ionized hydrogen or H II regions and gaseous nebulae
are generally low-density objects that appear as extended
and diffuse clouds. Typical electron temperatures are of
the order of 104 K, or ∼1 eV, and densities are between
102 and 106 cm−3. But ionizing sources of H II regions
in general are quite diverse. Among the most common
variety are those found in giant molecular clouds pho-
toionized by newly formed hot stars with sufficient UV
flux to ionize hydrogen and several other elements to low
ionization states. Similar H II regions are commonplace
in astronomy, as part of otherwise unrelated objects, such
as active galactic nuclei (Chapter 13) and supernova rem-
nants. Such regions are also easily observable, since they
are largely optically thin. Furthermore, a number of nebu-
lar ions are commonly observed from a variety of gaseous
objects. In fact, in Chapter 8 we had developed the spec-
tral diagnostics of optical emission lines, as observed from
the Crab nebula in Fig. 8.3. That nebula is the remnant
of a supernova explosion, in the constellation of Taurus,
witnessed in AD 1054 by Arab and Chinese astronomers.
The central object is a fast spinning neutron star – pulsar –
energizing the surrounding nebula. Nebular spectroscopy
therefore forms the basis of most spectral analysis in
astrophysics.

We describe the essentials of nebular astrophysics
with emphasis on spectroscopic analysis, and address
the pervasive problem of atomic data sources of vary-
ing accuracy. For more advanced studies, a knowledge of
specialized photoionization and radiative transfer models
is necessary (e.g., [256, 311]). Moreover, observational
aspects of line measurements and abundance determina-
tion in nebulae require special attention, particularly with
respect to their interpretation (e.g., [312, 313].

12.1 Diffuse and planetary nebulae

Two kinds of nebula are ionized by stars. The first kind
are the diffuse nebulae created in star forming regions with

young O and B stars. The most prominent example is the
great nebula (NGC 1976 or M42)1 in the constellation
Orion, shown in Fig. 12.1. It is the brightest H II region
in the sky, at a relatively close distance of 389 pc, or
1279 light years. Its central region consists of four very
young stars in a trapezium formation about 300 000 years
old. The dominant ionizing flux in Orion is from a single
O star in the Trapezium, 1θ Orionis, with surface temper-
ature somewhat less than 40 000 K, and which provides
over 90% of the UV ionizing flux.

The other kind of stellar nebulae are called the plan-
etary nebulae (abbreviated as PNe, and no relation to
planets).2 The PNe are the ejected shells of circumstel-
lar material from old low-mass AGB stars (discussed in
Chapter 10) that are in late stages of evolution. Thus the
PNe are the transitional phase from such AGB stars to
white dwarfs (see the HR diagram, Fig. 10.2), undergo-
ing extended radiative cooling. The central stars of PNe
are hot and bright stellar cores with surface temperatures
much higher than main sequence O stars, from 50 000 to
over 105 K. Their cores usually contain mostly carbon,
produced in the helium burning phase. The ejected enve-
lope of ionized material is driven by radiation pressure
across the cavity between the radiatively cooling central
star and the expanding nebular gas.

12.2 Physical model and atomic species

The most well-known, and one of the most well-studied
astrophysical objects, is the Orion nebula – the prototyp-
ical H II region and diffuse nebula shown in Fig. 12.1.
The Orion nebula in its entirety is a rather complex

1 The identifications refer to the two most common catalogues of

astronomical objects, the New General Catolog (NGC) and Messier

(M) Catalog.
2 The name ‘planetary’ associated with the PNe historically arose from

this apparent disc-like configuration, viewed at low resolution,

surrounding the central star.
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FIGURE 12.1 HST image of the Orion nebula, a diffuse ionized
H II region created by photoionization of a giant molecular
cloud by hot, young stars.

H II region

Trapezium
stars

Earth
(450 pc)

Molecular
cloud

Ionization front

FIGURE 12.2 Schematic diagram of the Orion nebula. A
trapezium of four hot young stars, particularly 1θ Orionis
(represented by the large black dot) ionizes a giant molecular
cloud on the left, while forming a blister-type nebula as viewed
from the Earth. The ionization front is seen as a ‘bar’ region
(Fig. 12.1) expanding the ionized H II region into the molecular
cloud.

multi-structured object, with a variety of interacting phys-
ical processes. We confine our discussion to atomic and
plasma physics with reference to the simplified sketch in
Fig. 12.2. The dynamical aspect of the nebula constitutes
an ionization front driven by radiation from the Trapezium
stars (mainly 1θ Orionis), into the giant Orion molecular
cloud. The Orion nebula itself appears as a blister (burnt

TABLE 12.1 Ionization potentials of nebular atomic
species (eV).

Element I II III IV

H 13.6 − − −
He 24.59 54.42 − −
C 11.26 24.38 47.89 64.49
N 14.53 29.60 47.45 77.47
O 13.62 35.12 54.93 77.41
Si 8.15 16.35 33.49 45.14
S 10.36 23.33 34.83 47.30
Cr 6.77 16.50 30.96 49.10
Fe 7.90 16.16 30.65 54.80
Zn 9.39 17.96 39.72 59.40

by the hot stars) on the surface of the molecular cloud,
which is far bigger in size than the nebula. The ionization
front is observed as a bright bar-shaped region at the inter-
face between the nebula and the molecular cloud. As the
densities build up close to the ionization front, towards
the cold side of the nebula, the optical depth rapidly
increases. There is a photodissociation region (PDR),
between molecular H and ionized H, where molecular H2
first dissociates into atomic H and then ionizes, forming
the H II region. The ionized region is further sub-divided
into a partially ionized zone (PIZ) and a fully ionized zone
(FIZ). Atomic species are found in either zone, depending
on their ionization potentials relative to that of H I (see
Table 12.1, also discussed later).3

Initially, and for convenience, one may invoke an ide-
alized model known as the Strömgren sphere. Its radius
depends on the spectral type of the ionizing star, and hence
the intensity and frequency distribution of the stellar radi-
ation field. The radius of the idealized Strömgren sphere
may be derived from simple analytic arguments regarding
photoionization of H I [228, 311]. The Strömgren model
divides the nebula into a fully ionized H II region and a
neutral H I zone, separated by a very thin boundary con-
sisting of the ionization front. In reality, however, diffuse
nebulae are not spherically symmetric, and contain ele-
ments other than H, most notably He. Nevertheless, the
Strömgren radius vs. the spectral type of the ionizing star
provide a useful conceptual picture. This is particularly

3 The ionization energy of the ground state is referred to as the first

ionization potential, sometimes abbreviated as FIP. The so-called ‘FIP

effect’ refers to relative ionization energies of different atomic species.

Lighter atoms generally have a higher FIP than heavier ones. The FIP

differential between the second- and third-row elements has important

consequences for the distributions of ionization stages and elemental

abundances in different parts of ionized regions.
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relevant to atomic species, such as Fe II, that are spectrally
quite prominent but are largely confined to a relatively
thin region near the FIZ / PIZ boundary, as discussed
later.

Generally, in addition to stellar nebulae, H II regions
are also produced in other environments dominated by
strong ionizing sources. For example, supernova remnants
expand and evolve into gaseous nebulae as they cool down
to nebular temperatures and densities. Nebular diagnostics
developed herein are basically applicable to those envi-
ronments, albeit the kinematics and elemental abundances
may be quite different. At typical temperatures and den-
sities, H II regions are virtually transparent to emergent
optical radiation, i.e., optically thin. Cool and tenous as
they are, they are still copious sources of well-known
spectral lines, forbidden and allowed, from singly and
doubly ionized species of many astrophysically abundant
elements. But nebular plasmas exist in highly energetic
environments as well, such as the luminous blue variable
Eta Carinae that we discussed in Chapter 10.

Nebulae are excellent laboratories for the observation
and development of spectral diagnostics. Stellar radiation
fields from hot stars, basically described by a black-body
Planck function (viz. Chapter 10) contain sufficient UV
flux up to about 54 eV, the ionization potential of He II.
Some of the prominent nebular ionic species are He II,
C II, C III, O I, O II, O III, S II, S III, Fe II, Fe III and oth-
ers, with strong emission lines in the infrared, Optical
and ultraviolet. In Chapter 8 we had discussed emission
line diagnostics of the forbidden lines of [O II], [S II] and
[O III], shown in Fig. 8.3. The dominant physical pro-
cesses in H II regions are photoionization and (to a much
lesser degree) collisional ionization, electron–ion exci-
tation and recombination, and radiative excitations and
decays. We first discuss ionization and recombination pro-
cesses that determine fractional populations in different
ionization states of a given element, and then collisional
and radiative processes that determine the emissivities or
intensities of emission lines, depending on level popula-
tions of a given ion. Such a decoupling of the ionization
state from the excitation of an ion, is generally valid
since the ionization and recombination rates are much
slower than excitation and decay rates. Therefore, nebular
modelling codes usually compute ionization fractions and
emissivities independently, without a full radiative trans-
fer solution in NLTE (see [254]). The next section outlines
the ionization structure of abundant elements. The ion-
ization models often refer to the well-known prototype,
the Orion nebula. Having already described spectral for-
mation from light atomic species prominent in nebulae,
such as O II, O II, S II, etc. (Ch. 8), we focus on the

rather complex example of Fe ions in the following dis-
cussion. Iron is prevalent in low ionization stages in
nebulae. A description of emission mechanisms of iron
ions requires much more extensive atomic models than
those of lighter elements. The concluding section also
refers to a comprehensive compilation of atomic param-
eters needed to construct collisional–radiative models for
the nebular emission lines given in Appendix E.

12.3 Ionization structure

Gaseous nebulae are usually photoionized by stellar radi-
ation fields. Although the underlying stellar radiation is
basically black body, the radiation field Jν generally has
considerable energy variation superimposed on the Planck
function Bν , owing to line blanketing. For example, the
emergent flux of the Sun in Fig. 10.1 shows a deficit in
the ultraviolet, owing to absorption in a multitude of lines
of abundant elements. Such a ‘blanket’ of UV absorp-
tion lines in the solar spectrum is evident in the simulated
spectrum in Fig. 10.8 (top panel). The ionizing stellar
continuum is therefore significantly attenuated by ioniza-
tion and excitation edges, and the features of dominant
elements in low ionization stages. Iron ions are prime con-
tributors to the UV opacity that causes a reduction in the
stellar flux. Photoionization modelling codes attempt to
employ a realistic Jν (in general Jν �= Bν ) particular to
the type of star(s) ionizing the nebula, in order to con-
struct resultant ionization structures. The two quantities
that characterize the incident photon flux are the fre-
quency distribution and the intensity of the source. These
depend on the temperature of the ionizing star, the geo-
metrical 1/r2 dilution, and attenuation by atomic species
in the intervening nebular material. The ionizing field of
a hot main-sequence star at 30 000 K in a diffuse nebula
produces up to three-times ionized stages (I–IV) of abun-
dant elements (see Table 12.1). On the other hand, the
central stars in planetary nebulae are at higher tempera-
tures around 100 000 K, and are capable of producing up
to IV–VI ionization stages of elements.

Given a radiation source, the next step is to construct
the ionization structure, as a function of the distance
r from the source, in terms of the run of temperature
and density (pressure). This involves modelling the neb-
ula using pressure equilibrium conditions that would yield
these parameters at each r , and hence the ionization frac-
tions of an element. Since H I is the dominant atomic
species, we write first the ionization balance between pho-
toionization of H and (e + ion) recombination as described
in Chapter 7,
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FIGURE 12.3 The ionizing flux vs. photon energy
(in Rydbergs): (a) close to the illuminated face and
(b) after attenuation by material roughly halfway into
the cloud. Ionization energies of Fe I–Fe III are
indicated, relative to the sharp drops in flux
corresponding to the H I, He I ionization edges at
1 Ry and 1.9 Ry, respectively. One can therefore
ascertain the spatial zones where different ionic
species are prevalent in the nebula.

∫ ∞
0

4π Jν
hν

N (H0)σν(H
0) = nenpα(H

0, Te), (12.1)

where Jν is the monchromatic flux from the radiation
field appropriate to the source. For another species X
we replace H0 with X and atomic parameters corre-
spondingly. Figure 12.3 shows a sample of flux from
a hot star as a function of energy ionizing a cloud;
thresholds for ionization of Fe I–Fe III are also marked.
Figure 12.3(a) is the flux near the illuminated face of the
cloud, and Fig. 12.3(b) is the flux deeper into the cloud,
with the edges corresponding to ionization of Fe ions.
Figure 12.3(a) is representative of the black-body spec-
trum from the star before absorption or ionization of the
cloud. The large drops in flux at 1 Ry and 1.9 Ry in
Fig. 12.3(b) correspond to the ionization thresholds of H
and He, respectively.

Before proceeding further, let us examine the ioniza-
tion potentials of some common nebular elements given
in Table 12.1. The ionization energies and the ambient
temperature in the medium determine which ionization
states are likely to exist. Therefrom one can infer the spa-
tial coincidence of different ionic species. For example,

Fe II has an ionization energy of 16.16 eV, only some-
what higher than H I. Therefore, we expect Fe II–H I to be
spatially co-existent in the nebula, or in the PIZ together
with significant amounts of neutral hydrogen. On the
other hand, and at energetically higher ionization poten-
tials (Table 12.1), the Fe III–He I zones coincide in the
FIZ. Fe III ionizes further into Fe IV at 30.65 eV. But the
high-energy stellar flux diminishes rapidly to avoid sig-
nificant ionization of Fe beyond Fe IV, whose ionization
energy is over 54 eV, close to that of He II (Table 12.1).
In fact, using Wien’s law (Chapter 1), the wavelength cor-
responding to He I ionization edge is 504 Å, which would
correspond to the peak wavelength of a black-body distri-
bution of 57 500 K – much hotter than even the O stars
(see the HR diagram, Fig. 10.2).

Photoionization rates are calculated by integrating
the cross sections over the ionizing flux at each point
in the nebula. With reference to the atomic physics of
photoionization and recombination (Chapters 6 and 7),
it is important to include autoionizing resonances that
can significantly alter (generally enhance) the cross sec-
tions in certain frequency (energy) ranges. Electron–ion
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FIGURE 12.4 Ionization structure of Fe ions for
conditions in the Orion nebula [98]. The solid lines
are results with new photoionization cross sections
and unified electron–ion recombination rate
coefficients computed using the R-matrix method
(Chapter 3); the dotted lines use earlier data.

recombination can also be treated self-consistently using
the same (e + ion) wavefunctions as photoionization, to
yield total unified (e + ion) recombination rate coeffi-
cients, including non-resonant radiative recombination,
and resonant dielectronic recombination (Chapter 7).
Figure 12.4 shows the ionization fractions of Fe ions
obtained using the R-matrix photoionization and unified
(e + ion) recombination cross sections (solid lines), and
compared with earlier models. The models shown assume
constant gas-pressure clouds as function of distance (cm)
from the illuminated face up to the PIZ. The distance
shown in Fig. 12.4 is less than 0.1 pc (1 pc = 3×1018 cm).
For comparison, the idealized Strömgren sphere for an O7
star is about 70 pc [228, 311].

Several features of ionic distribution in the Orion neb-
ula are apparent from Fig. 12.4. The dominant ionization
stage in the fully ionized zone is Fe IV. As mentioned, this
is related to the fact that the ionization potential of Fe IV

is 54.8 eV, slightly higher than that of He II at 54.4 eV;
helium absorbs much of the high energy flux. There is rel-
atively little ionizing flux beyond these energies even from
very hot stars, such as θ1 Ori C at ∼40 000 K, to further
ionize Fe IV to higher ionization stages.

Photoionization models of H II regions require pho-
toionization cross sections and (e + ion) recombination
rate coefficients as in (Eq. 7.60),∑

i

∫ ∞
ν0

4π Jν
hν

n(X z)σPI(Xi )(ν,X
z)dν

=
∑

j

nen(Xz+1)αR

(
Xz

j ; T
)
. (12.2)

As we noted in Chapters 6 and 7 on photoionization
and (e + ion) recombination, the summation inconsis-
tency in the photoionization balance equation Eq. 12.2,
can largely be redressed by including photoionization on

the left-hand side not only from the ground state but also
excited levels with significant populations, such as the
low-lying metastable levels. The right-hand side involves
recombination into all levels of the recombining ion.
Although for very high-n levels hydrogenic approxima-
tion may be used to achieve convergence to n →∞, it
is nonetheless necessary to obtain level-specific recombi-
nation rate coefficients for many excited levels that are
quite non-hydrogenic for complex ions (Chapter 7). The
modelling of ionization structure depends on several other
assumptions, apart from considerations of atomic physics.
These relate to radial density dependence (constant, expo-
nential or power law), temperature profile, or thermal or
radiative pressure (constant or varying). Thus, the ionic
ratios, say Fe I/Fe II/Fe III, can differ by up to several
factors (c.f. [314, 315]).

12.4 Spectral diagnostics

We refer back to the discussion in Chapter 8 on optical
emission lines, as shown in Fig. 8.3 from a typical neb-
ular source, the Crab nebula. Emission line diagnostics
of nebular ions yield not only temperatures and densities,
but also kinematical information and elemental abun-
dances. Recapitulating the discussion in Chapter 8, the
basic physical mechanisms for emission lines in optically
thin environments may be divided into two main cate-
gories: (i) (e + ion) recombination and cascades, and (ii)
collisional excitation and radiative decay. For instance, the
first category is responsible for the formation of H I, He I

and He II recombination lines seen in emission spectra.
Collisional excitation is not significant, since the excited
energy levels lie too high to be excited by∼1 eV electrons
at ambient temperatures of∼104 K. The n = 2 levels lie at
about 10 eV for H I, and about 24 eV for He I. On the other
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hand, collisional excitation is primarily responsible for the
forbidden spectral lines of low-ionization species, such as
[O II], [O III] and [S II] (see Fig. 8.3). Since the electron
temperature is low, only the low-lying levels within the
ground configuration are collisionally excited. These lev-
els decay via forbidden transitions. In addition, there are
recombination lines of ions, such as (e + O III)→ O II and
(e + Ne III) → Ne II. In these instances, they, are formed
by recombination cascades from doubly ionized to singly
ionized species, i.e., recombinations into highly excited
levels and then cascading via strong dipole allowed radia-
tive decays into lower levels. Nebular plasma diagnostics
involve either allowed recombination lines, or collision-
ally excited forbidden lines, both observed in emission
spectra.4

12.4.1 Hydrogen recombination lines

The most common examples of recombination lines seen
in emission spectra are the spectral series of hydrogen:
Lyman, Balmer, etc. Electron–proton recombination in
ionized plasmas entails

e+ p→hν + H∗(n�), (12.3)

followed by radiative decays or cascades (Fig. 2.1),

n = 2, 3, 4, ...→ 1 Lyα ,Lyβ , Lyγ, ...

: Lyman series, (12.4)

n = 3, 4, 5, ...→ 2 Hα ,Hβ , Hγ, ...

: Balmer series. (12.5)

Each series of recombination lines converges onto a
recombination edge, corresponding to the onset of a con-
tinuum at n→∞. The Lyman series goes from Lyα at
1215 Å up to the Lyman recombination (or ionization)
edge at 912 Å, and the beginning of the Lyman contin-
uum λ < 912 Å. The optical recombination lines are in
the Balmer series and span the wavelength range from
Hα at 6563 Å to the Balmer recombination edge at 3646
Å, leading into the Balmer continuum λ < 3646 Å. The
electron temperature in plasmas is too low for any of
the H-lines to be excited by electron impact, since H
would be largely ionized before excitation, and therefore
recombination dominates line formation.

4 There are several widely used codes for nebular diagnostics in

photoionization equilibrium (Chapter 7). Among these are: MAPPING

[256], (CLOUDY (http://www.nublado.org), XSTAR

(http://heasarc.gsfc.nasa.gov/docs/software/xstar/xstar.html), ION

[345] and TITAN [254].

12.4.1.1 Case A and Case B recombination
The basic ionization structure of astrophysical plasmas
is determined by photoionization and recombination of
the dominant constituent, hydrogen. The schematics of
recombination outlined above show that we need to con-
sider level-specific recombinations into all hydrogenic
levels. The hydrogen recombination rate coefficients can
be obtained simply, since the cross sections for the
inverse process of photoionization are known analytically
(Chapter 6). The sum over recombination into all levels of
a hydrogen orbital n� is

αA(H, T ) =
∞∑

n�;n=1

αn�(T ). (12.6)

All H-levels are doublets with multiplicity 2S+1 = 2.
We implicitly group together levels n�(SL J ), i.e.,

αn�;SL J = α(n, �;2 L J ), (12.7)

and � ≡ L and J = L ± 1 2. Recombinations
into the excited levels rapidly cascade down to the
ground state 1s(2S1 2) via dipole allowed transitions, viz.
nf → n′d → n′p → n′s.5 The total recombination rate
coefficent into all levels Eq. 12.6 is designated as αA,
and refers to what is known as Case A recombination.
The sum in Eq. 12.6 includes the ground state of H I. But
recombination directly into the ground level produces a
photon with sufficient energy, E ≥ 1 Ry or λ ≤ 912 Å, to
ionize another H atom. Now if the environment is basi-
cally optically thin, and the likelihood of encountering
another H atom small, then αA would correspond to the
total recombination rate. But on the other hand, assum-
ing the ionized region to be surrounded by a sufficiently
dense neutral medium, recombination into the H I ground
state would not affect the net ionization balance, since the
emitted photon will be immediately absorbed elsewhere in
the surroundings. In that case, the net recombination rate
coefficient is obtained simply by omitting recombination
into the ground level, or

αB(H, T ) =
∞∑

n�; n=2

αn�(T ), (12.8)

referred to as the Case B recombination rate coefficient.
Hydrogen recombination lines in Case A encounter low

5 Note that in the reverse case, the oscillator strengths for upward

radiative transitions nl→n′(l+ 1) are much higher than for

nl→n′(l− 1), though both are allowed by dipole selection rules for

angular mometum l (readers may wish to verify it by examining tables

of f , A-values, and line strengths S). Some recombination cascades

end up in the 2s2S1 2
level, but those are a small fraction of the ones

decaying to the ground state (compare the A-values).
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optical depths, at low densities when the photon emitted
during recombination escapes the plasma. Case B reflects
high optical depths in H-lines at high densities when
those photons are trapped in the source. The number of
H-recombination line photons emitted in Case A is equal
to the total recombination rate nenpαA(Te), and in Case
B it is nenpαB(Te), both in cm3 s−1.

The calculation of individual recombination line inten-
sities due to particular transitions between two levels
requires a much more detailed consideration of all path-
ways in terms of level-specific recombination rate coef-
ficients, and the A-transition rates that determine down-
ward cascade coefficients for (to and from) a given level.
Recombination line intensities also depend on the intrin-
sic atomic physics via the �-distribution within each
n-complex. The actual n� level population may devi-
ate significantly from Boltzmann distribution at densities
sufficiently high to ‘mix’ different �-levels. That would
occur at a critical density, particular to each level, where
the collisional rate begins to match that due to sponta-
neous radiative decay; the critical density is obviously
different for each level. Whereas the collisional mixing
effect is small at nebular densities, ne ≤ 106 cm−3,
it is discernible in computations of recombination line
intensities including collisional rates (e.g., [311]). For
simplicity, we omit explicit consideration of collisional
�-redistribution in describing the nature of cascade matri-
ces (Chapter 8).

In the following discussion, we again refer to all levels
of a given orbital n�(SL J ), and implicitly assume that the
transitions n�((SL J )→n′�′(S′L ′ J ′) follow the appropri-
ate selection rules. Let a given H-level be designated by n
�, and a line transition as n�→n′�′(n′ < n). The probabil-
ity or the branching ratio for photon emission in the line
is then A(n� − n′�′)/∑n′′�′′ A(n� − n′′�′′) for n′′ < n.
The �-values range from 0 to n–1, and the transitions are
dominated by fast dipole transitions with selection rules

S = 0,
� = 0,±1 (Section 4.13). The level population
N (n �) is only partially determined by direct recombi-
nation into the level n �, i.e., by αR(n�) (the subscript
R refers to recombination, under Case A or Case B). In
fact the population depends considerably on recombina-
tions into all upper levels, and cascades therefrom, into
(n�(SL J ). Hence, we need to compute cascade coeffi-
cients involving a large number of transitions in terms
of A-values and successive branching ratios.6 Line emis-
sivities and other parameters for H-recombination lines
have been extensively tabulated under both Case A and

6 A tabulation of H-recombination rate coefficients is given in the

database NORAD: www.astronomy.ohio-state.edu/∼nahar.

Case B conditions [217, 256] (He I recombination rate
coefficients are discussed in [316]).

There are also physical conditions intermediate
between the optically thin and optically thick approx-
imations, viz. Case A and Case B, which respectively
correspond to no absorption in Lyman lines or full absorp-
tion. The intermediate cases are referred to as Case C,
which pertains to sources with a background continuum
that also has significant intensity in Lyman lines. Then
complete absorption in Lyman lines may not occur, and
they may not be entirely optically thick as in Case B.
In fact, Lyman lines as part of the continuum may also
be instrumental in exciting other ions, such as Fe II via
fluorescent excitation, discussed in Chapter 13.

12.4.1.2 Cascade coefficients and emissivities
For any given level i in atom X, the population Ni due to
recombinations from ion X+ is

Ni
∑
m<i

Aim = nen(X+)
[
αR(i)+

∑
j>i

αR( j)C ji

]
,

(12.9)

where the last term on the right represents cascades from
all higher levels j , and αR is the level-specific recombi-
nation rate coefficient. The cascade coefficients C ji are

C ji =
A ji∑

i ′< j A ji ′
+

∑
k>i

C jk
Aki∑

i ′<k Aki ′
. (12.10)

The first term on the right is the branching ratio for
direct decay from j → i , and the second one repre-
sents indirect decays via cascade routes j → k → i . A
cascade matrix Ci j can thus be constructed with the cas-
cade coefficients, given all the A-values (see Chapter 4.)
Computations of level populations N j also require level-
specific rate coefficients αR( j), whose computations are
described in Chapter 7. Isotropic emissivity in a line i→f
is written as usual7

jif = Ni Aif
hνif

4π
. (12.11)

Provided an appropriately complete set of A-values
and level-specific αR(i, Te) is known, the calculation of
cascade matrices is straightforward. One property of cas-
cade coefficients is helpful in this regard. It is known
that the C

(
n′S′i L ′i J ′i→nSi Li Ji

)
for cascades from upper

levels along a given Rydberg series characterized by
n′S′i L ′i J ′i , to a particular lower level nSi Li Ji (n′ > n),

7 The ‘standard’ notation for recombination line emissivity is often jif,

whereas for collisionally excited emission lines it is εif, as in Chapter 8.
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quickly converge to a slowly varying behaviour with n′.
For example, in recombination cascades from H-like ions
to the n = 2 levels of He-like ions (Chapter 8) the cas-
cade coefficients converge to a relatively constant value
for n′ ≥ 5 (a more graphical discussion is given in [233]).

One can define an effective recombination coefficient
for a line αeff

if in terms of the emissivity jif, which must
equal

jif = (npne)α
eff
if

hνif

4π
, (12.12)

and therefore

αeff(if) = 4π jif
hνif(npne)

. (12.13)

We can now relate the luminosity emitted in a line by
the nebula to the total luminosity of the ionizing star. In
other words, the intensity in a given line – the number
of photons times the photon energy emitted per second
per unit volume – is due to emissions from within the
ionized zone in photoionization equilibrium, between ion-
izations by the stellar radiation field and recombinations
in the nebula. Since the nebula has a finite volume with
a thin boundary (recall the Strömgren sphere), and owing
to continuous ionization of a cold molecular cloud, it is
optically thick to the ionizing radiation. Therefore, Case B
recombination is appropriate; all Lyman series and Lyman
continuum (hν > 1Ry ≡ νH) photons are absorbed. Then∫
(npne)αB(H)dV =

∫ ∞
νH

(Lν/hν) dν. (12.14)

The stellar luminosity per frequency is denoted as Lν ,
and the integration is over the whole nebular volume. Fur-
ther denoting the luminosity in a particular line as L(νif),
it is straightforward to approximately relate this ratio to
the ratio of recombination rate coefficients

L(νif)/hνif∫∞
νH

Lν/hνdν
=

∫
npneα

eff(νif)dV∫
npneαB(H)dV

≈ αeff(νif)

αB(H)
.

(12.15)

This approximation implies constant density profiles
of electrons and protons in the nebula. Extending the
discussion from an individual recombination line flux
emitted by the nebula to the emitted flux due to recom-
binations in a given wavelength range, another useful
relation may be derived to yield the effective temperature
T∗ of the ionizing star. Assuming a stellar radiation field
to be described by the Planck function, we can write the
ratio in a specified or observed energy range (ν1, ν2) as

L(ν1 − ν2)

B(ν1 − ν2; T∗)
=

∫∞
νH
(Lν/hν) dν∫∞

νH
(Bν(T∗)/hν) dν

. (12.16)

The observed luminosities in, say, the UV band, compared
with the total stellar luminsity, then yield the effective
temperature of the star, called the Zanstra temperature,
following the method proposed by Zanstra [255]. For
example, the central temperature of PNe may be esti-
mated by comparing the Hα line intensity with the back-
ground continuum underlying Hα. This is because the Hα
strength is related to the UV ionizing flux of the central
star, since photoionization of H I atoms results in recom-
bination cascades, leading to photon emission in the Hα
line. Thus the Zanstra method is a measure of the UV flux
to the ‘red’ continuum, corresponding to the black-body
temperature of the central star.

12.4.2 Departures from LTE

Level populations in LTE can be obtained analytically by
combining the Saha equation for ionization fractions and
the Boltzmann equation for level populations. For any two
ionization stages of an element, say neutral X and ion X+,
the relative densities8

nen(X+)
n(X)

=
(

2πmkT

h2

)3/2
e−EI /kTe , (12.17)

where EI is the ionization energy of neutral X into the
ground state of the ion X+1 . Now consider the level popu-
lation of an excited state N (Xi ), given by the Boltzmann
equation

N (Xi )

N (X1)
= gi

g1
e−E1i /kT . (12.18)

From the two equations above we have the excited
level populations of Xi in LTE as

N (Xi )= gi

gX+1
n(X+)ne

(
h2

2πmkT

)3/2

eEi /kT , (12.19)

where Ei is the ionization energy of level i . For hydrogen,
the LTE level populations are

Nn� = g(n�;2 L J )

2
(npne)

(
h2

2πmkT

)3/2

eEn/kT ,

(12.20)

where En = 1/n2 Rydbergs, and the statistical weight of
the ground state g(2S1/2) = 2. However, at low densities

8 Here we remind ourselves of the earlier discussion in Chapter 11 on the

Boltzmann and Saha equations. For simplicity, we approximate the

atomic partition function U over all levels with the ground state

statistical weight. Note also the convention we have generally followed

through most of the text of denoting level populations of an ion as N ,

and ionic densities as n, with appropriate subscripts (with the exception

of Chapter 11 on opacity).



12.4 Spectral diagnostics 265

in nebulae it is unlikely that populations would remain
in LTE for highly excited levels with large decay rates,
i.e., given by the Saha–Boltzmann equation (Eqs 12.19
and 12.20). Collisional or recombination rates at nebu-
lar densities (or even coronal, ne ∼ 109−10 cm−3) are
insufficient to maintain statistically populated excited lev-
els. For instance, the level-specific rate coefficient for an
n = 3 level of helium α(33Po) ≈ 2 × 10−14 at 104 K;
with ne < 106 cm−3 and np ≈ ne the recombina-
tion rate is about ∼10−2 cm−3 s−1. On the other hand,
the A-values for dipole transitions are >108 s−1, and
depopulation by the large radiative decay rate is orders
of magnitude greater than population via recombination.
In contrast, stellar interiors are generally in LTE (though
not stellar atmospheres [244]), owing to high densities
ne > 1015 cm−3.

Progressive deviation from LTE is taken into account
by introducing departure coefficients bi for each level,
multiplying the LTE level population given by the Saha–
Boltzmann equation (by definition bi = 1 in LTE). For
hydrogen, we have

Nn� = b(n�;2 L J )
g(n�;2 L J )

2
(npne)(

h2

2πmkT

)3/2

eEn/kT . (12.21)

Assuming (e + p) recombination and radiative cas-
cades to be the only processes forming H-recombination
lines, the statistical equilibrium equations may be writ-
ten as (we omit the actual fine structure level designations
SL J as before, and refer only to n and �, although the
equations are strictly valid for each level),

nenpαR(n�)+
∑
n′�′

Nn′�′;n′>n A(n′�′→n�)

= Nn�
∑
n′′�′′

A(n�→n′′�′′). (12.22)

Exercise 12.1 Derive the expression for hydrogenic
departure coefficients from the two equations above, also
including collisional excitation in addition to recombina-
tion.

12.4.3 Collisional excitation
and photoionization rates

Before proceeding to a detailed consideration of nebular
emission lines for complex atomic species, it is instruc-
tive to compare the magnitudes of the collisional rate with
the photoionization rate. The first point is to ascertain the
relative efficacy of the electron impact excitation process

that is responsible for emission lines of a given ion, and
photoionization of that ion in the nebula ionized by a stel-
lar radiation field. Let us consider the excitation rate of
the well-known green line of [O III], 5007 Å, due to the
transition 2p2(3P2 −1 D2). The rate coefficient q is cal-
culated using the Maxwellian averaged collision strength
(also called the effective collision strength) ϒ as follows:

q(λ, T ) = 8.63× 106

gi ×
√

T
e(−
E/kT ) ϒ(T ), (12.23)

where 
E (Ry) ≈ 912/λ (Å), and


E[2p2(3P2 −1 D2)] = 912/5007 = 0.18 Ry

ϒ(104 K ) = 2.29

exp(−
E/kT ) = exp(−0.18× 157885/10000)= 0.058

q(5007; 104 K ) = 8.32× 10−6

5× 102
× 0.058× 2.29

= 2.29× 10−9 cm3s−1. (12.24)

Note that it is entirely fortuitous that ϒ = 2.29 and q =
2.29×10−9. They are quite different;ϒ is a dimensionless
quantity, and q is the rate coefficient related to collisional
excitation rate (cm3 s−1) = q(cm3 s−1) × ne(cm3) ×
nion(cm−3). For the [O III] λ 5007 line, the collisional rate
at Te = 104 K and ne = 104 cm−3 is 2.29×10−9×104×
n(O III) = 2.29× 10−5n(O III) cm−3 s−1.

On the other hand, the photoionization rate can be
approximated by estimating the radiation field of the ion-
izing star in numbers of photons per second, which for an
O8 star with effective temperature of ∼40 000 K is (as in
[228])

nhν =
∫ ∞
ν0

Lν
hν

dν ∼ 1050 photon s−1. (12.25)

The radiation field Jν dilutes geometrically as

4π Jν = Lν
4πr2

(erg (cm−2 s−1 Hz−1)). (12.26)

At a distance of 5 pc (1 pc = 3 ×1018 cm) from the
ionizing star, the photoionization rate is

nO III

∫ ∞
νo

4π Jν
hν

σ(O III) ≈ nO III10−8 s−1. (12.27)

Dividing the collisional and the photoionization rates
cancels out the O III density n(O III), and with the pho-
toionization cross section value at the ionization threshold
σo(O III) ≈ 5× 10−18 cm2 [152], we have

Collisional rate [O III(5007, 104 K)]
Photoionization rate (O III)

≈ 10−5

10−8
= 103,

(12.28)
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i.e., collisional excitation of [O III] dominates photoion-
ization of O III a thousand-fold. We obtain essentially the
same result even after refining some of the rates, which
alter their values at most be a factor of a few. Relative to
H density,

nO III = nO III

nO
× nO

nH
nH. (12.29)

If nH is ten atoms per cm3, and the O/H abundance ratio
is given by nO ≈ 10−4nH = 10−3 cm−3, then we obtain
the O III/O II ionization fraction as nO III ≈ 10−1nO =
10−4 cm−3. In Eq. 12.28 we had taken a fixed value of the
threshold photoionization cross section σo(O III) = 5 Mb.
But, of course, a proper calculation would entail the
detailed frequency-dependent cross section over the entire
energy range of practical interest, including autoioniz-
ing resonances such as in the R-matrix close coupling
calculations in [152].

To summarize the comparison: collisional excitation of
forbidden lines is faster than photoionization by orders of
magnitude. In equilibrium, therefore, this justifies decou-
pling photoionization or recombination with much slower
rates than the collisional–radiative line formation, which
is much faster. In optically thin nebular or coronal plas-
mas we may independently solve the ionization balance
problem for the ionization structure, and the collisional–
radiative problem for line intensities.

12.4.4 Iron emission spectra

In Chapter 8 on spectral formation we described the basics
of emission line diagnostics for light ions O II, S II, O III,
etc., with relatively simple atomic physics. Important as
these ions are, real observed spectra of nebulae contain
lines from a number of other ions that are much more
complex and require large collisional–radiative (hereafter
CR) models for optically thin plasmas. In contrast, we
need non-LTE radiative transfer models for higher-density
systems, such as stellar atmospheres, broad line regions
of active galactic nuclei, expanding (radiatively driven)
ejecta of supernove, etc. Although the optically thin
approximation is usually sufficient for gaseous nebulae
in general, it is known that specialized radiative transfer
effects, particularly continuum and line fluorescence, can
be of great importance in excitation of some prominent
lines. The next few sections will be devoted to discussing
CR diagnostics, and line ratio analysis, of Fe ions.

12.4.4.1 [FeII] lines
Singly ionized iron is one of the most prevalent atomic
species observed from a wide variety of astrophysical
sources: the interstellar medium, stars, active galactic

nuclei and quasars, supernova remnants, etc. A number
of lines arise from both allowed and forbidden transi-
tions ranging from the far-infrared to the far-ultraviolet.
The enormous complexity of Fe II makes it necessary to
understand the underlying atomic physics in detail. The
rich spectral formation in astrophysical plasmas from Fe II

is due to the many levels that give rise to several com-
plexes of lines, which are so numerous as to often form
a pseudo-continuum (see Chapter 13). In gaseous nebu-
lae, Fe II exists in the PIZ, as opposed to ions of lighter
elements, such as O II, O III and S II, which exist in the
FIZ. This is because the respective ionization potentials
are (Table 12.1): EIP (Fe II) = 16.16 eV, EIP (O II) =
35.117 eV, EIP (O III) = 54.934 eV and EIP (S II) =
23.33 eV. As the ionization energy of Fe II is somewhat
above H I (13.6 eV), it is partially ‘shielded’ by neu-
tral hydrogen in the PDR. As such, the Fe II spectrum is
affected by the changing temperatures and densities to a
more significant extent than other ions.

In this section, we describe only those lines due to
forbidden [Fe II] transitions among relatively low-lying
levels in the infrared and optical regions that may be
used for nebular temperature, density and abundance diag-
nostics. However, the allowed lines and the overall Fe II

emission is also of great interest in active galactic nuclei
(Chapter 13), particularly in a sub-class of quasi-stellar
objects known as ‘strong Fe II emitters’. In those sources,
Fe II emission is abnormally intense, with many more
highly excited levels than in nebulae. Consequently, more
powerful radiative transfer non-LTE methods need to be
employed (Chapters 9 and 13).

A partial Grotrian diagram of Fe II levels and
lines is shown in Fig. 12.5. The ground configu-
ration LS term and fine structure levels of Fe II
are: 3d64s(a6 D9/2,7/2,5/2,3/2,1/2). The next higher
term and levels belong to the first excited configura-
tion: 3d7(a4 F9/2,7/2,5/2,3/2), followed by two others:
3d64s(a4 D7/2,5/2,3/2,1/2) and 3d7(a4 P5/2,3/2,1/2). As
given, these 16 low-lying level energies are in ascending
order, with the ground level a6 D9/2 at zero energy (recall
that the prefix ‘a’ denotes the lowest term of even par-
ity). This group of 16 levels is separated by approximately
0.9 eV from the next higher term of even parity and quartet
multiplicity 3d64s(b4 P). In this energy gap there are four
3d7 doublet multiplicity terms (a2G, a2 P, a2 H, a2 D),
and one quartet term, a4 H . However, these doublet terms
and the relatively high angular momentum term 4 H
(L = 5) are weakly coupled to the quartet/sextet system
considered above. This provides some justification for
neglecting the doublets initially to restrict the CR model,
and enables us to proceed with a small 16-level system
that gives rise to several strong NIR and FIR lines of Fe II,



12.4 Spectral diagnostics 267

FIGURE 12.5 Fe II lines in the infrared,
optical and ultraviolet. The ground
term 3d 64s(6D) has five fine structure
components, J = 9/2, 7/2, 5/2, 3/2, 1/2,
with ground level energy E(6D9/2) = 0.

such as the 1.533 μm and 1.644 μm NIR lines, and the
17.93 μm and 25.98 μm FIR lines (cf. [317].)

For nebular conditions, we note a simple fact: the
intensity ratio of two lines orignating with the same upper
level depends only on the ratio of the A-values, since the
population of the upper level in the expression for emissiv-
ity (cf. Eq. 8.22) cancels out. Hence, a full CR calculation
is not necessary. The ratios of A-values can be compared
directly with observations regardless of the physical con-
ditions in the source, which affect the upper level equally
for both lines. Then the observed line ratio for a three-level
system should be

ε(3→1)

ε(3→2)
≈ A(3→1)

A(3→2)
: same upper level. (12.30)

Owing to the small energy separations among the
first 16 levels, and because the forbidden A-values are
extremely small, the infrared and optical forbidden lines
are good density indicators, with weak temperature depen-
dences. Figure 12.6 shows a comparison between two dif-
ferent [Fe II] emissivity ratios of near-infrared lines calcu-
lated as a function of ne at representative Te from 3000 K
to 12 000 K. The line ratio I (1.533 μm)/I (1.644 μm)

should be a very good density diagnostic in the range
103−5 cm−3, since the Te dependence is negligible over a
wide range of nebular temperatures. On the other hand, the
I (8617 Å)/I (1.257 μm) ratio is not amenable to accurate
spectral analysis since it varies significantly with both ne

and Te. In the nebular temperature–density regime, several
Fe II line ratios of observed forbidden lines provide use-
ful and sensitive diagnostics of density and temperature,
determined only by collisional excitation and radiative
decay.

The lowest [Fe II] transitions among the fine struc-
ture levels of the ground state 6DJ lie in the FIR.
These are currently of much interest in space astron-
omy since these lines lie in the spectral range 5–38 μm
covered by the high-resolution spectrograph aboard
the Spitzer space observatory (www.spitzer.caltech.edu),
or possibly, even the more recent Herschel obser-
vatory (http://herschel.esac.esa.int) with coverage over
240–650 μm for high-redshift objects.

Figure 12.7 shows three such line ratios. It is apparent
that the line ratio at the lowest Te (3000 K) differs signif-
icantly from those at higher temperatures. This is because
the Maxwellian averaged ϒ(T ) varies more sharply as
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the temperature decreases, since the Maxwellian functions
sample a smaller energy range above the excitation thresh-
olds of collision strengths; at Te ∼ 3000 K it is a fraction
of an eV. The collision strengths for FIR transitions in
Fig. 12.7 were computed in LS coupling, and transformed
algebraically to fine-structure levels, without explicitly
including relativistic effects. Also, near-threshold reso-
nances in fine-structure collision strengths are most likely
to affect ϒ(T ) at low temperatures. Therefore, there is
considerable uncertainly in the FIR line ratios at Te ≤
3000K.9

12.4.4.2 [Fe III] lines
Many forbidden optical and infrared [Fe III] lines are
due to transitions among levels of the ground configura-
tion terms 3d6(5 D,3 P,3 H,3 F,3 G) shown in Fig. 12.8.
Since it is twice ionized, the optical [Fe III] lines within
low-lying multiplets are of shorter wavelength than the

9 The 16-level CR model given here was computed using the A-values

and Maxwellian averaged collision strengths for all 120 transitions

(N = 16 : N × (N1)/2) from [317]. A more extensive and up-to-date

tabulation of Fe II collision strengths from the Breit–Pauli R-matrix

calculations is given in [58]; the new data should be used for future

work.

[Fe II] lines. The 2 μm near-infrared [Fe III] lines orig-
inate from higher excitation levels 3G J , compared with
optical lines from 3d5(3 FJ ,

3 HJ ,
3 PJ ). Therefore, the

near-infrared nebular lines from Fe III are weaker than
the optical lines. The maximum difference among the fine
structure levels of the three terms responsible for opti-
cal lines is only about 0.02 Rydberg units, or ∼ 3000 K,
which makes the relative line intensities largely insensi-
tive to temperature. In Fig. 12.9 we plot several optical
line ratios as a function of electron density, and use
observed line ratios to infer electron densities in Orion.
Most observed line ratios yield ne ∼ 103–4 cm−3, con-
sistent with densities in the spatial Fe III zone in the FIZ,
and those obtained from the [O II] and [S II] line ratios
(Fig. 8.6). These densities are typical of the main body of
the ionized nebula, and lower than those expected in the
PIZ, which is closer to the ionization front moving into
the partially dissociated plasma in the PDR.

12.4.4.3 [Fe IV] lines
The Grotrian diagram in Fig. 12.10 shows that the low-
est transitions in [Fe IV] are among the ground state
3d5(6S5/2) and fine structure levels of the excited terms
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nebula [98].

4(P, D,G)3/2,5/2,7/2 (we have grouped together the LS
and fine-structure levels). The corresponding lines lie in
the UV around λλ 2500–3100. The forbidden optical
lines are from transitions among excited multiplets. In
Fig. 12.11 we compare [Fe IV] and [O III] optical line
ratios [98] to derive electron densities using the observed
value from a high-excitation bipolar young planetary neb-
ula M2-9 (also known as the ‘Butterfly Nebula’), with a
symbiotic’ star core [318] and a fast and dense stellar

wind.10 The inferred densities from the [Fe IV] optical
line ratio 5035/3900 are about 5–6 ×106 cm−3, and the
temperatures are ∼ 9000–10 000 K. This indicates that
a high-density plasma environment is possibly in dense
knots, expected in the common stellar envelope but at

10 As noted in the case of LBV Eta Carinae in Chapter 10, a symbiotic

stellar system consists of two stars in different stages of evolution with

a common nebular envelope.
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typical nebular temperatures. On the other hand, the inter-
pretation of [O III] line ratios and density determination is
ambiguous, owing to the sharp temperature dependence.

12.5 Fluorescent photo-excitation

In the discussion so far we have considered only colli-
sional excitation and radiative decay. However, gaseous
nebulae are ionized by a radiative source and the prox-
imity of the emitting region to that source could induce
photo-excitation of specific level populations as well.
Such radiative excitation may populate high-lying levels
via UV transitions, which can then decay to lower levels
thereby contributing to the forbidden optical and infrared
line intensities. Such fluorescent excitation (FLE) of ions
results from (i) line fluorescence from strong H I and He II

lines, owing to the more abundant H and He present in
the emitting region, and (ii) continuum fluorescence by
background flux from a radiation source.

12.5.1 Line fluorescence

There are several interesting coincidences between tran-
sitions in two different ions where the transition energies
are nearly equal. In such cases, line emission from one
(more abundant) ion can be absorbed by the other. Since
H and He ions are the most abundant, the main fluo-
rescence mechanisms depend on the usually strong Lyα,
Lyβ recombination lines from H, at 1215 and 1016 Å,
respectively, and the hydrogenic He II α line at 304 Å.
Since line radiation from these ions in astrophysical plas-
mas is relatively intense, owing to their high abundances,
it can ‘pump’ a transition in another ion provided the
energy difference between the levels in the excited ion
matches closely, i.e., the transitions are in ‘resonance’
according to wavelengths. Photons in these lines have
significant to large optical depths in many objects. They
may be scattered many times and redistributed, or even
trapped entirely (viz. Case B or Case C recombination).
We shall discuss Lyα fluorescence later, including radia-
tive transfer and excitation of the complex Fe II ion in
AGN (Chapter 13). Here, we describe two other relatively
simpler cases in optically thin nebular sources.

12.5.1.1 Bowen fluorescence: O III–He II

excitation
As we have seen in Chapter 8, the forbidden [O III] lines
are among the strongest lines seen in nebulae. They are
excited by electron impact from the ground level. How-
ever, O III lines are also seen in the optical and ultraviolet.

At nebular temperatures (kTe ∼ 1 eV) it is not possible for
electron impact excitation from the ground state to popu-
late the high-lying levels from where the optical and ultra-
violet lines originate. The anomalous intensities of these
lines was explained by I. S. Bowen [319], who showed
that these lines are excited by line fluorescence. There
is almost exact coincidence in energy between the He II

303.78 Å transition and the O III transition(s) from the
level 2p2(3P2) − 2p3d

(
3Po

1,2

)
at 303.62 and 303.80 Å,

respectively, as well as among other levels as shown
in Fig. 12.12. Resonance fluorescence from He II can
therefore indirectly enhance the population of lower O III

levels, which subsequently decay and give rise to opti-
cal and ultraviolet lines, and which are otherwise excited
by electron impact. The cascading pathways and resulting
optical and ultraviolet lines are shown in Fig. 12.12. The
O III ions reprocess the EUV He II Lyα 304 Å photons
according to the Bowen resonance–fluorescence mecha-
nism into lower energy and longer wavelength UV lines.
Their relative intensities are given by the branching ratios
of A-values from the same upper level.

Exercise 12.2 Work out the branching ratios of the opti-
cal and UV lines of O III assuming HeII FLE to be the only
excitation mechanism, relative to HeII Lyα recombination
line.

We note another useful line conicidence, analogous to
the O III–He II combination. There is also the O I–Lyβ res-
onance fluorescence, owing to the coincidence between

H I Lyβ at 1025.72 Å and O I 2p4(3P2) − 2p33d
(

3Do
3

)
line at 1025.76 Å.

Exercise 12.3 Sketch the schematics of the O I–Lyβ FLE
mechanism as in Fig. 12.12, and calculate the branching
ratios as in the previous exercise. [Note: A more exhaus-
tive version of the two problems above would be to use a
line ratios program to compute line intensities and ratios].

12.5.2 Continuum fluorescence

Whereas line fluorescence owing to accidental coinci-
dences in wavelengths can excite particular transitions, the
background UV continuum radiation from a hot star can
excite levels within a wide range of energies in ions. Such
excitations may occur from the ground state to higher
levels, particularly via strong dipole allowed transitions.
Also, in that case, the number of exciting photons, i.e.,
the background photon density or the radiation flux from
a source, can compete with the ambient electron density
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FIGURE 12.12 The Bowen fluorescence mechanism: ‘resonant’ excitation of O III lines by He II. Note that several transitions are
grouped together because they are observationally unresolved, or for clarity.

in exciting a particular level. But unlike the local elec-
tron density, the photon density profile has a distribution
defined by geometrical dilution as 1/r2, where r is the dis-
tance from the source. Additionally, the continuum photon
flux depends on the luminosity or the temperature of the
source. Therefore, the line intensities are a function of four
variables (Te, ne, T∗ r ), instead of just the first two in the
case of collisional excitation alone without FLE. Many
nebulae are excited by hot stars with a strong UV contin-
uum. A number of high-lying levels of an ion can thereby
be excited by continuum fluorescence, in contrast to just
one particular level by line or resonance fluorescence.

We can extend the CR model and rate equations to
include continuum FLE in optically thin situations. Recall
that for each bound level i , with population Ni and energy
Ei , the equations of statistical equilibrium are (Chapter 8).

Ni
∑

j

Ri j =
∑

j

N j R ji , (12.31)

where the sums are over all other bound levels j . As
before, the quantity Ri j denotes Ri j = qi j + Ai j for
Ei > E j , or Ri j = qi j for Ei < E j (here qi j is
the electron impact excitation or de-excitation rate coef-
ficient). This CR model does not consider fluorescence
due to the background continuum radiation of an exter-
nal source. The line emission photons created by the ions
are also assumed to escape without absorption. The effect
of diffuse background radiation is introduced in the CR
model by assuming a thermal continuum radiation pool,
in which all ions can be excited by photon pumping. The

thermal radiation field may be assumed to be a black body
at temperature T . Then the rate coefficient Ri j becomes

Ri j = qi j + Ai j +UνBi j (Ei > E j ), (12.32)

or

Ri j = qi j +UνBi j (Ei < E j ),

with hν = |Ei − E j |. Here, Bi j is the Einstein coef-
ficient and Uν is the radiation density of photons of
frequency ν. If we assume a black-body radiation field
with temperature T∗ we have

c3Uν
8πhν3

= w

e(hν/kT∗) − 1
, (12.33)

where w is the geometrical dilution factor at a distance r
from a star with radius R,

w = 1

4

(
R

r

)2
. (12.34)

The resulting rate equations in the CR + FLE model
(Eq. 12.32) can be solved in the usual manner, outlined in
Chapter 8. We apply the CR+FLE model to a particularly
interesting example below.

12.5.2.1 Fluorescence of Ni II
The ionization potentials of Fe and Ni are similar. The
ground-state ionization energies are 7.9 and 16.2 eV for
Fe I and Fe II, respectively, and 7.6 and 18.2 eV for Ni I

and Ni II, respectively. Thus one might expect Fe and Ni
ions to co-exist in the PIZs. One indication of the co-
existence of both ions comes from the correlation between
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[Fe II] and [Ni II] emission in a variety of gaseous nebu-
lae. However, in a number of astrophysical objects, the
observed nickel line intensities are far higher than would
be commensurate with the nickel/iron solar abundance
ratio of ∼0.05 (Table 11.2). So one might also expect
the cosmic iron abundance to be higher than nickel by
about a factor of 20. But apparently, the nickel abun-
dance is anomalously high, as deduced from [Ni II] optical
lines. For example, in the circumstellar ejecta of the lumi-
nous Be star P Cygni (with the famous P Cygni signature
line profiles (Chapter 10), the [Ni II] line intensities are
enhanced by up to a factor of 1000 relative to [Fe II]
lines, over what is expected on the basis of cosmic abun-
dances. Many other H II regions also appear to show Ni/Fe
enhancements that range over orders of magnitude (e.g.,
[320, 321]).

Since such a large overabundance of nickel cannot
be realistic, another physical explanation needs to be
explored. The mechanism invoked to explain such an
enhancement is photo-excitation by the strong UV radi-
ation background [320]. The observed intensity of the λ
7379 [Ni II] line is employed to deduce the Ni abun-
dance. But UV FLE enhances the intensity of this line
indirectly as follows. The relevant [Ni II] lines are due to
transitions within the three-term system, all with doublet
spin-multiplicity (2S + 1), shown in Fig. 12.13. Whereas
several transitions are possible, we focus on transitions
between the three levels shown by arrows. Continuum UV
radiation pumping via the strong dipole transition 1→3,
from the ground state a 2 D5/2 (level 1) to the opposite odd
parity level z2 Do

5/2 (level 3), occurs at 1742 Å. This is fol-

lowed by spontaneous decay 3→2 to a 2 F7/2 (level 2) via
another UV transition at 2279 Å, which thereby enhances
the population of level 2. The final step in the FLE mech-
anism is the radiative decay 2→1, which gives rise to
the λ7379 line in the optical. The otherwise forbidden
7379 line is thereby strengthened by the FLE mechanism
via allowed transitions within the doublet system. In this

3d84p (z2D0) 

3d9 (a2D) 

3d8 4s(a2F) 

1742 Å

2279 Å

7379 Å

(Level 2)

(Level 1)

(Level 3)
3/2
5/2

5/2
7/2

5/2
3/2

FIGURE 12.13 Continuum UV fluorescence of optical lines in
Ni II.

model, the population of level 2, N2, with respect to that
of level 1, N1, is given by [320, 321]

N2

N1
= neq12 + b32 B13 J13

neq21 + A21 + b31 B23 J23
, (12.35)

where A21, B13 and B23 are the Einstein coefficients, J13
and J23 are the intensities of the continuum at the fre-
quencies of the 1→3 and 2→3 transitions, and b32 is the
branching ratio, defined by

b32 = 1− b13 = A32

A32 + A31
. (12.36)

The critical electron density for fluorescence (ncf) can
now be defined,

ncf = b32 B13 J13

q12
= c2

2hν3
13

ω3

ω1

A31 A32

A31 + A32

J13

q12
. (12.37)

If the electron density ne < ncf the emission is dominated
by fluorescence. Conversely, if ne > ncf, the line is pre-
dominantly excited by electron collisions. In this equation,
ν13 is the frequency of the 1→3 transition. The critical
density ncf decreases as ν−3

13 , and only the lowest odd par-
ity terms of the ion coupled to the ground state are likely
to contribute significantly to the FLE mechanism. In the
case of a black-body radiation field, the ν−3

13 dependence
of Ncf cancels out, and it drops exponentially with ν13.

Two other lines in the 2DJ −2 FJ ′ multiplet (called
the 2F multiplet; cf. [100]) are also pumped similarly:
2D3/2 −2 F5/2 at 7413.33 Å and 2D5/2 −2 F5/2 at
6668.16 Å. Both of these transitions, and the 7379 Å
transition illustrated above, are forbidden E2 and M1
transitions, but the E2 dominates by about four orders
of magnitude over M1. The A(E2) values for the λλ
7379, 7413 and 6668 Å lines are 0.23, 0.18 and 0.098,
respectively. Another transition 2D5/2 −2 F7/2 is much
weaker; it occurs only as an E2 transition with A(E2) =
0.013. Generalizing the model to calculate level popu-
lations and line emissivities in this multi-level system,
including photo-excitation, in Fig. 12.14 we plot the ratio
[Ni II] λ7413/λ7379 vs. Ne, with fluorescence (dashed
line) and without (solid line, collisional excitation only).
Note that the critical density with FLE ncf ∼ 107cm−3 ,
indicative of the denser PIZ compared with the FIZ. The
line ratio is enhanced by more than a factor of three for
ne < ncf, but as ne→ncf the two line ratios approach
each other and merge for ne > ncf.

The enhancement due to FLE over collisional excita-
tion alone in Fig. 12.14 implies reduced dependence on
electron density, since photo-excitation plays a major, if
not dominant, role. The value for this ratio from a differ-
ent calculation at ne = 600 cm−3 [320] shows a ∼15%
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FIGURE 12.14 Enhancement of line
intensities due to continuum UV
fluorescence. The figure shows an optical [Ni
II] line ratio vs. ne with and without
continuum UV fluorescence (see text). The
solid line is without FLE and the dashed line
includes both collisional excitation and FLE.
The solid square is an earlier calculation
[320].

difference, which is not significant and most likely due to
different atomic data. Also shown are the flux ratios of
these lines as measured in P Cygni [322], as horizontal
lines, including the range of uncertainty as dotted lines.
To simulate the radiation field responsible for FLE due
to P Cygni, the basic parameters have been taken to be
T∗ = 20 000K, R∗ = 89.2 R�, and the illuminated ejecta
to be at a distance of 0.08 pc from the star, which yields a
dilution factor w = 1.6× 10−10, (Eq. 12.34). The inferred
densities again lie in the range 106−7 cm−3.

We have seen that FLE of [Ni II] lines is important
in regions with strong UV background, owing to the
strong transitions among doublet spin-symmetry levels.
On the other hand, for Fe II the fluorescence excitation
of either the IR or the optical lines is much less impor-
tant because nearly all of the lines observed in these
spectral ranges correspond to transitions across different
multiplicities. The transitions occur among quartet and
doublet spin-multiplicy levels, which, in turn, cannot be
pumped and connected by dipole allowed transitions from
the sextet 3d64s(6DJ ) ground state levels (Fig. 12.5).
Also, intercombination transitions from the ground state
to odd parity quartet levels are relatively inefficient, as
their transition probabilities are at least one or two orders
of magnitude smaller than for the dipole transitions. Per-
haps, the greatest fluorescence effect may be seen for
the level a 6S1/2 that gives rise to the λ4287 line in
Fig. 12.5. Photo-excitation of this level could occur via
pumping of the z 6Po

J levels from the ground term; how-
ever, inspection of the energy of the z 6Po multiplet
relative to the ground state, and of the A-values for the
transition involved in the process, indicates that the critical

fluorescence densities in Fe II are an order of magnitude
lower than those for Ni II, and hence collisions would be
that much more dominant than fluorescence. Likewise, it
is clear from Figs. 12.8 and 12.10 that FLE is not likely to
be of importance for [Fe III] and [Fe IV] lines.

12.6 Abundance analysis

Abundances of elements may be derived from emission
lines in nebulae. In principle, one needs to know individ-
ually the abundance of each ionization state of an element
X with nuclear charge Z , i.e.,

n(X) = n(X0)+ n(X+)+ n(X2+)+ · · · + n(XZ+),
(12.38)

from neutral to fully ionized.11 However, the lines
observed are often from only one or two ionization stages.
Therefore, a knowledge of ion densities is needed in each
observed ionization stage, or ionization fractions relative
to the total abundance of the element. The way one obtains
that information is (i) to assume that the observed ion-
ization states are the dominant states, given the physical
conditions in the source (primarily the temperature), and
(ii) by comparison with another element whose abundance
can be ascertained with better accuracy. For example, we
may approximate the total abundance of oxygen as

n(O) ≈ n(O+)+ n(O2+), (12.39)

11 It is customary to use the notation indicating ion charge as superscript,

rather than roman numerals, when referring to ion densities or

abundances.
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assuming that no further ionization states, such as O3+
and higher, are present, or are negligible. Then that
requires the measurement of two ionic abundances on
the right-hand side, O+ and O2+. Observationally, abun-
dances are inferred from line intensities relative to the
optical H I recombination lines, such as the Hβ 4861 Å.
We can write the ionic abundance ratio in terms of
the measured flux ratio and the intrinsic emissivities
(Chapter 10). Considering the example of the well-known
nebular ion O III and its forbidden lines, the observed flux
ratio is related to the abundance ratio in terms of the (the-
oretically computed) emissivities of the [O III] 5007 line
and Hβ as

I (5007)

I (4861)
× ε[OIII,1D2 −3P2]
ε[HI, n = 4 → 2] =

n(O2+)
n(H0)

. (12.40)

Similarly, we may determine the relative intensities of
the [OII] doublet 3617, 3631 lines to estimate the O II

density n(O+). Thus the total oxygen abundance may be
approximately obtained from the [O II] and [O III] lines.
But that is not to say that other ionization stages, such as
O IV, are not actually present to some extent. Therefore,
ionization balance calculations, and observational analy-
sis, are necessary to ascertain the ionization fractions of
all O ions with the specific physical conditions in the
nebula.

A somewhat more complicated analysis is needed for
heavier elements, where observations of a given ion-
ization species are not readily obtained. For example,
although Fe IV is the dominant ionization state in the
fully ionized zone of nebulae (Figs. 7.14 and 12.4), it
has few observable diagnostic lines. The lowest Fe IV

transitions lie in the ultraviolet (Fig. 12.10), and they
are difficult to observe and analyze, owing to extinction
and other effects (see Section 12.4). Similar consider-
ations apply to other Fe peak elements. Note that the
ionization potential of O III is very close to that for
Fe IV (Table 12.1). This implies that O III is likely to
co-exist spatially in the regions with Fe IV, and as dis-
cussed above, in the FIZ. Since [O III] lines are generally
more intense and better measured, the O III/O ratio may
be used to derive a correction for the Fe IV/Fe ratio as
follows

n(Fe)

n(H)
× n(O2+)

n(O)
≈ n(Fe3+)

n(H+) . (12.41)

Here we adopt the ionization correction factor
(ICF) = O2+/O, the fractional abundance O III relative to
O I. It is amply evident from Table 12.1 that the second-
row elements have much higher ionization potentials than
the Fe-peak elements. Therefore, lower ionization species

of lighter elements spatially co-exist with higher ioniza-
tion states of heavier elements.

The Fe abundance in stars is usually referred to as
the metallicity. It is the ratio of the iron abundance rel-
ative to hydrogen, defined with respect to the Sun as
[Fe/H] = log[n(Fe)/n(H)]star − log[n(Fe)/n(H)]�. In
nebulae, the Fe abundance derived from ionized gas obser-
vations may be considerably less than solar, or what is
expected if all of the iron were in ionized form in the
nebula [321, 323]. This results from the formation and
condensation of iron onto grains in the relatively cold
environment. Note that although the electron kinetic tem-
perature is about 10 000 K, the densities are extremely
low, ne ∼ 103−6cm−3, leading to a relatively cold
medium with little total mechanical ‘heat’ available for
vaporization, or preventing ionized ‘iron gas’ condensa-
tion into grains. A reduction of gas-phase abundances of
an element by condensation on to grains is referred to as
depletion of that element. Thus, the total Fe abundance
is that observed from ionized regions of nebulae in the
gas phase, plus that condensed in dust grains. The deple-
tion factors are difficult to measure, since dust grains are
not readily observable. They may also involve the for-
mation of complicated molecular species, such as iron
oxides like Fe2O3, whose concentrations are not easy to
ascertain. Nevertheless, another Fe-peak element, Zn, may
be used as a surrogate for Fe, since it is not depleted
onto dust grains significantly. Also, the ionization ener-
gies are similar (Table 12.1), so observations of Zn I–IV
could be used to infer Fe depletion factors by measur-
ing Zn/Fe abundance ratios approximately, as described
above.

Direct spectroscopic observations of the gas phase
iron abundance in the Orion nebula have been carried
out using the well-known forbidden optical and infrared
lines of [Fe II] and [Fe III] shown in Figs 12.5 and 12.8,
respectively, as well as the faintly observed ultraviolet
lines of [Fe IV] λλ 2568.4, 2568.2, due to transitions
3d6(4D5/2,3/2→6S3/2) (Fig. 12.10). However, there are
discrepancies by large factors, ranging from a few times
less than solar, to up to 200 times less than solar [321,
323]. The problem lies not only in the difficulty of mak-
ing accurate measurements from ions that may exist in
spatially distinct regions with different physical condi-
tions, but also in the interpretation of observations based
on atomic data of inadequate precision. The determination
of nebular abundances is a challenging problem that needs
not only improved and varied measurements, but also high
accuracy atomic parameters, such as collision strengths,
radiative transition probabilities and (photo)ionization and
recombination rate coefficients.
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12.7 Atomic parameters for nebular
emission lines

Given the physical processes in H II regions, the primary
atomic parameters of interest are: photoionization cross
sections, (e + ion) recombination and electron impact
excitation rate coefficients, and the spontaneous decay
rates for all relevant transitions. Nearly all of these data
need to be computed quantum mechanically, not only for
the levels corresponding to the observed lines but for all
levels that might significantly contribute to those levels.
However, in nebular sources we may often restrict the
CR models of atomic spectra to collisional excitation and
radiative decay of low-lying levels. A vast body of litera-
ture exists on collision strengths and transition probabili-
ties, as reviewed in [324, 325]. Appendix E is an extensive
and up-to-date tabulation of recommended excitation rate
coefficients and A-values for most nebular ions.

The inaccuracy or the incompleteness of available
atomic data from theoretical calculations (or experi-
ments, albeit limited in scope) is of serious concern.
Even for relatively simple atomic systems, such as O II

[326], there have been problems that severely plagued
the interpretation of astronomical observations [108].
Fe II lines remain difficult to analyze in many sources.
One of the most important reasons for disentangling
the accuray of basic atomic physics from astrophysical
phenomena themselves is to determine elemental abun-
dances. While H II regions appear to be well-understood

in terms of physical conditions, the abundances of ele-
ments derived from measurements in different wavelength
regions vary widely by up to several factors (and not
only for vastly anomalous cases, such as the Ni/Fe abun-
dance ratio discussed). For example, [Fe/S]UV (from
UV lines) = −0.35 ± 0.12, but [Fe/S]vis (from visi-
ble lines) = −1.15 ± 0.33, a discrepancy of a factor of
six [327]

More generally, at the present time there is a per-
plexing discrepancy between abundances derived from
collisionally excited emission lines (CEL) on the one
hand, and recombination emission lines (REL) on the
other hand for the same element [312, 313]. Of course, the
physical processes are different: CEL arise from electron
impact excitation of low-lying levels of ions such as [O II],
[O III], [Fe II], etc., while the REL lines are due to elec-
tron recombinations into high-lying levels cascading into
observed lines. Therefore, it is possible that the atomic
rate coefficients for the two processes are discrepant.
Whereas the collisional excitation data are relatively
well-determined in terms of accuracy, the level-specific
recombination rate coefficients have been calculated with
adequate precision only for a few ions, and not yet widely
employed in astrophysical models. It is essential to resolve
this issue in order to disentangle the atomic physics,
which, in principle, can be addressed to sufficient accu-
racy, from astrophysical phenomena in nebulae, such as
temperature fluctuations and abundance variations within
nebulae.
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The number of stars in a galaxy varies over a wide range.
Whereas dwarf galaxies may contain as ‘few’ as ∼107

stars, giant galaxies at the other end of the numerical
stellar count are five orders of magnitude higher, into tril-
lions of stars ∼1012. Our own Milky Way is a collection
of about 100 billion ∼1011 stars, which we may take to
be the number in a ‘normal’ galaxy. Given the luminosity
of the Sun as the benchmark L� = 3.8 × 1033 erg s−1,
the luminosity of a normal galaxy LG ∼ 1044 erg s−1.
Large as that number is, it turns out that a good frac-
tion of galaxies, at least 10%, are much brighter. To be
a bit more precise, the central regions of such galax-
ies are extremely bright, with central luminosity at least
equal to that of the rest of the galaxy. At first sight, this
might not seem illogical, given the expectation of a greater
concentration of stellar systems towards the centre of a
galaxy. However, these ultrabright central regions exhibit
a number of outstanding observational facts.

(i) The emergent luminosity can be extremely intense
with a range of 1012−15 L�, or more than 10 000
times the luminosity of an entire galaxy LG.

(ii) The central source is highly concentrated in an
extremely small volume of a small fraction of a par-
sec (pc), on the spatial scale of no more than our solar
system, whereas the galaxy itself may be tens of kpc.

(iii) The distribution of emitted spectral energy of the
galactic nucleus is non-thermal, quite different from
that of stars.

(iv) The observed energy distribution across all wave-
length ranges does not decrease exponentially with
increasing energy, as expected for a Planck function
for stellar energy; rather, it can be essentially con-
stant or decreasing slowly as a power law in energy,
L(E) ∼ E−� (� ∼ 1), even out to high energies
with strong X-ray emission.

(v) About one tenth of these bright nuclei are also
intense radio sources, implying a non-thermal origin
of radiation.

(vi) Significant variability of the observed flux, also
implying that the power source must be compact;
normal galaxies do not exhibit such variability over
measurably short timescales.

Something drives enormous activity at the centre of
many galaxies, with tremendous output of non-stellar
form of energy. A particularly interesting and useful fact
is that this activity is reflected in an enormous variety of
emission and absorption spectra from most astrophysi-
cally abundant atomic species, from neutral hydrogen to
highly ionized iron and nickel. This, of course, enables
the means to study the physical conditions and to probe
the central regions of active galaxies.

As mentioned, if galaxies were simply a collection
of stars (albeit billions of them) one might expect their
spectra to be not fundamentally different from stars. And
since the total luminosity should be dominated by the
brightest and most massive stars, the expected spectra of
normal galaxies should have similar spectral components
weighted rather towards the near-ultraviolet and the opti-
cal. This is indeed the case for most ordinary galaxies,
not otherwise active in the sense described in the crite-
ria above. For any black body (or collection thereof), the
Planck function ensures some output of electromagnetic
radiation in all wavelength ranges. However, deviations
from this basic fact begin to manifest themselves, as
one examines the central regions of active galaxies and
finds that luminosity is quite non-Planckian in nature.
The term generally employed for centres of galaxies
with energy output fuelled by some tremendous activ-
ity is active galactic nuclei (AGN). However, there are
a number of sub-classes of objects that fall under the
AGN characterization. At one end of extreme luminosi-
ties are the quasi-stellar objects, or QSOs, which are
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identified by their non-zero redshifts at great distances out
to z >6.

Historically, a number of QSOs were observed by their
copious radio emission, and called quasars (quasi-stellar
radio sources).The QSO spectra show significant redshifts
of lines compared to rest or laboratory wavelengths. That
means that QSOs are at large distances from us and, owing
to the cosmological expansion, must have originated at
earlier times in the history of the Universe. Quasi-stellar
objects may be among the first large-scale objects formed
at the earliest epochs. Many catalogued quasars are at
the most luminous end of AGN luminosity, partly due
to selection effects in observing far away objects, which
would tend to be the brightest. Again, something or some
process is needed to generate the stupendous amount of
energy put out by QSOs. While we don’t quite know the
precise nature of this central engine of AGN, QSOs, and
maybe even normal galaxies, the working paradigm that
has emerged is a gravitationally accreting supermassive
black hole (SMBH), which apparently unifies most of the
observed phenomena mentioned above.

This chapter is mainly devoted to spectral character-
istics of the general types and structures of AGN. As we
shall see, spectral features of different parts of AGN reveal
(or conceal!) intriguing phenomena, many of which are
not presently understood.

13.1 Morphology, energetics and spectra

Active galactic nuclei phenomena manifest themselves in
a huge variety of ways which, in turn, result in myr-
iad classifications and sub-classifications of AGN and
QSOs. The main problem in AGN research is to under-
stand otherwise unrelated characteristics in some sort of
a unified scheme, which reflects the essential underlying
physics. The over-arching phenomenology rests on AGN
activity fuelled by supermassive black holes (SMBH).
These central engines are thought to drive the observed
energetics and structures. The morphology of AGN com-
prises a number of apparently disparate regions, as shown
schematically in Fig. 13.1. The central SMBH is sur-
rounded by an accretion disc formed by infalling matter.
Conservation of angular momemtum requires the forma-
tion of an accretion disc (not unlike water swirling around
a drain). The accretion disc converts gravitational energy
of infalling matter into mechanical energy – heat and
light. The emergent radiation shows enhanced flux of UV
radiation in the continuum together with ionized gas out-
flows, as ascertained by broad absorption in strong lines of
well-known atomic species. The thermal emission from

the the accretion disc can be modelled as a black body,
albeit modifed according to geometry and opacity effects
(e.g. [328]).

The unifying structure of AGN is also thought to be
governed by the angular momemtum of accreting matter.
The angular momemtum of infalling material is con-
served, as it is removed by centrifugally driven winds from
accretion discs, which, in turn, account for the observed
bipolar outflows and jets [329, 330]. The accretion disc
is not directly visible, but a ‘jet’ of material moving out
at relativistic velocities, arising from the interaction of
the SMBH and infalling matter, is often visible at radio
frequencies out to tens of kpc. Matter outflow at relativis-
tic velocities results in the jet around the polar axis of
an intensely magnetic spinning black hole and accretion
disc. As a result of jet emission and material interac-
tions, the electromagnetic spectrum of AGN ranges from
radiowaves to TeV energies. While radio emission would
be expected from all AGN, the intensity and extent of
observed radio emission determines whether the AGN is
classified as radio-loud or radio-quiet.

At the high-energy end, the X-ray background contin-
uum is generated in three processes: (i) bremsstrahlung
radiation due to electrons accelerating in the proximity of
ions, (ii) Compton scattering of photons by electrons, and
consequent shift in wavelength, and (iii) synchrotron radi-
ation due to electrons accelerating in a magnetic field. All
three processes play a role in the formation of AGN X-ray
continuum driven by the central black hole.

Beginning with our current understanding of AGN
from the inside out, the most direct evidence of a relativ-
istic accretion disc around a SMBH is an iron line due to
Kα transition(s) at about 6.4 keV ([239], discussed later).
The line is seen to have an extremely wide but asymmet-
rical broadening towards the red, down to about 5.7 keV.
This indicates gravitational redshift, lowering of the ene-
rgy of photons emitted, predicted by the theory of general
relativity. Later, we discuss the 6.4 keV line, together with
the whole group of other Fe Kα X-ray lines. The material
interactions in the vicinity of the disc also result in hot
highly ionized matter prominently visible in X-ray spec-
tra. The gas outflow, which shows overall X-ray absorp-
tion, is referred to as the warm absorber (WA). Both the
disc-corona and the warm absorber are prominent X-ray
emitters and absorbers in atomic species ranging from
O VII, Fe XVII in the soft X-ray (∼ 0.5–2 keV) to Fe XXV,
Fe XXVI in the hard X-ray (6.6–7.0 keV).

Farther away from the central source, at distances of
tens of pc, but influenced by the gravity of the SMBH,
are the broad-line-region (BLR) clouds of relatively less
ionized gas. The BLR are characterized by bulk Doppler
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FIGURE 13.1 Schematic model of an AGN showing a central black hole (BH), accretion disc, radio-jet, clouds of ionized gas and a
molecular torus surrounding the accretion disc (modelled after Urry and Padovani [331]). The presence of a relativistic jet implies
that the AGN would be radio-loud. The diagram also illustrates the unification scheme. The obscuring torus, and its orientation
with respect to the observer, determines the view along the line of sight to the central region. A more-or-less direct view manifests
itself in spectral characterstics of a Sey 1 galaxy (also radio-quiet QSOs), whereas the obscured view corresponds to a Sey 2.
Quasars and Seyferts differ in luminosity and distance (redshift); classifications Type 1 and 2 refer to orientation. Very few Type 2
quasars (edge-on) are observed, presumbly owing to the difficulty of observing obscured objects at large distances. The dark dots
represent ionized gas. The broad line regions are clouds of gas (BLRG) influenced by the central source. The narrow line regions of
ionized gas (NLRG) are relatively farther away and visible when the central source is obscured from the line of sight. The outflowing
gas acts as a warm absorber, which heavily attenuates the X-ray continuum radiation from the hot corona surrounding the central
source.

motions with velocities up to thousands of km s−1,
inferred from the width of emission lines such as the Hβ
(4860 Å) in the optical or C IV (1541 Å) in the ultra-
violet. The BLR gas shows spectral features of typical
nebular stages of ionization temperature, but much higher
electron densities of 109−12 cm−3 and much broader
emission lines from species such as O III and Fe II. Still
farther out are the narrow line region (NLR) clouds, quite
similar to ionized gas in H II regions. The NLR spectra
have typically nebular forbidden lines of low-ionization

atomic species, such as [O II], [O III], [S II] and [Fe II] (cf.
Fig. 8.3), but at lower densities than the BLR. The cen-
tral region of the AGN is shrouded in a large molecular
torus rotating about the SMBH, as inferred by Doppler
blue- and redshifts of H2 O masers: the maser action in
the water molecule is pumped by AGN activity. For exam-
ple, a sub-parsec maser disc is observed from NGC 4258
(Messier M106) in the strong 22 GHz radio line [332].

The immense variety of radiative and material pro-
cesses occurring within the AGN makes it obvious that
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their spectral features should encompass practially the
entire electromagnetic spectrum, from hard X-ray to
radio. The global spectral energy distribution is such that
it remains large and flat across all wavelength ranges, as
measured by the quantity νFν (or equivalently λFλ) in
any specified range (as shown later in Fig. 13.5). But
actual observations reveal large differences in proper-
ties of AGN. Nevertheless, the current paradigm unifying
the AGN phenomenology is determined by the essential
geometry of a SMBH and an accretion disc. The orien-
tation of the accretion disc relative to the observer (on
the Earth), and associated activities, determines the mor-
phological, spectral, and temporal (time variability) prop-
erties. The unified model rests on the same underlying
physical processes for all AGN.

13.1.1 Seyfert classification

The black hole and an accretion disc at the centre deter-
mine the morphology of an AGN. The orientation towards
the observer, or the viewing angle, would therefore be the
crucial factor in establishing the line of sight towards dif-
ferent parts of the AGN (Fig. 13.1). At the two extremes
one has (i) a full face-on view that enables direct observa-
tions of the nucleus, and (ii) an edge-on view that obscures
most of the nuclear activity. Seyfert [333] first identified
six galaxies with extremely bright nuclei, and discovered
the essential discriminant between the two types: the spec-
tral widths of emission lines. Seyfert found the first kind to
be associated with broad lines in their spectra, and narrow
lines in the second kind. These are respectively referred to
as Seyfert 1 and Seyfert 2 AGN.

The reason for the differences in the width of the
lines is relatively straightforward. In Seyfert 1 AGN, one
observes the central source more-or-less directly, thereby
sampling the high velocity BLR clouds, moving under the
gravitational influence of the SMBH with Doppler broad-
ened emission lines. Observed velocity dispersions of up
to 10 000 km s−1 or more are seen. By contrast, in Seyfert
2 AGN the central source is obscured and only the outer,
relatively colder regions farther away than the BLR clouds
are seen by the observer. There appears to be another dis-
tinction between ‘classical’ Seyfert 2s where the BLR is
obscured but its presence can be inferred from polarized
light, and those that do not appear to have a BLR. The
unification scheme divides Seyferts 1 and 2 according to
the face-on or edge-on geometry of the BH-disc combina-
tion, respectively. Seyfert 1s are generally characterized
by the presence of broad emission lines, whereas Seyfert
2s contain narrow lines. The atomic physics of these lines
is a clear discriminant between the underlying spectral

environments: the narrow lines in Seyfert 2s are associated
with forbidden transitions, and the broad lines with strong
dipole allowed or intercombination transtions, as given in
Tables 13.1 and 13.2. However, there is a virtual contin-
uum of sub-classes between Seyferts 1 and 2, ascertained
from detailed spectroscopy [228, 311]. It is common to
find Seyfert galaxies classified in the literature according
to the width of commonly observed lines, as Seyfert 1.1,
1.2, etc., up to Seyfert 2.

In addition to the Seyfert progression from 1 to 2,
there are other subclasses, such as low-ionization narrow-
line emission radio (LINER) galaxies [311]. Likewise,
another sub-class is especially interesting. These are the
so-called narrow-line Seyfert 1 galaxies (NLSy1) that
have been the subject of extensive study in recent years
[334]. As the name implies, they are distinguished by
significantly narrower lines than the BLR lines from clas-
sic Seyfert 1 galaxies. Some of their prime characterstics
are extreme by normal AGN criteria, steep hard and soft
X-ray spectra and variability, and strong Fe II emission
[303, 335, 336, 337, 338, 339, 340]. The properties of
NLSy1s can be explained as young AGN with high accre-
tion rate, implying a small but growing black hole mass
(e.g., [341, 342]).

13.1.2 Supermassive black holes: the central
engines

Why a black hole, instead of some other physical pro-
cess, such as nuclear fusion, to create the energy ema-
nating from the central regions? After all, stars create
immense amount of energy for long epochs via thermonu-
clear fusion. It is therefore logical to ask if extremely
massive stars can produce the observed luminosities, espe-
cially since L rises as a steep power of mass, i.e., L ∼
M3.5 (Chapter 10). However, elementary considerations
show that no other process except gravitational infall can
result in the observed energy output observed from AGN.
Eddington first provided the key considerations that relate
the maximum mass of a radiating star, held together by
inward force of gravity balanced by outward radiation
pressure. The minimum interaction between radiation and
matter, i.e., the minimum opacity, is due to scattering of
photons and electrons in a fully ionized gas given by the
Thomson cross section

σT =
(

8πe4

3m2
ec4

)
= 6.65× 10−25 cm2 (13.1)

Since both the radiative force, related to luminosity L ,
and the opposing gravitational force, related to the mass
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TABLE 13.1 Forbidden lines and H, He lines in narrow-line regions.

Ion λ (Å) Transitions

[Ne V] 3345.8, 3425.9 2p2(3P1,2 −1D2)

[O II] 3726.0, 3728.8 2p3
(

4So
3/2 −2Do

3/2,5/2

)
[Ne III] 3867.5, 3968.8 2p4(3P1,2 −1D2)

[S II] 4076.35 2p3
(

4So
3/2 −2Po

1/2

)
Hδ 4101 2–6
Hγ 4340 2–5
[O III] 4363.2 2p2(1D2 −1S0)

He I 4471 1s2p(3P1,2)− 1s4d(3D1,2)

He II 4686 3–4
Hβ 4861 2–4 (3s,3p,3d – 4s,4p,4d,4f)

[O III] 4958.9, 5006.6 2p2(3P1,2 −1D2)

[N I] 5179.9, 5200.4 2p3
(

4So
3/2 −2Do

3/2,5/2

)
[Fe XIV] 5302.86 3s23p

(
2Po

1/2 −2Po
3/2

[Fe VII] 5721.11 3p63d2(3F2 −1D2)

[N II] 5754.6 2p2(1D2 −1S0)

He I 5875.6–5875.97 1s2p
(

3Po
0,1,2

)
− 1s3d(3D1,2,3)

[Fe VII] 6086.92 3p63d2(3F3 −1D2)

[O I] 6300.30, 6363.78 2p4(3P2,1 −1D2)

[Fe X] 6374.53 3s23p5
(

2Po
3/2 −2Po

1/2

)
[N II] 6548.1, 6583.4 2p2(3P1,2 −1D2)

Hα 6563 2 – 3 (2s,2p – 3s,3p,3d)

[S II] 6716.5, 6730.8 2p3
(

4So
3/2 −2Do

5/2,3/2

)
[Ar III] 7135.8 3p4(3P2 −1D2)

[O II] 7319.9–7329.6 2p3
(

4Do
5/2,3/2 −2Po

3/2,1/2

)
[Ar III] 7751.1 3p4(3P1 −1D2)

of the central object M , fall off in the same way as 1/r2,
their ratio

Frad

Fgrav
= (σTL/4πcr2)

(G Mme/r2)
(13.2)

is independent of the distance r from the central
object. When the gravitational and radiative forces are
equal,1 this simple relation provides a specific limit

1 A discussion of radiative accelerations is given in Chapter 11.

on the luminosity of the object, called the Eddington
luminosity

LEdd = G M4πcme

σT
. (13.3)

For protons, assuming the same Thomson opacity as
electrons, LEdd= 1.26× 1038(M/M�) erg s−1. This is
also the lower limit on the Eddington luminosity for the
H atom, with the proviso that the opacity would be higher
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TABLE 13.2 Allowed and intercombination lines in broad-line regions.

Ion λ(Å) Transitions

Lyγ 972.5366, 972.5370 1s(2S1/2)− 4p
(

2Po
1/2,3/2

)
Lyβ 1025.7218, 1025.7229 1s(2S1/2)− 3p

(
2Po

1/2,3/2

)
Lyα 1215.6682, 1215.6736 1s(2S1/2)− 2p

(
2Po

1/2,3/2

)
C II 1334.53,1335.66,1335.71 2s22p

(
2Po

1/2,3/2

)
− 2s2p2(2D3/2,5/2)

C IV 1548.20, 1550.77 2s(2S1/2)− 2p
(

2Po
3/2,1/2

)
He II 1640 2–3 (2s,2p – 3s,3p,3d)

C III 1908.73 2s2(1S0)− 2s2p
(

3Po
1,2

)
C II 2324.21, 2328.84 2s22p

(
2Po

1/2,3/2

)
− 2s2p2(4P1/2,3/2,5/2)

He II 4686 3–4 (3s,3p,3d – 4s,4p,4d,4f)

Hβ 4861 2–4 (3s,3p,3d–4s,4p,4d,4f)

He I 5876 1s2p
(

3Po
1

)
− 1s3d(3D1,2)

O I 6300.30, 6363.78 2s22p4(3P2 −1 D2,
3 P1 −1 D2)

Hα 6563 2–3 (2s,2p–3s,3p,3d)

O I 8446.5 2s22p3(4So)
[
3s

(
3So

1

)
− 3p(3P1,2)

]
N V 1238.82, 1242.80 2s(2S1/2)− 2p

(
2Po

3/2,1/2

)
O IV 1397.23, 1407.38 2s22p

(
2Po

1/2,3/2

)
− 2s2p2(4P1/2,3/2,5/2)

S IV 1393.76, 1402.77 3s(2S1/2)− 3p
(

2Po
3/2,1/2

)
Mg II 2795.53, 2802.71 3s(2S1/2)− 3p

(
2Po

3/2,1/2

)

than the Thomson value. Therefore, matter in a radiative
source must have L ≤ LEdd to ensure gravitational sta-
bility against radiation pressure, for the object to exist.
Despite this simple theoretical argument, there are many
instances of AGN with L > LEdd, particularly NLSy1s
with high accretion rates. In solar units of luminosity and
mass, L� and M�, respectively, the maximum luminosity
is given by

L

L�
≤ LEdd

L�
= 4πGmp M

σTL�
= 3.2× 104(M/M�).

(13.4)

Since L(AGN)∼ 1012L�, massive stars that may pro-
duce this much energy from thermonuclear reactions must
be 108 times more massive than the Sun. Such stars do
not exist! Even stars less than 100 times as massive than
the Sun, such as the Wolf–Rayet stars, have strong and
fast radiatively driven winds that carry away a significant
fraction of stellar mass, and are therefore on the verge of
radiative instability (recall the discussion on the LBV η

Car discussed at the end of Chapter 10). So, single massive
stars cannot be the source of the amount of energy gener-
ated within AGN, both from a dynamical and a spectral
point of view.

But what about clusters of massive stars at the centre
of galaxies? Again, quite logical to ask, but ruled out by
considerations of the size of the emitting region and stel-
lar spectral properties. As shown below, the size of the
nucleus is estimated from spectral-time variablity studies
to be of the order of 0.01 pc, or 0.03 light years. Thus apart
from the fact that the observed spectra of AGN are quite
different from thermal stellar spectra, the small physical
size makes it impossible for stars, or clusters thereof, to
constitute the nucleus. Therefore, the source of energy
needs to be from conversion of much more mass into
energy than can be achieved by nuclear fusion. Hence the
SMBH paradigm, which rests simply on the assumption
that the observed luminosity

L = εṀc2, (13.5)
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is due to conversion of mass Ṁ into energy via some
unknown efficiency fraction ε. Exactly how this happens is
at the heart of the AGN conundrum. For instance, the effi-
ciency of graviational-to-mechanical energy conversion
depends on the rotation the black hole; ε is ∼5% for a
non-rotating Schwarzschild black hole, but can be up to
∼50% for a a rotating Kerr black hole, since the last sta-
ble orbit for accreting matter is much farther in the latter
case. With the working SMBH paradigm then, the task
is to understand black-hole physics and the matter–light
interactions occurring under the influence of extreme
gravity.

13.1.3 Black hole masses and kinematics

The spectra of AGN in several lines and wavelength bands
show variations attributed to black hole activity. This vari-
ability or ‘reverberation’ may be exploited to ascertain
black hole masses and other properties of the emitting
region – such studies are called reverberation mapping
[343, 344, 345, 346, 347]. A straightforward manifes-
tation is exemplified by the simple picture of ‘orbital’
motion of BLR clouds around a SMBH. In that case, the
observed Doppler velocity dispersions may be inferred by
the widths of bright hydrogen lines Hα or Hβ typical of
ionized H II regions (Fig. 8.3). If the centrifugal force of
the BLR with mass mBLR is balanced by the gravitational
force due to the SMBH of mass MBH then

(mBLR)(v
2
FWHM)

RBLR
= (G MBH)(mBLR)

R2
BLR

, (13.6)

where vFWHM, dispersion at full width half maximum, is
inferred from the width of the line formed in a BLR cloud
at a distance of RBLR from the central black hole, whose
mass would then be

MBH = < v2 > RBLR

G
. (13.7)

Measured velocity dispersions of BLR clouds of up to
0.1c, at a distance of∼0.1 pc from the black hole, gives an
order of magnitude estimate of its mass to be ∼ 108 M�,
radiating at the Eddington limit of ∼ 1012L�. Observed
velocities and AGN luminosities imply the SMBH masses
to be in the 106−9 M� range.

A further refinement is due to the fact that the geom-
etry of an AGN is determined by the orientation of the
BH-disc-BLR viewing angle i. Therefore, the BLR veloc-
ity is not likely to be isotropic. We may assume that it
comprises two components, vp parallel to the disc, and vr

accounting for random (radial) motions. Then it may be
shown that the black hole mass is given by

MBH = 1

4(vr/vp)2 + sin i

(
v2

FWHM RBLR

G

)
. (13.8)

The parameters on the right, including the geometi-
cal anisotropy factor, are determined observationally and
by modelling. There are several methods for determin-
ing black hole masses, relying on the virial theorem,
which embodies the basic kinematics outlined above in
the relation

U = 1

2
 , (13.9)

where U is the kinetic energy and  is the gravitational
potential energy.

13.1.4 The M• − σ∗ relation

A remarkable correlation has now been established
between the masses of central black holes and the dis-
persion in velocity of stars in the bulge of galaxies (e.g.,
[348, 349, 350]), as shown in Fig. 13.2. The tight cor-
relation is clear evidence that every galaxy with a bulge
has a SMBH. It suggests that the growth of the central
black hole is related via some feedback mechanism to
the mass of the galaxy, and consequently its growth and
evolution. This correlated growth in both the black hole
and the galaxy now provides a framework and a connec-
tion between AGN activity, as determined by the SMBH
and the host galaxy (albeit those with a bulge). Observa-
tional techniques for determining black hole masses [351]
relying on spectral properties and the virial theorem are:
reverberation mapping [343, 344, 345, 352], the bulge/BH
mass ratio [353, 354], disc luminosity [353, 356], Hα line
analysis, the IR calcium ‘triplet’ CaT (Chapter 10) mea-
surements [357], and X-ray variability or power-spectrum
break ([351, 358, 359] (also as discussed later with refer-
ence to Fig. 13.6).

The correlation in Fig. 13.2 has been quantitatively
determined emprirically as

M•(BH) ∝ σα∗ . (13.10)

A more refined analyis assumes a log-linear M• − σ∗
relation: log (M•/M�) = α + β log σ∗/σ0, where α =
7.96±0.03, β = 4.02 and σ0 = 299 km s−1 [351]. The scat-
ter does not increase with SMBH mass, although black
holes may grow via several processes, such as galaxy mer-
gers and gas accretion. This implies the existence of a
feedback mechanism. Such a scenario had been proposed
on theoretical grounds for SMBH formation preceding
first stellar formation [349]. Gravitational collapse of pri-
moridal giant clouds of cold dark matter could form
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FIGURE 13.2 The M• − σ relation between the
central black hole mass and stellar velocity
dispersion σ∗ (measured in km s−1) in the bulge,
for both active and inactive galaxies [350].

M•> 106 M�,2 followed by stellar formation in the spher-
oidal bulge. The virial theorem (Eq. 13.9) would then apply
between the gravitational potential and the velocity dis-
person of stars, as observed. As the black hole grows via
accretion, it radiatively drives ever more intense winds
that would shut off the accretion flow at some point, the-
reby regulating the activity of the central source. Further-
more, like a thermostat or a hypothetical ‘valve’, it would
also serve to decouple the rest of the galaxy and its evo-
lution. Nevertheless, it is logical to conclude that all galax-
ies – AGN hosts and non-active galaxies – undergo
episodes of periodic central activity driven by the SMBH.
Observationally, the M• − σ relation appears to hold for
both active and non-active galaxies, implying that galaxy
formation may be initiated by the central SMBH for all
galaxies in periodic phases of activity. Finally, the excep-
tions from the M• − σ relation in Fig. 13.2 are the
NLSy1s with high L/LEdd, which is also an argument that
NLSy1s are young AGN with rapidly growing black hole
mass [342].

13.1.5 Size of the emitting region

The Spectra of AGN exhibit variability in the lines as well
as the continuum (not always correlated), typically on a
scale of days to weeks. This timeframe constrains the size
of the emitting region,

2 The primordial cloud masses need to be large so as not be disrupted by

supernova-driven winds [349].

D = c
t, (13.11)

where 
t is the period of observed variability and is
interpreted as the light crossing time; multipled by c it
gives the maximum size of the region responsible for
emission. The variablity of BLR lines indicates their size
to be less than 0.1 pc, and the variability of the con-
tinuum indicates the size of the central source to be
even smaller. Figure 13.3 shows the variability of emis-
sion lines. The continuum in the Seyfert 1 galaxy 3C
390.3 belongs to an interesting class of broad-line radio
galaxies. Over an approximately ten-year timeframe, there
is pronounced variation in the continuum flux, as well
as line-flux profiles of the Balmer series, Hα, Hβ, etc.
While the strengths of the narrow [O III] 4959, 5007 lines
remains constant, the continuum and the broad emission
lines underwent a strong increase from August 1994 to
October 2005. The non-variability of NLR lines points
to their origin in a region much farther away than the
BLR from the central source. The double-humped shape
of the Hα line profile is generally interpreted as the signa-
ture of accretion disc emission due to rotational Doppler
motion.

13.1.6 States of black hole activity

The SMBH paradigm depends on the release of gravita-
tional energy during accretion of matter on to the central
black hole. Since X-ray spectra originate from the closest
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FIGURE 13.3 Line and continuum variability in the
Seyfert 1 broad-line radio galaxy 3C390.3 (Courtesy: M.
Dietrich). The unbroadened forbidden [O III] lines at λ ∼
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observable regions to the central source, including possi-
bly the innermost stable orbits within the accretion disc,
the X-ray fluxes are indicative of the level of black hole
activity. A dichotomy reveals itself by the two approxi-
mate bands of emitted energy, in the soft X-ray spectra
between 0.5–2 keV, and relatively hard X-ray spectra
between 3–10 keV. The two ‘states’ of emission from an
AGN may be characterized either by a high level of soft
X-ray flux, or a low level of hard X-ray flux, giving rise
to the terminology ‘high / soft’ or ‘low / hard’ states, relat-
ing black hole activity and the hardness of the spectrum.
Figure 13.4 shows the low and high states for a bright
AGN Mrk 335 (as named in the Markarian catalogue of
bright active galaxies).

These two ‘states’ of black hole activity may be
understood in the sense that a high X-ray flux indi-
cates considerable material interactions in the accretion
disc, that would tend to reprocess mechanical energy
and ‘thermalize’ the emitting plasma. The resulting flux
is characterized by peak emission towards energies and
temperatures in the 1-2 keV (∼106−7 K) range, or soft
X-rays. L-shell excitation in Fe ions plays a big role in soft
X-ray production. Such a situation would correspond to a
high accretion rate. Contrariwise, when the accretion rate
is low, the observed spectrum is dominated by the non-
thermal component characteristic of black hole activity,
associated with a relatively quiescent accretion disc and
low flux levels of hard X-ray emission.

There are myriad observations of emission lines orig-
inating in the hot coronal line region surrounding the
accretion disc. In the aforementioned AGN Mrk 335
(Fig. 13.4), was recently observed by X-ray instruments
aboard the Gamma-Ray Burst Explorer Mission Swift,
and the X-Ray Multi-Mirror Mission – Newton (XMM)
space observatories, and found to be in an historically low
X-ray flux state in 2007, in contrast to earlier observations
of much higher flux [360]. But an important caveat is in
order when interpreting the variability in flux levels from

AGN. To a significant extent, the interpretation is model
dependent, indicating different levels of activity in the
central SMBH environment. We mention two scenarios
that are often invoked: the partial absorber model and the
reflection model. If an absorbing cloud of gas intervenes
along the line of sight then obviously the flux would drop
and lead to observed variations. In the reflection model,
the thermal disc emission is complemented by hard emis-
sion from the hot corona being reflected from the cooler
disc (e.g., [328]), and emission lines due to fluorescence
and (e + ion) recombination (the most interesting example
is the fluorescent Fe 6.4 keV X-ray line discussed later).

Remarkably, in spite of the greatly diminished flux
from Mrk 335, the soft X-ray emission lines of highly ion-
ized Fe ions, N VII, O VII and others are sufficiently bright
to enable high-resolution spectroscopy, as also shown in
Fig. 13.4. Therefore, the X-ray properties and variability
can be studied to constrain spectral models. Spectral anal-
ysis of especially the forbidden ( f ), intercombination (i)
and resonance (r ) lines of He-like O VII (Fig. 8.8), and line
ratios R ≡ f/ i and G ≡ (i + f )/r are powerful diagnos-
tics of density, temperature, and ionization equilibria (as
discussed in Chapters 10 and 8).

The O VII line ratios in Mrk 335 have been mea-
sured with high uncertainties, and reported to be r /i =
0.38±0.25 and G = ( f +i)/r = 4.30±2.70 [361]. Neglect-
ing the large error bars (for illustrative purposes), these
ratios seem to suggest the intercombination i-line to be
nearly three times stronger than the resonance r -line,
quite different from normal coronal situation where the
reverse is true (cf. Fig. 8.10). The suggested mechanism
for this line intensity inversion between the i and f lines
could be photo-excitation from the 1s2s(3S1) level of
O VII upwards to the 1s2p(3Po

1) level, which then decays
preferentially into the i-line 1s2p(3Po

1) → 1s2(1S0),
thereby making it stronger at the expense of the f -line
1s2s(3S1)→ 1s2(1S0). The high value of the observed G
ratio ∼ 4.3, in contrast to normal coronal value of ∼ 0.8,
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indicates a photoionized plasma rather than a collisionally
ionized one (Fig. 8.14).

13.1.7 Radio intensity

Historically, radio-loud objects at high-redshift were ini-
tially called quasi-stellar radio sources, or quasars. Here,
‘radio-loud’ is defined by comparing the ratio of the
radio luminosity3 in the ν∼ 5 GHz (λ∼ 6 cm) range
to the total bolometric luminosity, e.g., the flux ratio
F(5 GHz)/F(B)> 103 [362]. In 1963 Maarten Schmidt
discovered that the optical emission lines from the quasar
3C 273 were redshifted, and that the source was at a large
distance from the Milky Way (z = 0.158). It followed that

3 We have eschewed discussion of radio lines since it is rather

specialized spectroscopically, and primarily related to molecular

emission, say from CO, SiO, etc.

3C 273 was an extremly bright object, given its apparent
luminosity. A large number of such quasi-stellar objects
or QSOs are now known, but it turns out that most of the
QSOs are indeed radio-quiet.

Although only about 10% of AGN are characterized
by significant radio emission, they were in fact first dis-
covered as radio sources. B. L. Fanaroff and J. M. Riley
(hereafter FR [363]) divided the radio-loud sources into
two groups, essentially defined by their morphology.
Images of radio-loud AGN appear to have two large and
radio-bright lobes on either side of a source in the mid-
dle or the core. A jet is often clearly visible close to
either the core or the lobes, all thereby connected by a
relatively straight line. The distinction between the two
types is given by the ratio of the distance between the
brightest spots on either side to the total size. If this ratio
is less than about 0.5, a radio-loud AGN is referred to as
FR1. In FR1, the central source is the dominant source of
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radio emission, with the jet seen as linked to the source.
The FR1 are therefore called the core-dominated radio-
loud AGN. In contast, the second kind, the FR2, are the
lobe-dominated ones, with a ratio of greater than 0.5, and
two separate and symmetrical lobes as the dominant radio
sources. However, the two criteria – radio luminosity and
the distance ratio – are sometimes blurred in the sense
that the core radio emission may be comparable to that
of the lobe(s), although the distance ratios may indicate
otherwise. Finally, it is interesting to note that the mechan-
ical energy output in these jets stemming from the central
source is enormous, and carve out gigantic cavities in the
IGM. The total energy output can approach 1060 erg, a
billion times more that from a supernova.

Radio intenstity of AGN is measured relative to the
optical luminosity, i.e., LR/LO. However, even in the
radio-loud AGN, this ratio is only about 1%. The extreme
radio-loud AGN are also classified as those that are jet
dominated and oriented towards the observer. As such,
their continuum dominates the emission and subsumes
any spectral features. The high intensity emission may
range over a wide flat spectrum, sometimes from radio
to gamma rays orginating from the pointed jet or rela-
tivistic material; such objects are called blazars. Another
sub-class is called optically violent variables (OVV),
if an intense optical continuum dominates any other
emission.

At least 10% of luminous radio-loud quasars constitute
a sub-class of broad absorption line (BAL) objects that
exhibit not only lines that are broad but also blueshifted.
They imply high-velocity outflows that absorb impinging
radiation from the central source along the line of sight to
the observer. Recent spectropolarimetric studies show that
some quasars seen face-on have non-equatorial outflows
whose spectra are polarized parallel to the radio axis by
an equatorial scattering region [364]. Polarization studies
therefore also reveal information on the morphology and
dynamics of such quasars.

13.2 Spectral characteristics

Historically, the AGN classification scheme depends on
the observed spectral properties in the optical. Among
the most common are the Balmer Hα and Hβ lines,
and the forbidden 5007 Å [O III] line. But over the
years observations in other wavelength ranges have
acquired increasing importance in revealing the substruc-
tures and kinematics of AGN. For example, the Fe II lines
from AGN are observed from the near-infrared to the
near-ultraviolet, and potentially contain a plethora of

information, discussed later in more detail. Whereas a
thermal source, such as a star, is characterized by a black-
body continuum, the non-thermal source in AGN implies
a power-law continuum, defined as

Fν ∼ ν−α, (13.12)

where α is called the spectral index (the observed flux F
is the measure of luminosity L). One of the most remark-
able facts about spectral variation in AGN is the constancy
of energy output, which is roughly the same in all wave-
length ranges from radio to hard X-ray. Figure 13.5 shows
a composite spectral energy distribution (SED) across
all bands of electromagnetic radiation, log νFν vs. log
ν, from various sources. The solid curve in Fig. 13.5 is
the median distribution for radio-loud quasars, and the
dashed line is for radio-quiet ones. They are compared
with another median distribution from a 2 μm wavelength
band survey called 2MASS [365], preferential to so-called
‘red-AGN’. The reddening of the spectra in the 2MASS
survey derives from dust obscuration, and consequently
enhanced extinction at UV and X-ray energies with lower
fluxes in the high-energy range. The SED of the radio-loud
quasars at both the low-energy and the high-energy ends is
dominated by jet emission, and is higher in log νFν than
the radio-quiet AGN. Figure 13.5 shows the difference
at radio wavelengths, and towards high energies where
the radio-loud AGN exhibit a strong hump around 1 MeV
∼ 1020 Hz (somewhat beyond the rising solid curve on
the right-hand side in Fig. 13.5).

Although the common feature in all AGN SEDs is
the high-energy flux, which remains relatively constant,
it is clear from Fig. 13.5 that fits to the power-law con-
tinuum in different multi-wavelength bands may differ
significantly. Figure 13.6 shows a composite quasar spec-
trum obtained from the Sloan Digital Sky Survey [367]. It
shows the characteristically strong UV and optical lines,
superimposed on an underlying continuum fitted with two
spectral indices, αν = −0.46 in the ultraviolet and αν =
−1.58 in the optical.

Likewise, the spectral index in the X-ray ranges from
+0.5 to −2.0 in the soft X-ray (0.1–3.5 keV), and from
about −0.5 to −1.0 in the hard X-ray (2–10 keV). X-ray
astronomers often use the parameter � = (α + 1), called
the photon index,

FE ∼ E−�. (13.13)

The spectral or the photon indices are related to AGN
activity, which depends on the accretion rate on to the
SMBH through the parameter L/LEdd (e.g., [339, 368]).

Why are the few emission lines in Fig. 13.6 so com-
monly observed, not only in AGN but also from many
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other astrophysical sources? It is worth examining the
underlying atomic physics. There are several reasons
(apart from the obvious fact that the lines happen to lie
in the wavelength region being considered): (i) abundance
of elements, (ii) locally optimum physical conditions for
spectral formation, such as the excitation temperature

and critical densities for a particular transition in an
ion, (iii) temperatures and densities where particu-
lar ions are abundant and (iv) the atomic parameters
that determine the strengths of lines. The sometimes
intricate interplay of these factors determines the line
intensity.
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Most of the lines are from H, C and O, which are the
most abundant elements (with the exception of He, which
has very high excitation energies owing to its closed shell
atomic structure). Recall that the H-lines Lyα, Hα , etc.,
are formed via (e + H+)→ H0(n�) recombination, and
cascades to n = 2 levels: n� → n = 2�, 3�. The tem-
peratures in the BLR and NLR are of the order of 104 K,
which implies low ionization stages. So what could be the
reason for the presence of strong lines from ions such as
C IV, given that the ionization energy of C III → C IV is
47.9 eV? Multiply ionized ions are produced by photoion-
ization from the central source. The C IV 1549 UV line
is due to the strong (lowest) 2s − 2p dipole transition(s)
1s22s 2S1/2 → 1s22p 2Po

1/2,3/2; the two fine structure
components are usually blended as a single feature, owing
to Doppler velocity broadening in BLRs. The strength of
the 2s − 2p transition is characteristic of all Li-like ions,
such as C IV.4 The oscillator strength for the combined
transition(s) is relatively large, f = 0.285. Although the
transition energy is about 8 eV, photo-excitation by the
strong UV background radiation field results in a strong
line.

The other carbon line, the Be-like C III intercombina-
tion line at 1909 Å, is due to the lowest C III transition
1s2s2 1S0− 1s2p 3Po

1 with an excitation energy of 6.4 eV.
But here the f -value is very small, f = 1.87 × 10−7.
So why is the line so strong? This transition is excited
largely by electron impact. The collision strength for this
transition  (21S0 − 23Po

1) is considerably enhanced by
resonances (Chapter 5), due to strong coupling between
the 23Po

1 and the higher level 1s2p(1Po
1), which is con-

nected to the ground state via a strong dipole transition
with f (21S0 − 21Po

1) = 0.7586. But the excitation energy
of the allowed transition E(21S0−21Po

1) is twice as high,
about 12.7 eV (977 Å), as the intercombination transi-
tion (21S0 − 23Po

1). Thus, the Maxwellian distribution of
electrons at 104 K has far fewer electrons in the exponen-
tially decaying tail of the distribution to excite the allowed
977 Å line in C III, as opposed to the intercombination
line at 1909 Å. But the two transitions are intimately con-
nected by atomic physics: the higher energy dipole tran-
sition effectively enhances the intercombination line indi-
rectly via resonance phenomena, often central to atomic
processes (cf. Chapter 3).

4 Another Li-like ion of great importance in astronomy is O VI. The two

fine-structure lines are at λλ 1032, 1038 Å in the for ultraviolet.

Because the O VI lines are from a higher ionization stage, the two

components are separated more than C IV, and are often resolved. The

O VI lines have great diagnostic value in studies of the ISM, Galactic

halo, the solar corona and many other objects. To a lesser extent,

Li-like N V lines at ∼1240 Å are also commonly observed.

The Mg II 2802.7 Å line is again due to the lowest
dipole 3s–3p transition, with a large f = 0.303, and a low
transition energy of 4.4 eV. Therefore, it is easily excited
by photo-excitation or electron impact [369]. Finally, the
ubiquitous [O III] lines (λλ 4363, 4959, 5007 Å) are due
to strong collisional excitation of forbidden transitions
2p4(3P0,1,2 →1 D2,

1 S0), seen in most nebular sources
(Chapter 12).

In a wide multi-wavelength range, 25<λ< 10, 000 Å,
or 1–500 eV, AGN spectra show a pronounced excess
above a relatively smooth continuum. The enhanced emis-
sion towards the blue shows a broad peak somewhat
shortward of Lyα , about 1050–1200 Å or 10–12 eV,
referred to as the ‘big blue bump’ (bbb) [370]. In Fig. 13.5,
the frequency region around∼1015 Hz corresponds to this
broad enhancement in observed flux. X-ray to UV obser-
vatories, ROSAT, IUE, HST, XMM, SWIFT and others,
have delineated various aspects of the ‘bbb’. Theoreti-
cally, the bbb around 10 eV is expected for emission
predicted by the thin-disc models, assuming the disc to be
radiating as a black body (which may be far from the real
scenario5).

13.3 Narrow-line region

The narrow-line regions are far away from the central
source, approximately 100 pc from the black hole. In the
outer ionized regions of the AGN, which are weakly irra-
diated or gravitationally influenced by the central engine,
the ionized plasma is like an H II region with forbid-
den, narrow lines of familiar nebular species [O I], [O II],
[O III], [N II], [Ne III], etc. Table 13.1 lists the typical nar-
row lines (cf. [228, 311]). The lines are generally due to
forbidden transitions of low energy between same-parity
levels belonging to the ground configuration. As such,
they are closely spaced in energy in singly or doubly
ionized atoms. The H and He lines are usually due to
electron–ion recombination into excited Rydberg levels,
followed by cascades via allowed transitions (see also
Chapter 12 on nebulae and H II regions).

The background ionizing continuum is, of course, dif-
ferent from the stellar continuum in nebulae, but the
high-energy flux is heavily attenuated by the intervening
regions of the AGN, so that only a limited amount of UV
flux is available and produces low ionization stages of ele-
ments. As might be expected, the narrow-line spectra of
AGN and their velocity distributions may span an entire

5 Equation 7.4 in [371] derives an approximate relationship in terms of

black-body photon emission from inner regions of an accretion disc

around 10 eV.
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range up to those found in broad line regions (viz. the
spectral sub-divisions between Seyferts 1 and 2). In any
case, the essential discriminant is that the narrow line
regions are more indirectly subjected to AGN activity than
the broad line regions, as determined by the geometry
associated with the SMBH paradigm depicted in Fig. 13.1.
Therefore, the essential spectroscopic physics of NLRs is
typical of the H II regions discussed in Chapter 12.

13.4 Broad-line region

By contrast, the ionized clouds in the BLR have high
systemic bulk velocities due to gravitational motions
around the central black hole. The resulting spectra show
extremely broad lines whose Doppler widths approach a
FWHM of up to 0.1c. While the proximity of the BLR
to the black hole, about 0.1 pc, explains the high veloci-
ties, the physical mechanisms that result in the observed
emission are not well-understood. In particular, it is not
entirely clear in what way photoioization or collisional
processes determine the ionization balance and excite the
observed spectrum, especially in the case of anomalous
Fe II flux from a sub-class of quasars (see next section).
In addition, radiative transfer effects play an important
role in determining the observed spectrum. Whereas the
BLR spectra should reveal certain characteristics of the
central source, theoretical models of the BLR are often
unsatisfactory in being able to account for the coupling
between the central engine and the ionized gas. Table 13.2
lists some common BLR emission lines in the UV/optical
range, primarily due to allowed or intercombination E1
transitions (Chapter 4).

The relative fluxes in the BLR lines differ greatly
among AGN, and are distinct from the NLR fluxes. One of
the most significant differences, apparent from the list of
lines in Tables 13.1 and 13.2, is the absence of forbidden
lines in the BLR. This immediately suggests electron den-
sities higher than the critical density for quenching line
emission due to transition i → j , given by

Nc >
A ji

qi j
. (13.14)

Since the A-values for forbidden transitions are often
very low, say A ∼ 10−2 s−1, and electron impact excita-
tion rate coefficients are, say q ∼ 10−10 cm3 s−1, the
critical densities Nc ≥ 108 cm−3. These densities are
sufficient to quench most forbidden lines, as happens in
BLRs in contrast to NLRs.

The extreme velocities observed in the BLR have inter-
esting consequences, owing to Doppler broadening and
excitation of lines. For example, for a given velocity of

3000 km s−1, the Doppler width of Lyα at 1215 Å is

λ/λ = v/c = 0.01, or more than 10 Å. This implies that
the intense Lyα radiation, subject to significant trapping
within the BLR owing to its very small optical depths, is
capable of exciting lines with λ ≈ 1215± 5Å. An impor-
tant example is Fe II, whose closely spaced levels can be
strongly excited by Lyα fluorescence. These processes,
and iron emission from AGN-BLR, are discussed in the
next section.

13.5 Fe II spectral formation

We have discussed the forbidden [Fe II] lines in
Chapter 12, as observed from the optically thin nebulae
and H II regions. Here, we extend the discussion to the
AGN-BLR where the physical conditions and excitation
processes are quite different. Moreover, the underlying
activity due to the central SMBH source manifests itself
in defining the characteristics of BLR spectra. In contrast
with the discussion of high energy spectra of highly ion-
ized species emanating from the inner regions of AGN
that follows later, low ionization stages of iron provide a
useful and equally intriguing view of the outer regions –
none more so than singly ionized iron. We already know
that Fe II lines are prominent in the spectra of many astro-
physical objects, such as the Sun and stars in general,
all kinds of nebulae, supernovae, etc. But their presence
in AGN and quasar spectra constitutes a special prob-
lem, owing to the extent and enormous intensity of the
observed Fe II emission. For that reason it is necessary
to study Fe II spectra in the AGN context, although the
discussion of individual optical and infrared lines and line
ratios is applicable generally to other sources as well. The
ultraviolet spectra of BLRs of AGN show thousands of
blended lines, mainly from Fe II [372]. The Fe II lines are
so extensive as to form a pseudo-continuum that under-
lies the rest of the BLR spectra. Figure 13.7 shows the
spectra of the prototypical strong Fe II emitter, the QSO I
Zw 1, classified as a narrow-line Seyfert 1 galaxy [373].
The observed spectra from other atomic species in the
1500–2200 Å range [374, 375] are overlayed on the Fe II

pseudo-continuum obtained from non-LTE calculations
with an exact treatment of radiative transfer. These ‘the-
oretical templates’ of Fe II are useful in the interpretation
of Fe II spectra in general, and have been tabulated with
approximately 23 000 line fluxes ranging from 1600 Å to
1.2 μm for different BLR models [373].

Observationally, it is also possible to synthesize many
different spectra of typical AGN and derive a represen-
tative ‘template’. One of the most studied QSOs is the
aforementioned super-strong Fe II emitter I Zw 1, the
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prototypical NLSy1. Observational templates have been
constructed in the optical [338] and in the ultraviolet
[352]. The observational templates implicitly assume a
‘typical’ AGN spectrum, which may be scaled in some
way when analyzing individual objects. But differences in
physical conditions, such as Doppler blending, raise cer-
tain complications (which may of course be ameliorated
by combining the analysis with theoretical templates).
Often the Fe II spectra present such complications that
observational templates are used to subtract the Fe II con-
tribution from AGN spectra so as to facilitate the analysis
of the remainder of the lines from simpler species, such as
C IV and O III.

Numerous Fe II lines have been identified in the opti-
cal [338, 376] and in the near-infrared [377, 378]. Since
AGN plasmas are essentially photoionized, we expect that
photoionization models should be able to reproduce the
strengths of Fe II lines. Yet another approach is to invoke
mechanical heating of clouds shielded from the central
continuum source, with Fe II emission orginating in or
close to the outer accretion disc (e.g., [356]). That is also
the reason we observe strong Fe II emission from Seyfert
1s, but not from Seyfert 2s. However, in spite of decades of
theoretical modelling, combined with many observational
programs (e.g., [379]) there remain large discrepancies in
reproducing observed intensities. The nature of the Fe II

problem becomes clear when one considers the fact that
the cumulative Fe II lines are much more intense even than
hydrogen lines, typically Fe II (UV/optical)/Hβ ∼ 10, and

ranging from∼ 2–30 for super-strong Fe II emitting QSOs
[380, 381]. This, in turn, appears to imply several factors:
(i) lack of understanding of the underlying physical mech-
anisms that form Fe II lines, (ii) incomplete atomic and
radiative models, (iii) uncertainty about the nature of line
formation regions surrounding the central source of AGN
and (iv) abnormal iron abundances.

13.5.1 Fe II Excitation Mechanisms

To address these issues, it is first essential to describe the
basic spectral physics of Fe II in detail, beginning with
the description in Chapter 12 on ionized gaseous nebu-
lae. As we noted in the nebular context, the complexity of
the Fe II spectrum arises mainly from the fact that there
are a large number of coupled and interacting levels in the
low energy region (Fig. 12.5 schematically shows some
of the prominent transitions). To recap and extend the ear-
lier discussion, the ground configuration of Fe II and the
lowest two LS terms are: 3d64s(a6D, a4D). Lying close
to it is the next excited configuration and its two lowest
two terms, 3d7(a4F, a4P). All four LS terms, and their
fine structure levels, are easily excited collisionally and
give rise to strong near-infrared forbidden lines, such as
the 1.6436 and 1.2567 μm lines (Fig. 12.5). Transitions to
higher levels of the same (even) parity result in forbidden
optical lines, such as the λλ 4815, 5159 Å. The lowest
odd-parity levels are: 3d64p 6,4(D,F, P)o. These sex-
tet spin-multiplicty (2S + 1) terms are connected to the
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even-parity ground state 6D via dipole allowed ultraviolet
transitions such as at λλ 2599, 2382, 2343 Å. The quartet
odd terms, on the other hand, decay to even-parity quar-
tet terms, also via dipole transitions, resulting in allowed
optical lines, such as λλ 4233 and 5198 Å.

An interesting variation in the above schematics is
introduced by the presence of the level a6S, which decays
to the ground level via a forbidden optical transition; it
also serves as the lower level for the 5169 Å allowed opti-
cal line due to decay from z6Po. Being an even-parity
term, the a6S can only be excited collisionally from the
ground term a6D, or other low-lying excited but populated
quartet levels; however, it is observed in AGN spectra and
is evidence of the occurrence of energetic collisional exci-
tation processes. While the lower levels are collisionally
populated at typical Te ≈ 1 eV, the energetics become
more complicated, owing to photo-excitations from the
lower levels up to high-lying levels of Fe II. To elucidate
the microphysics of Fe II emission, we discuss four princi-
pal excitation mechanisms. Figure 13.8 presents a greatly
simplified Fe II Grotrian diagram.

Continuum fluorescence
In Chapter 12, we discussed background UV fluorescent
excitation (FLE) in nebulae to explain the anomalous
intensity of some lines such as in O III and [Ni II]. The
FLE mechanism is driven by continuum UV radiation
absorption in strong dipole allowed transitions, followed
by cascades into the observed optical emission lines
(cf. [382]).

Collisional excitation
At temperatures Te ∼ 104K and densities ne > 108 cm−3

it is possible to excite the odd parity levels at ∼ 5 eV
(Fig. 13.8), followed by UV and optical decays. Thus col-
lisional excitation may be a major contributor to the Fe II

emission.

Self-fluorescence
The ‘unexpected UV’ transitions in Fig. 13.8 emanating
from 5 eV levels are due to absorption of the Fe II UV
photons by overlapping UV transitions at a large number
of coincidental wavelengths.

Lyα fluorescent excitation
The three mechanisms mentioned above are not suf-
ficient to reproduce the observed Fe II emission. But
a very effective radiative excitation mechanism is Lyα
pumping, schematically shown in Figs. 13.8 and 13.9
(cf. [383, 384, 385]). Also shown is a partial Grotrian
diagram of the quartet levels and multiplets that partici-
pate in Lyα FLE. In moderately dense plasmas encoun-
tered in AGN-BLR, ne≈ 109−12 cm−3, Lyα photons are

trapped (‘redistributed’), and excite the low-lying and sig-
nificantly populated even parity levels of Fe II to much
higher levels around 10 eV [383, 384, 386]. One par-
ticular case is the excitation of the 3d65p levels, which
subsequently decay into the e(4D,6 D) levels giving rise to
strong enhancement in the near-IR region 8500–9500 Å,
with a strong feature at 9200 Å [378, 384]. Furthermore,
cascades give rise to another set of optical and ultraviolet
lines (Fig.13.8).

Other examples of Lyα fluorescence are the excitation
of a4G − b4Go multiplet (the b4Go term lies at about
13 eV), followed by primary cascades into a group of
UV lines at λλ 1841, 1845, 1870 and 1873 Å [386], and
secondary cascades into a group of near-infrared lines
∼ 1 μm, as shown in Fig. 13.9 [378]. Many of these Fe II

near-infrared lines have been seen from NLSy1 galax-
ies [378], as well as from other objects such as a Type
IIn supernova remnant [387]. The detection of these sec-
ondary lines provides reasonably conclusive proof of the
efficacy of Lyα FLE not only in AGN but generally in
astrophysical sources with conditions similar to AGN-
BLR. In addition to Lyα, we also need to consider Lyβ
pumping of even higher levels of Fe II within the non-LTE
formulation with partial redistribution.

13.5.2 Fe I–Fe III emission line strengths

Thus far we have described line formation of strong transi-
tions in Fe II spectra (a fuller discussion, with and without
Lyα FLE, is given in [373]). Much of this understanding is
based on theoretical templates derived from sophisticated
non-LTE Fe II models at a range of temperatures and den-
sities, and including all known processes prevailing in the
BLR. Extending the models to include the adjacent ion-
ization stages, Fe I and Fe III including up to 1000 levels
(827 from Fe II), theoretical templates have been com-
puted to predict AGN iron emission from Fe I–Fe II–Fe III,
as shown in Fig. 13.10 [379]. The theoretical templates
can be compared with observational ones [373, 379]. The
computed line fluxes show that generally over 90% iron
emission is from Fe II at a range of ionization parame-
ters U ∼ 10−1.3–10−3 (see Chapter 12 for a definition
of U), and ne ∼ 109.6–1011.6 cm−3. The significant dis-
crepancies between theory and observations still point to
the fact that the Fe II problem remains at least partially
unsolved.6

6 The website www.astronomy.ohio-state.edu/∼pradhan gives a list of

Fe II fluxes generated from a model with U = 10−2, log10 NH = 9.6,

and a fiducial optical line flux log10 F(Hβ ) = 5.68 [373, 379]. The

model incorporates exact radiative transfer, up to 1000 levels, and Lyα,

Lyβ FLE. The line list may also be useful in spectral analysis of

sources other than AGN with significant Fe II and Fe III emission.
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13.5.3 Spectral properties and the central
source

The Fe II problem illustrates one aspect of several spec-
tral characteristics of AGN that appear to be driven by the
central source. The underlying physical parameter is the
relative accretion rate L/LEdd, which in turn is related to
the mass of the SMBH. In addition to Fe II, other spec-
tral parameters have been extensively utilized to attempt a
spectroscopic unification of AGN from the optical to the
X-ray band. These also include the Hβ FWHM, the 1541

Å C IV line equivalent width, the forbidden 5007 Å [O III]
line, and the X-ray spectral index αx . The attempt to cor-
relate some or all of these spectral features in a unified
model is sometimes referred to as Eigenvector 1 or prin-
cipal component analysis [338, 388]. The principal driver
of the elements or components of Eigenvector 1 is related
to the mass and accretion activity around the SMBH.

The inverse relationship between equivalent width and
luminosity observed in AGN is known as the Baldwin
effect [389, 390]. The original relationship is for the C IV
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FIGURE 13.9 Near-infrared lines of Fe II excited by Lyα fluorescence [378].

line due the transition(s) 2p 2Po
1 2,3 2

→ 2s 2S1 2. Since
Li-like ions are relatively easy to ionize, the C IV ion is
sensitive to the luminosity of the ionizing source. On the
other hand, the 2s–2p transition is easy to excite, with a
large oscillator strength, and therefore the corresponding
line is observed to be quite strong. Figure 13.11 shows the
ionization states of carbon as a function of temperature
in coronal equilibrium. It may be seen that C IV remains
in the plasma over the smallest temperature range of any
other ionization state; in other words, it is most sensitive
since it gets ionized away most rapidly. Ionization balance
curves in photoionized plasmas are similar, though all ion-
ization stages occur at lower electron temperatures, owing
to additional photoionization in an external radiation
field.

The origin of the Baldwin effect appears to be related
to other parameters that characterize the AGN phe-
nomenon, and associated spectral correlations of L vs.
Fe II and O III lines. The C IV equivalent width has been
anti-correlated for a sample of quasars to the ratio L/LEdd
and the [O III] 5007 Å line [390]. The Baldwin effect may
be generalized to other lines and wavelength ranges where
the basic principle applies: an ionization state sufficiently
sensitive to the intensity of radiation, and a strong transi-
tion. For example, an anti-correlation between the narrow
Fe Kα line at 6.4 keV (discussed in the next section) and
AGN X-ray luminosity has been reported [391]. Basically,

the underlying continnum flux in a high-luminosity AGN
is more intense, compared with the emission line flux, than
in a low-luminosity AGN.

13.5.4 Iron abundance at high redshift

One of the puzzles in QSO research is the consistently
high iron abundance even at high redshift, out to z ∼ 6.
The issue is significant as it has cosmological implica-
tions. Iron is produced only as the end product of stellar
evolution in supernovae Type Ia and Type II. Therefore,
detection of Fe emission at the earliest possible epoch in
the history of the Universe is a useful indicator not only
of chemical evolution but also of chronology. Since this
topic is related to others in cosmology – such as reion-
ization following universal re-lighting by the first quasars
and stars – we discuss it further in Chapter 12.

13.6 The central engine – X-ray
spectroscopy

We now describe the underlying atomic physics up to
the innermost regions of AGN. Spectroscopy of the ionic
species found in these inner regions reveal the kinemat-
ics of each component of the plasma. High-energy X-ray
observations probe AGN activity up to the accretion disc
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and the hot corona surrounding the central source. The
discussion in this section covers a range of X-ray spectral
properties of AGN in a systematic manner, beginning with
the most energetic atomic transitions.

13.6.1 Fe Kα X-ray lines and relativistic
broadening

The Kα complexes are the non-hydrogenic analogues of
the simplest atomic transition, the Lyα transition 1s →
2p. At first, that may seem to imply that the spectra should
be quite simple as well. But in fact that is not true, as
we saw in the detailed analysis of the He Kα complex of
Fe XXV lines observed in the solar corona (Chapter 9). The
spectroscopic analysis of Kα complexes is a minor sub-
field of astrophysical X-ray spectroscopy in itself. This
is partly because the Kα X-ray lines are usually well-
separated (given sufficient resolution of course), unlike

the multitude of overlapping L-shell and M-shell spectra
(discussed next).

We consider the Kα transition in all Fe ions. For all
ionization stages where the 2p-subshell is filled this transi-
tion is affected following ionization of the K-shell, leaving
a vacancy which is then filled by a downward 2p→ 1s
transition, i.e., Fe I–Fe XVII. The two fine-structure com-
ponents of this fluorescent transition are:

1s2s22p6(2S1/2)→ 1s22s22p5
(

2Po
1/2,3/2

)
at 6.403 84 and 6.390 84 keV, respectively called the Kα1
and Kα2 transitions.

Higher ionization stages of Fe with an open
2p-subshell, Fe XVIII–Fe XXVI are at higher energies and
give rise to a multitude of Kα lines due to the transi-
tions given in Table 13.3. It is worth emphasizing that
from an atomic physics point of view the so-called ‘Kα
lines’ are in fact mostly Kα resonances, corresponding to
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transitions into or from highly excited states with a K-shell
vacancy. The transition energies and the cumulative reso-
nant oscillator strengths for the Kα complexes are also
given in Table 13.3 [392].

For Fe XVII–Fe XXVI, the transition energy increases
from ∼6.4 keV for Fe XVII to up to 6.7 keV for the He-
like Fe XXV, and 6.9 keV for the H-like Fe XXVI (recall
the detailed discussion in Chapter 7 for He-like ions as
the most prominent X-ray diagnostics of high temperature
plasmas).

Perhaps the most interesting spectral observations
from AGN are the ones showing the effect of gravity of the
black hole, and one of the most direct observational evi-
dence of its existence. This signature of the central SMBH
is the extremely broad feature centred at 6.4 keV, shown in
Fig 13.12, corresponding to the fluorescent Kα transition
in Fe ions with a filled p-shell. The broad but asymmet-
ric 6.4 keV Kα line has been observed from a number of
sources. The first reported observation was from a Seyfert
1 galaxy MCG–6-30-15 6 [239]. Figure 13.12 shows a
more recent observation from the same galaxy [393]. The
line is greatly skewed towards the red (lower) energies all
the way down to ∼5 keV. The extreme width of the emis-
sion line, and its asymmetry towards the red wing, implies
its origin in the innermost stable orbits of the accretion
disc and gravitational broadening due to the proximity
of the black hole according to the theory of general
relativity.

Energies of photons emitted in the vicinity of a massive
black hole are lowered by an amount needed to ‘climb’
out of the gravitational potential well. These photons are
therefore redshifted with respect to the peak rest-frame
energy of the observer (Fig. 13.13). The redshifted pho-
tons originate in the innermost regions of AGN, close to
the last stable orbits of matter within the accretion disc at
r ∼ 3rs, or about three times the Schwarzschild radius

rs = 2G M

c2
. (13.15)

The gravitational redshift is given by

1+ z = 1√
1− 2G M

rc2

= 1√
1− rs

r

. (13.16)

Therefore the estimated gravitational redshift from
Eq. 13.16 of a 6.4 keV photon is about 5.2 keV.7

Since the 6.4 keV emission line is from L → K tran-
sitions in iron ions with a filled 2p-shell, Fe I–Fe XVII, the
line emitting environment is relatively ‘cold’, compared
with more highly ionized stages. It would probably cor-
respond to plasma in the accretion disc, moving along
magnetic field lines in stable orbits at T < 105 K. The Kα

7 There are several reviews of the spectroscopy of iron Kα lines based on

the theory of general relativity and related atomic astrophysics, e.g.,

C. S. Reynolds and M. A. Nowak [394] and D. A. Liedahl and D. F.

Torres [395].
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FIGURE 13.13 Gravitational broadening of Fe Kα emission line
from the close vicinity of the black hole. Whereas fluorescent
emission from iron in matter far away from the black hole is at
6.4 keV, photons originating in the inner region of the accretion
disc are highly redshifted to much lower energies and longer
wavelengths.

fluorescence is due to K-shell ionization following irradia-
tion by hard X-rays from the disc-corona which is at much
higher temperatures T > 106 K.

Although relativistic gravitational broadening is
widely accepted as the cause of the redward, asymmetric
line profile in the Seyfert 1 AGN MCG–6-30-15 shown

in Fig. 13.12, one should also keep in mind other fac-
tors that might be contributing, if not alternative, factors.
These include geometrical effects owing to the orientation
of the AGN nucleus towards the observer. For instance,
the nucleus of MCG–6-30-15 is nearly face-on, with an
inclination angle of 60◦. Doppler broadening components,
both transverse and parallel, would contribute accord-
ingly. One might think of the well-known P-cygni profile
(Chapter 10), which is suppressed at the blue end but
enhanced towards the red; however, the sharp drop-off
in flux immediately after 6.4 keV appears to rule that
out. Attempts have also been made to model reflection
components and resultant reddening of the line owing to
absorption or scattering [396].

In addition to the broad Fe Kα 6.4 keV line, many
AGN spectra also show a narrow line profile at 6.4 keV,
which is normally symmetrical. Moreover, the higher
energy He-Kα and H-Kα components from Fe XXV and
Fe XXVI, respectively, are also prominently observed in
AGN spectra, arising from the hot plasma associated with
the disc-corona farther away from the nucleus. Determina-
tion of the exact location of the emitting plasma is further
complicated by observations that show that the Fe Kα line
varies little compared with the X-ray continuum variabil-
ity, whereas it would be expected to vary in phase with it
(cf. [397]).

13.6.2 Warm absorber (WA)

Farther out from the central source, X-ray observations
reveal the presence of hot gas up to or more than about
a million degrees, with strong absorption features and
blueshifts indicative of outflows. The WA may repre-
sent winds from the accretion disc, carrying away angu-
lar momentum from the accreting material towards the
SMBH; an extreme example of which is a bipolar jet from
the spinning black hole. The outflow appears to be related
to the hot corona around the central source, and is at tem-
peratures exceeding those found in the WA. Spectroscopic
diagnostics reveals that (i) the WA contains significant
amounts of metals ranging from O to Fe, and is there-
fore often referred to as ‘dusty WA’ and (ii) the WA spans
several orders of magnitude in temperature and density, as
revealed by arrays of transitions in several ionic species of
each element. Modelling the dusty WA, therefore, requires
a range of ionization parameters and electron densities
(e.g., [398, 399]). The primary transitions in the WA are
due to absorption from inner shells, as described next.8

8 A comprehensive review of atomic data for X-ray astrophysics is given

in [400].
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However, it is worth noting that the WA lines can also be
seen in emission when the central source is occulted, as in
Seyfert 2 galaxies [339].

Other outstanding features seen in the WA spectra
include K-shell absorption lines from several elements.
Figure 13.14 shows the soft X-ray spectrum of the
Seyfert 1 galaxy MCG–6-30-15, the same one with the
broad relativistic Fe Kα 6.4 keV fluorescent line in
Fig. 13.12. The soft X-ray spectrum in Fig. 13.14
was obtained by the Chandra X-ray Observatory and
is worth discussing in detail. It reveals a dusty WA
with metals up to iron. The spectrum shows the
strong signature lines due to dipole allowed transitions

1s2(1S0)→ 1s2p
(

1Po
1

)
in He-like ions, Ne IX around

13.5 Å or 0.94 keV, and O VII around 0.7 keV, together
with absorption lines from the whole Rydberg series

of transitions 1s2(1S0)− 1snp
(

1Po
1

)
in O VII. The spec-

tral ‘turnover’ at ∼17.7 Å, or 0.7 keV, is especially
attributed to strong absorption by neutral iron L-shell
2p → 3d transition array, and the O VII Rydberg series
limit 1s → np [398]. The astrophysical interpretation is
that the supermassive black hole system that illuminates
the dust in its path length is itself surrounded by highly
ionized gas of temperatures 105–107 K, imprinting fea-
tures in the X-ray spectra. The best model for the spectrum
is with an iron + oxygen combination, placing the dust in
a region close to the black hole, where most of the oxygen
has probably been sputtered away. The observed absorp-
tion features are due to fine-structure resonances close
to excitation – ionization edges of iron and other met-
als that make up the dust composition (the spectroscopic
physics is exemplified below with the relatively simple
example of oxygen). Figure 13.14 provides an example
of the state-of-the-art observations in high-resolution X-
ray astronomy, as well as the emerging field of condensed
matter astrophysics [401].

Of particular interest was the predicted detection of
strong O VI resonance absorption at 22.05 Å due to the

KLL transition 1s22s(2S1/2)→ 1s2s2p
(

2Po
3/2

)
[402]. It

occurs from the Li-like O VI ground state 1s22s(2S1/2),

into a resonant level 1s2s2p
(

2Po
3/2

)
lying above the

ground state 1s2(1S0) of the He-like residual ion O VII.
The photoabsorption cross section is shown in Fig. 13.15
[402]. In fact, there are two closely spaced peaks in the
cross section due to the two fine structure components

1s2s2p
(

2Po
3/2,1/2

)
of the resonance at λλ 22.05, 21.86,

with the former being much stronger than the latter. The
O VI KLL line is especially useful since it is at 22.05 Å,
and lies within the Kα-complex of the three prominent

lines of O VII discussed earlier: the ‘resonance’ (r or w),
intercombination (i or x +y) and forbidden ( f or z) tran-
sitions, at λλ 21.60, 21.790, and 22.101 Å, respectively
(Chapter 8). The O VI KLL line lies between the i and
the f lines. Therefore, X-ray observations of the K-lines
of O VI and O VII in absorption yield information on both
ionization states, say, the column densities of the two ions.

In general, X-ray absorption in mulitple ions of an ele-
ment constrain a number of astrophysical parameters in
the source. A variety of X-ray lines manifest themselves
due to inner-shell transitions, discussed next (see [404]
and [405] for atomic data).

13.6.3 M-shell lines

The strongest features in the WA are a multitude of
lines due to absorption by Fe ions with open M-shells
(n= 3) but filled L-shells (n = 2). As these lines are
often unresolved in low-resolution X-ray spectra, they
are sometimes labelled unidentified transition arrays, or
‘UTAs’. However, ‘UTA’ is a misnomer, since the lines
are in fact quite well-known and may all be identified. The
Fe M-shell absorption lines occur primarily from strong
inner-shell dipole allowed 2p→ 3d transitions clustered
around 0.7–0.8 keV or 16–17Å [406]. In principle, all
Fe ions with a 2p filled shells, Fe XVII (Ne-like), and
lower ionization stages up to neutral Fe I, absorb around
this energy region. But the dominant ionization stages
contributing to M-shell spectra are Fe VIII–Fe XVI. The
transitions via absorption from inner shells are into highly
excited autoionizing states, which lead to further ioniza-
tion or radiative decay – the Auger processes discussed in
Section 5.9.

We note in passing that although Fe XVII is not a major
cotributor to M-shell lines in absorption, it is prominent in
emission. Fe XVII is a closed-shell Ne-like system, whose
lowest excitation energies lie in the ∼15–17 Å range and
are some of the best emission line diagnostics in the X-ray,
as described in Chapter 8.

13.6.4 L-shell lines

More highly ionized ions with open L-shells, from
Fe XVIII (F-like) up to Fe XXIV (Li-like), have much
less cumulative absorption than those with filled L-shells.
They are well-resolved, since the energy separation
among levels of the same n (
n = 0) increases with ion
charge as 
En ∼ Z , and among those with different n as

En,n′ ∼ Z2. The L-shell lines may be seen strongly in
absorption since the allowed oscillator strengths are large
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FIGURE 13.14 High-resolution Chandra X-ray Observatory spectrum of the Seyfert 1 galaxy MCG–6-30-15 in the soft X-ray
region ([398], Courtesy: J. Lee). The X-ray spectrum at E < 1 keV (λ > 12 Å) reveals a dusty warm absorber, ionized gas with many
absorption features from highly ionized ions, such as He-like N, O, Ne, and Fe. The KLL resonance absorption feature due to Li-like
O VI at 22.05 Å (see Fig. 13.15 [402]), as well as similar Kα features of other O-ions are observed [403].
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FIGURE 13.15 Resonant photoabsorption cross section at the O VI KLL resonance [402]. This feature manifests itself as two
absorption lines λλ 22.05, 21.86 Å. Note that each line also corresponds to double-peaked absorption in two fine structure
components, J = 0.5 and 1.5.

[158]. Since radiative decay rates for strong dipole tran-
sitions increase as Z4, these lines may also be seen in
emission, either following photo-excitation or (e + ion)
recombination. One such example is shown in Fig. 6.17:
the 
n= 0 EUV transition 1s22s− 1s22p in Fe XXIV at
209 Å; higher transitions n> 2 → n = 2 lie in the X-ray
region [158].

13.6.5 K-shell lines

As we have seen, in addition to bound–bound tran-
sitions, resonant transitions with excitation from inner
shells play a prominent role in X-ray spectral forma-
tion. Following the detection of the O VI KLL feature in
MCG–6-30-15 discussed above, other AGN spectra were
found to have Kα absorption lines from all ionization
states of oxygen, O I–O VI. They are due to Kα inner-shell
resonances in ions from O VI (1s22s + hν → 1s2s2p) to
O I (1s22s22p4 + hν → 1s2s22p5). Figure 13.16 shows
the photoionization cross sections that produce Kα reso-
nances in each ion. Note the logarithmic scale, and hence
the magnitude of these strong resonaces (see also [399]).

They all lie in the narrow wavelength range 22–23.5 Å
(viz. Fig. 13.14).

Now we also recall the discussion in Section 6.9.1 that
resonances in photoionization cross sections may manifest
themselves as absorption lines. We also know that absorp-
tion lines are most useful in determining column densities
and abundances of elements, provided their oscillator
strengths are known. Equation 6.69 defines the resonance
oscillator strength fr, which may be evaluated from the
detailed σPI provided the resonance profile is sufficiently
well-delineated. In practice, this is often difficult and elab-
orate methods need to be employed to obtain accurate
positions and profiles (the background and the peaks) of
resonances. As in Table 13.3 for Fe irons Table 13.4 gives
these oscillator strengths, fr and other quantities for the
inner-shell Kα transitions in O ions. The calculated equiv-
alent width Wa, obtained from the autoionization profiles
of resonances, and the peak value of the resonance cross
section σmax are also given.

Exercise 13.1 A measurement of X-ray photoabsorption
in the ‘warm absorber’ region of an AGN via the KLL
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TABLE 13.4 Kα resonance oscillator strengths fr (Eq. 6.69) for oxygen ions.

Ion Er (Ryd) Er (keV) λ (Å) fr Wa(meV) σmax (MB)

O I 38.8848 0.5288 23.45 0.113 31.88 48.05

O II 39.1845 0.5329 23.27 0.184 23.21 107.7

O III 39.5000 0.5372 23.08 0.119 27.00 59.92
O III 39.6029 0.5386 23.02 0.102 12.08 114.5
O III 39.7574 0.5407 22.93 0.067 24.27 37.48

O IV 40.1324 0.5458 22.73 0.132 27.11 66.15
O IV 40.2184 0.5470 22.67 0.252 14.32 239.2
O IV 40.5991 0.5521 22.46 0.027 21.91 17.00

O V 40.7826 0.5546 22.35 0.565 14.01 549.0

O VI 41.3456 0.5623 22.05 0.576 1.090 7142.0
O VI 41.6912 0.5670 21.87 0.061 12.16 67.36
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FIGURE 13.16 Kα resonances in oxygen ions [403]. These
resonances in photoionization cross sections appear as
absorption lines in observed spectra.

resonance in O VI gives the equivalent width of 29 mÅ
at 22.09 Å. Identify the atomic transition; calculate the
column density of O VI, and the line centre optical depth
τ0 (compare with results given in [402, 398]).

As we have seen, multi-wavelength spectroscopy is
required to study the AGN phenomena, since the observed
spectral energy distribution covers all bands of electro-
magnetic radiation. The widely accepted SMBH paradigm
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appears to explain the overall features of AGN, geomet-
rically and spectroscopically. Nevertheless, the precise
kinematics and coupling between the central black hole
engine and the disparate regions of AGN are far from
being entirely understood. Some of the major problems
may be traced to inadequate and inaccurate atomic physics
in AGN models, such as the anomalous Fe II emission

in the infrared, optical and ultraviolet, and Fe Kα line(s)
in the X-ray. Some relevant reviews are atomic X-ray:
spectroscopy of accreting black holes [407] and fluores-
cent iron lines [408]. To address the spectroscopic needs
the authors’ websites list atomic data sources relevant to
AGN studies: www.astronomy.ohio-state.edu/∼pradhan
(or /∼nahar).



14 Cosmology

Which atoms were formed first, in what proportion and
when? The relationship between atomic spectroscopy
and cosmology rests on the answer to these questions.
According to big bang nucleosynthesis (BBN), before the
creation of the first atoms, the Universe would have been
filled with a highly dense ensemble of nuclei, free elec-
trons, and radiation. The standard model from high-energy
particle physics implies that most observable matter is
made of baryons, such as protons and neutrons; electrons
are leptons and much less massive. The baryons are them-
selves made of more exotic fundamental particles, such as
quarks, gluons and so forth. According to the BBN the-
ory, given a fixed baryon-to-photon ratio in the first three
minutes of origin, a few primordial nuclear species made
of baryons appeared. The atomic nuclei created during
the BBN were predominantly protons and helium nuclei
(2He3,

2 He4), with very small trace amounts of deuterium
(heavy hydrogen 2H1) and lithium (3Li6,

3 Li7). Atomic
physics then determines that singly ionized helium He II

(not hydrogen!) would have been the first atoms(ions)
formed.

The process of formation is (e + ion) recombination:
He III + e → He II + hν. This temporal marker in the
history of the Universe is referred to as the recombina-
tion epoch.1 The reason that He II was the first atomic
species is not difficult to see, given the extremely hot
plasma that preceded the recombination epoch when
nuclei and electrons were free in the fully ionized state.
The atomic species that would form first is the one with
the highest ionization potential, as detailed balance dic-
tates.2 Consider that EIP(HeII) = Z2 = 4 Ry = 54 eV,

1 It may seem somewhat illogical to refer to the first-ever combination of

electrons and nuclei as recombination. It in fact refers to conditions

when electrons and nuclei would remain combined without immediate

break-up.
2 Note that througout the text we have continually emphasized the

detailed balance inverse relationship between photoionization and

photorecombination, elaborated in Chapter 6.

as opposed to EIP (He I) = 1.8 Ry = 24.6 eV, and EIP
(H I) = 1 Ry ≡ 13.6 eV. It follows that He II can exist at
much higher temperatures, i.e., at earlier (hotter) times,
than either He I or H I. The study of the recombination
epoch is also important to ascertain the primordial abun-
dances, with a percentage abundance ratio for H:He of
∼93:7 by number, and ∼76:24 by mass. The determina-
tion of the precise ratio is a crucial test of BBN cosmology
and the baryonic matter in the early Universe.

At the earliest times, radiation and matter were coupled
in the sense that photons scatter from free matter parti-
cles via Thomson or Compton scattering, and have short
mean free paths [409]. Since all radiation energy was thus
‘trapped’, the Universe was in a radiation-dominated state
and essentially opaque. The conditions would have been
as in an ideal black body characterized by a radiation tem-
perature and a Planck distribution. That would correspond
to an extemely hot radiation background, the forerun-
ner of the much cooler present-day cosmic microwave
background (CMB). Having cooled due to cosmologi-
cal expansion, the radiation temperature at the present
epoch corresponds to a black body at a characteristic
Planck temperature of 2.725 K, predominantly in the
microwave range. As the Universe expanded and cooled,
radiation and matter decoupled and the Universe became
matter-dominated, as radiation began to escape interac-
tions with matter. Radiation–matter decoupling was fol-
lowed by the recombination epoch, when electrons and
primordial nuclei recombined. When matter made the
transition from fully ionized to neutral state, the mean
free paths of photons increased and the Universe became
increasingly transparent as radiation escaped away, even-
tually at the speed of light. However, Compton scatter-
ing of particles with photons prior to this epoch would
distort the otherwise isotropic black-body radiation to
a small extent – but potentially detectable – an effect
known as the Sunyaev–Zeldovich effect [409]. While
the Universe remains generally isotropic, observations
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FIGURE 14.1 Hubble’s law and the Hubble constant
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Freedman/Freedman7.html). Straight lines corresponding
to three values of H0 are shown. The bottom rectangle
shows the residuals of data points with respect to the
H0 = 72 line. Observations of Type Ia supernovae
provide data out to the farthest distances.

of the early Universe should contain information on
any anisotropies in the radiation background, mani-
fest in the CMB even until the present epoch. Such
anisotropies have indeed been detected in recent obser-
vations by the satellite Wilkinson Microwave Anisotropy
Probe (WMAP) of the CMB power spectrum. A new
space probe PLANCK was launched in 2009, and is now
set to measure anisotropies over the entire sky with higher
precision.

14.1 Hubble expansion

Uniform expansion of the isotropic and homogeneous cos-
mos implies that all objects recede from any observer
anywhere in the Universe with a constant velocity v.
Empirical observations lead to Hubble’s law

v(t) = H0 × D(t), (14.1)

where v is the velocity and D is the distance of an
object (e.g., a far-away galaxy) at an epoch t , some-
times referred to as the ‘look-back’ time. H0 is the
Hubble constant with the commonly accepted value of
∼ 72 km s−1 Mpc−1 (note the units in terms of veloc-
ity and distance). Figure 14.1 shows the linear fit to
observed data for H0 values of 65 and 79. The limits
of the range for H0, and have direct implications for
the derived age of the Universe. Since the linear Hub-
ble relation has the slope H0, its inverse 1/H0 has the
dimension of time and, in fact, directly yields the age
of the Universe. A value of 67 km s−1 Mpc−1 yields
an age of approximately 13.7 gigayears, about the age

of the oldest stars according to stellar models. H0 of
50 km s−1 Mpc−1 implies about 20 billion years and 100
km s−1 Mpc−1 about 10 billion years; the latter value is
obviously in conflict with the estimated ages of the oldest
stars. While there are several methods of determining the
Hubble constant, the latest measurements of the Hubble
constant are based on observations of Type Ia super-
novae and yield a value H0 = 74.2 ± 3.6 km s−1 Mpc−1

with less than 5% uncertainty [410]. Finally, it should
be mentioned that estimates also depend on the cosmol-
ogy adopted, i.e., cosmological models that take account
of all the known or unknown matter and energy in the
Universe.

The interpretation of Hubble’s law as a linear velocity–
distance relation, implying uniform-velocity expansion,
is to be reconsidered later based on two facts: (i) the
amount and distribution of matter in the Universe would
determine the velocity of expansion owing to gravitational
interaction among masses and (ii) recent observations
that show a net acceleration of present day galaxies as
opposed to those in the past. Both of these factors depend
on cosmological parameters, particularly the matter and
energy density in the Universe.

The recessional velocity of all objects from one
another (assuming isotropy) implies a wavelength shift in
radiation from any object observed by any observer, rel-
ative to the rest-frame wavelength, in analogy with the
Doppler effect. The observed wavelength appears longer
or redder than the rest wavelength as

z ≡ λ(obs)− λ(rest)

c
. (14.2)
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The wavelength redshift z (Eq. 14.2) is expressed in
terms of the relativistic Doppler effect and velocities as

(1+ z) = γ (1+ v/c) =
√

1+ v/c
1− v/c , (14.3)

where γ is the Lorentz factor 1/
√

1− v2/c2. Since γ ≈ 1
for v � c, v ∼ cz, i.e. for small z.

The effective temperature of the Universe at z > 0 is
given by

T (z) = T0(1+ z). (14.4)

T0 = 2.725 K is the background temperature at the
present epoch z = 0. The radiation associated with a black
body at this cold temperature is in the microwave region,
as discovered by Penzias and Wilson [411], and con-
stitutes the aforementioned CMB. As defined, the CMB
temperature increases linearly with z, i.e., looking back in
time towards a hotter Universe.3 The transition from radi-
ation to matter dominated Universe is thought to occur at
z ∼ 35 000, or T (z) ∼ 105 K. Cosmological models yield
a corresponding timeframe of about 3000 years after the
big bang. But the temperature was still too hot for elec-
trons to recombine permanently with nuclei. Eventually,
when the temperatures decreased to <3000 K after about
200 000 years, the first atoms appeared and remained
without being immediately reionized.

In the sections below we describe the spectral sig-
natures and atomic models used to understand the early
Universe.

14.2 Recombination epoch

The recombination epoch is the earliest possible time
accessible to atomic spectroscopy. Since the CMB tem-
perature4 increases with z (Eq. 14.4), it follows that the
ionization energies of He II, He I, and H I can be used in
an equation-of-state for the early Universe at high z to esti-
mate the temperature range for recombination [412]. It is
then found that during the recombination epoch of primor-
dial atoms He II (e + He III) formed at 5500 ≤ z ≤ 7000,
He I (e + He II) at 1500 ≤ z ≤ 3500, and H I (e + H II) at
500 ≤ z ≤ 2000 [413].

3 In reality, of course, it is the radiation from the earlier epoch that is

finally reaching us today.
4 In general, the temperature would correspond to the appropriate

radiation background, which would be at shorter wavelengths and

higher z.

The Saha equation-of-state yields the temperatures at
which recombination occurs for each atomic species. For
hydrogen recombination (e+ p)→Ho, we have

npne

nH
= 1

h3

[
(2πkT )(mpme)

mH

]3/2
e−IH/kT , (14.5)

where IH = 1 Ry = 13.6 eV. The atomic physics of
H I and He II lines is similiar, since both have Rydberg
spectra (Chapter 2). The wavelengths of the same Rydberg
transitions in H I are four times longer than in He II,

λn,n′(HeII) =
[
λn,n′(HI)

4

]
. (14.6)

For example, the Lyα transition in H I at 1216 Å
corresponds to the 304 Å line in He II. It follows that
some Rydberg lines of H I and He II would overlap in
observed spectra. That could complicate the analysis of
direct measurements of line intensities, which depends on
the respective abundances.

Spectral formation of He I lines is, of course, quite
different, as has been discussed extensively in the con-
text of He-like ions (Chapters 4, 8, and 13 and Fig. 4.3).
It is worth re-examining the Grotrian diagram of neutral
helium in a slightly different way than before, as shown
in Fig. 14.2, with the low energy levels and prominent
lines divided according to spin multiplicity. The diagram
excludes fine structure, and we know from Chapter 4 that
radiative rates differ by orders of magnitude among the
variety of multipole transitions characteristic of He-like
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FIGURE 14.2 Energy levels of neutral helium. The triplet
transition wavelengths on the right have been averaged over
the fine structure (cf. Fig. 4.3).
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transitions (Fig. 4.3). However, relativistic effects per se
are small for He I, at least in the sense that fine-structure
energy separations are small. One of the consequences
is that the singlet and the triplet LS term structure is
collisionally uncoupled. Singlet–triplet cross excitations
are far less probable than those within each multiplicity.
However, fine structure effects could be quite important
for high-n levels where singlet–triplet mixing of levels
occurs. Since the outer electron is farther removed and
more weakly interacting with the core than the inner
orbitals, the spin–orbit interaction of the outer electron,
relative to the Coulomb interaction, is stronger than that
for inner electrons. That requires the use of intermediate
coupling or j j-coupling (Chapters 2 and 4) for high-nl
orbitals.

The primary atomic processes that need to be
taken into account are level-specific collisional excitation
(Chapter 5), radiative transitions (Chapter 4) and (e + ion)
recombination (Chapter 7). A number of these atomic
parameters are available in literature, although not com-
prehensively. Radiative transition probabilities have been
computed with high accuracy for all fine-structure levels
of He I up to n≤ 10, �≤ 7 [73, 414]. Collision strengths
were computed using the R-matrix method in LS coupling
up to n≤ 5 [415]. Free–bound (e + ion) recombination
rate coefficients and emissivities have been tabulated up to
n≤ 25, el ≤ 5 [216, 416]. It is noteworthy that these cal-
culations are almost all in LS coupling and relativistic fine
structure is not considered.

At the prevailing temperatures during the recombi-
nation era, T<3000 K, only the radiative recombination
part of the total recombination rate coefficient dominates;
dielectronic recombination is negligible (Chapter 7). This
is because the autoionizing resonances 1s2pnl lie too
high in energy to be accessible for recombination until
T∼105 K, but that is too high a temperature for neu-
tral helium to be abundant. As an expanding and cool-
ing black body, conditions in the early Universe at very
high z are such that it is necessary to consider whether
Case A or Case B recombination should be used in
atomic models (Chapter 7). It has been shown that for
z > 800, Case B recombination is appropriate [412].
At later times, Case A is sufficient, although interme-
diate cases may need to be considered. We recall that
under Case B the plasma is assumed to be optically thick
in Lyman lines, and the corresponding recombination
rate coefficient omits recombinations to the ground state
n = 1, i.e.,

αB(T ) =
∑
n>1

αR(T, n). (14.7)

The presence of a strong radiation field at very high-z
implies that non-LTE collisional–radiative models are
necessary for high precision (e.g. [412, 417, 418]).

The spectral signatures of He III → He II recombina-
tion will not be readily visible as recombination lines since
that occured before hydrogen recombination. Therefore,
those photons would probably have been scattered by
the predominant form of ionized matter, electron–proton
plasma, in the early Universe. But any detection of these
lines would constitute evidence of the earliest epoch of
atomic formation.

14.3 Reionization and Lyα forests

As the Univerese cooled, the recombination era associated
with very high redshift eventually led to neutral mat-
ter, predominantly hydrogen. Primordial hydrogen clouds
coalesced under self-gravity into the first large-scale
structures, the precursor of latter-day galaxies. Under
extremely dense conditions, and given sufficient masss,
the first black holes and QSOs would have been formed.
We saw in the previous chapter the connection that is now
known between quasars and AGN on the one hand, and
most galaxies on the other hand. The ‘active’ phases of
galaxies are thought to be governed by accretion onto
supermassive black holes. Quasi-stellar objects, in par-
ticular, are the source of stupendous amounts of energy.
Therefore, the extreme luminosity of the first QSOs would
have reionized the hydrogen clouds at some period, called
the reionization epoch. Spectral signatures of reionization,
and in general absorption by neutral hydrogen clouds,
can be found in observations towards high-z quasars. Any
hydrogen clouds lying in between a high-z quasar and
the Earth would reveal absorption features resulting in
H I excitation and ionization. We detect the QSO by its
Lyα emission due to electron–proton recombination fea-
ture originating in the ionized plasma from the source
itself. Then the Lyα absorption of the QSO signature by
the intervening H I clouds at all redshifts z ≤ z (QSO)
constitutes its entire emission–absorption spectra.

Such is indeed the case. Figure 14.3 shows the spec-
tra of two quasars, 3C 273, which is relatively nearby at
z = 0.158, and Q1422 + 2309 at medium redshift z = 3.62.
The two spectra are qualitatively quite different. 3C 273
shows the large Lyα emission peak, together with some
significant absorption towards the blue, indicating absorp-
tion or ionization due to H I Lyman lines. The Lyα
absorption feature is subsumed by the large amount of
emission, but does manifest iteself on the blue side of
the Lyα emission peak. The spectrum of Q1422 + 2309,
on the other hand, is full of a multitude of absorption
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FIGURE 14.3 Lyα forests towards low- and high-redshift quasars. The observations show Lyα emission intrinsic to the quasar, and
absorption lines blueward of the Lyα peak produced by Lyα clouds in the intervening IGM. The higher-z Q1422+2309 shows the
‘forest’ prominently, with mainly Lyα but also other Lyman lines (reproduced by permission from W. Keel
(http://www.astr.ua.edu/keel/agn/forest.html).

lines at lower z than the quasar itself, i.e., blueward of
the Lyα peak. This is referred to as the Lyα forest – heavy
attenuation by Lyman absorption features by H I clouds at
different redshifts in the intervening intergalactic medium
towards the quasar.

It is then logical to ask at what point in time did
the first QSOs light up and reionize the Universe? The
answer is revealed in the spectroscopy of quasars up to the
highest possible redshift observable. Figure 14.4 shows
moderate-resolution spectra obtained from the Keck spec-
trographs [419] of four quasars in the range close to z ∼ 6.
The top panel in Fig. 14.4 identifies some of the most
prominent emission features in the spectra. This includes
the Lyβ and O VI blend at rest wavelength λλ 1026 and
1036 Å, respectively, and the closely spaced Lyα and
N V features at λλ 1216 and 1240 Å, in addition to other
unresolved sets of lines. At the extreme left, and the red-
shifted feature at the shortest wavelength, is the Lyman
limit λ0 = 912 Å. Comparison of Fig. 14.4 with the much
lower z quasars in Fig. 14.3 reveals a remarkable fact: the
Lyα forest seems to be thinning with increasing redshift.
This is due to the increasing density of neutral hydro-
gen towards higher z, which at some critical z absorbs
nearly all of the light, giving rise to a large ‘trough’-like
absorption structure. The highest-z quasar at z = 6.28

exhibits nearly complete absorption up to wavelengths
(1+z)×λ0(1216) = λz < 8850 (the bottom-most panel).
The existence of this phenomenon was predicted, and is
known as the Gunn–Peterson trough [420]. Its detection
corresponding to quasars at z ∼ 6 presents the strongest
evidence to date of the critical time when the Universe
approched the reionization epoch [419].

14.3.1 Damped Lyman alpha systems

Spectral analysis of Lyα clouds entails a particular type of
line profile that we studied in connection with the curve
of growth, shown in Fig. 9.6. We refer to the ‘damped’
part of the curve of growth corresponding to high absorber
densities. The Lyα systems are vast regions of neutral
H I with large column densities. As such, the line pro-
files have a square-well shape, characteristic of extremely
high densities, beyond saturation of the central line pro-
file, when absorption occurs and is observed mainly in
line wings. The resulting shape is an increasingly larger
flat bottom at zero flux, growing farther apart horizon-
tally, and with vertical boundaries bracketing the line
profile. Extensive neutral H I regions therefore give rise
to the observed damped Lyman alpha (DLA) systems.
Figure 14.5 shows the spectra of four sub-DLA and DLA



310 Cosmology

Ly Limit

6
4

2
0

10
5

0
6

4f λ
 (

10
–1

7  
er

g 
s–1

 c
m

–2
 Å

–1
)

2
80

6
4

2
0

J104433.04 – 012502.2 (z = 5.80)

J083643.85 + 005453.3 (z = 5.82)

J130608.26 + 035626.3 (z = 5.99)

J103027.10 + 052455.0 (z = 6.28)

5500 6000 6500 7000 7500
Wavelength (Å)

8000 8500 9000 9500 104

Lyβ + OVI

Lyα
NV

OI + Sill SilV + OIV]

FIGURE 14.4 Signature of the reionization epoch: evolution of Lyα absorption with redshift and the Gunn–Peterson trough in the
spectra high-z quasars around z ∼ 6 [419] (reproduced with permission from R. Becker).

systems [421] viewed towards four quasars observed with
the Ultraviolet Echelle Spectrograph (UVES) on the Very
Large Telescope (VLT). The redshifts and the large H I

column densities are marked individually; the higher-z
systems clearly display the characteristic DLA profile (the
observed spectra are fitted to different profiles, as shown).

14.4 CMB anisotropy

During the recombination era, matter and radiation are
sufficiently coupled to nearly wipe out directly observable
and identifiable spectral signatures. But the imprint of
the recombination era could still manifest itself on large
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FIGURE 14.5 Absorption spectra of damped Lyα (DLA) systems. The panels on the left correspond to lower-z QSOs than the
ones on the right, and display sub-DLA line profiles [421] (reproduced with permission from S. Ellison). Another colour image of
more pronounced DLA absorption is provided on our website www.astronomy.ohio-state.edu/∼pradhan.

scales in the radiation background as observable even
today. In particular we refer here to CMB anisotropy.
Owing to expansion, the early Universe cooled, but any
non-uniformity in the distribution of primordial matter
implied the presence of regions denser than others. Their
gravitational fingerprints were then imprinted on the oth-
erwise smooth Planckian radiation background. However,
though measurable, the effect is indirect and reveals itself
in the power spectrum on small angular scales over all
space. The analysis is carried out in terms of a decompo-
sition of the radiation background in spherical harmonics,
quantified by the multipole moments Cl (in analogy with
the standard Ylm defined in Chapter 2; the azimuthal num-
ber m is not physically relevant, since it depends only
on orientation). The measurements are made over all sky,
on varying angular scales. Figure 14.6 shows the WMAP
measurements going up to multipole moments � = 1000
(upper horizontal axis). Temperature fluctuations in the
CMB resulting from anisotropic distribution of matter is

in units of μm K2. The wiggles at small angular scales
represent the anisotropies imposed by inhomogeneities in
the distribution of matter, and include those arising in the
recombination era. The curve in Fig. 14.6 is a measure
of departure from an otherwise Planck radiation distribu-
tion characteristic of a perfect radiation-only blackbody.
It would have been flat if there were no matter-induced
distortions in the early Universe, that persist even today,
frozen into or imprinted upon the CMB. Given that the
measured quantities involved are so small, it follows that
the physics of recombination needs to be computed as
precisely as possible.

Atomic physics is helpful in discerning the contribu-
tions to these ‘distortions’ imposed on the CMB at very
high z during the recombination epoch. The three forms
of atomic recombination, He III → He II, He II → He I

and H II → H I, would each have a different spectrum.
As such, and given sufficient sensitivity in future probes
(viz. PLANCK), they could be distinguished. Generally,
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FIGURE 14.6 WMAP observations of
anisotropies in the CMB radiation field
(courtesy: http://map.gsfc.nasa.gov). The
curve would be flat without these
matter-induced distortions, which are
now revealed as oscillations in the
microwave background, as measured by
WMAP all-sky surveys at small angular
scales.

Z /H

Y

Yp

FIGURE 14.7 Schematic representation of increasing helium
abundance Y vs. metal abundance Z/H . The (linear?) increase is
due to secondary production of He in stars, as opposed to the
primordial value Yp. According to present-day measurements
and BBN models, the uncertainties denoted by dashed lines put
Yp in a narrow range between 0.23 and 0.25.

(e + ion) recombination is seen as emission lines owing to
radiative transitions downwards following recombination
into high-n levels. But numerical simulations also indicate
some interesting negative features due to absorption in the
emission spectrum expected from He II → He I recombi-
nation lines [417]. This radiative transfer effect occurs if
some lower states are fully occupied and radiative decays
into those does not proceed faster than upward absorption
to higher levels, resulting in some net absorption features,
in addition to the mostly emission spectrum.

14.5 Helium abundance

Atomic physics and spectroscopy also provide the sup-
porting evidence for one of the main pillars of stan-
dard cosmology – the primordial helium-to-hydrogen

abundance ratio. The constancy of this ratio implies the
creation of the two elements at the same time, and under-
lies the singular big bang interpretation of the origin of the
Universe. Spectroscopic measurements of H and He lines
yield the respective abundances. However, two points
complicate the analysis and observations of helium. First,
the H/He ratio is predicted by BBN models extremely
precisely and therefore its value must be measured very
accurately. Second, helium is also produced in stars and
therefore it must be ascertained that the observations refer
to primordial BBN, and not the helium produced by stellar
nucleosynthesis. Before proceeding further, it is useful to
remind ourselves of the notation employed in stellar astro-
physics (Chapter 11): X→H, Y→He and metals →Z.
The primordial value of He is denoted Yp. Owing to stel-
lar production of He and heavier elements, it follows that
there should be a direct correlation between Y and Z, such
that primordial Yp is a limiting value of Y as Z→ 0.
In other words, Yp depends on the precise value of the
baryon-to-photon ratio η that underpins standard BBN
models, and also on measurements differentiating it from
the helium produced by stars.

Figure 14.7 is a schematic diagram of the linear
correlation between the observed helium abundance as a
function of Z or η. The aforementioned WMAP obser-
vations have placed a very tight constraint on the value
of η, and thereby the baryonic density, usually denoted
as  b (not to be confused with the collision strength  ).
The BBN model then yields Yp = 0.2483 ± 0.0004. A
contemporary challenge for atomic spectroscopy is then to
determine the helium abundance observationally to sim-
ilar precision. However, recent determinations using Z



14.6 Dark matter: warm–hot intergalactic medium 313

2 3P0
J

2 1P0
1

Singlet TripletHe I

2 1S0

1 1S0

0
1
2

M2

2E I

E1

E1

M1

2 3S1

FIGURE 14.8 Grotrian diagram and selected
fine-structure transitions in the helium atom
(cf. Figs 4.3 and 14.2).

Expected

Observed

r (distance from centre of galaxy)

R
ot

at
io

na
l v

el
oc

ity

FIGURE 14.9 Schematic representation of rotational velocities
of galaxies with respect to the centre.

abundances derived from H II regions (e.g., nitrogen and
oxygen) range from about 0.23 to 0.25 [423, 424], with
uncertainties that are much higher than those allowed by
the WMAP data [425]. As is evident from Fig. 14.7, the
linear relationship between Y and Z involving Yp may be
expressed as

Y = Yp + dY

dZ/dH

(
Z

H

)
. (14.8)

To reduce the uncertainties in the atomic physics it is
necessary to carry out calculations for a variety of atomic
processes to a heretofore unprecedented accuracy of bet-
ter than 1% or, in other words, a several-fold increase in
precision from contemporary state-of-the-art results. As
we have amply shown, the deduction of abundances from
observed line intensities is subject to uncertainties in the
atomic physics and parameters included in the spectro-
scopic models. Line emissivities of He must be computed
taking account of all relevant atomic processes, such as
electron impact excitation and ionization, (e + ion) recom-
bination, photo-excitation, etc. Figure 14.8 underlies the
complexity of the helium atom (which we have already
encountered for He-like ions in previous chapters, albeit to

requirements where lesser accuracy is adequate). It seems
clear that further atomic calculations should consider the
hitherto neglected relativistic effects and fine structure
explicitly.

14.6 Dark matter: warm–hot
intergalactic medium

There is now considerable evidence that if we consider
the total amount of matter and energy in the Universe,
then only about 4% of it is directly ‘visible’. That is,
all the observable galaxies and other objects made of
known material whose existence we can ascertain. It is
thought to be baryonic matter – protons and neutrons in
the nuclei of atoms. So how do we (i) know that there
is more matter and energy than we ordinarily ‘see’ – the
other 96% – and (ii) how do we measure the presumbly
predominant but invisible ‘dark’ component of the Uni-
verse? It is common to separate the 96% of the unknown
entities into dark matter and dark energy, since physical
phenomena related to each manifest themselves in differ-
ent astrophysical situations. We discuss dark energy in a
later section.

Matter would remain invisible (or ‘dark’ in common
parlance) if it does not interact with – neither emits nor
absorbs – electromagnetic radiation that we can observe.
However, the gravitational influence of dark matter should
be ‘felt’ in its effect on other observable objects. Such
is the case when we attempt to determine the rotation
curves of galaxies. Since they rotate around a central
massive concentration, we would expect rotational veloci-
ties to decrease with distance from the centre. However,
the observed situation is quite different. The rotational
speeds remain roughly constant with distance from the
centre of the galaxy; the measured rotation curves of
galaxies are almost flat (Fig. 14.9). The explanation is
that there is unseen matter, which exerts gravitational pull
on the stars and gas that exist beyond the visible com-
ponent of the haloes of galaxies. But the exact nature
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of such dark matter is unknown; although astronomers
have long looked for candidates such as massive compact
halo objects (MACHOs) – possibly brown dwarfs not suf-
ficiently massive to turn into normal stars, and weakly
interacting massive particles (WIMPs) – some exotic
particles pervading the galactic–intergalactic medium.

There is, however, another component of baryonic
dark matter, which appears to be present in the
intergalactic medium or galactic haloes. These so-called
missing baryons have been predicted by cosmologi-
cal models [426, 427]. Atomic spectroscopy provides
the needed strands of evidence: recent observations
with Chandra X-ray Observtory and X-Ray Multi-Mirror
Mission – Newton yield statistically significant levels of
detection of absorption lines of Li-like, He-like and H-like
oxygen ions O VI, O VII and O VIII at their respective Lyα
or Kα wavelengths 22.019, 21.6019 and 18.9689 Å (for
further discussion see, for example, [428, 429, 430]).5 In
addition to X-ray observations, ultraviolet measurements,
with the erstwhile space observatory Far Ultraviolet Spec-
troscopic Explorer (FUSE), also reveal the existence of
highly ionized O VI absorber clouds at wavelengths of
the 1s22s 2S1/2 − 1s22p 2Po

3/2,1/2 doublet at 1032 and

1038 Å (e.g. [431, 432]).
This potential reservoir of missing baryons (about

20–40% of the total number of baryons), as high-
temperature plasma at 105–7 K, has been labelled the
warm–hot intergalactic medium (WHIM or WHIGM).
The highly ionized atomic species at extremely low
WHIM densities (∼10−5 ne) are almost ‘invisible’ unless
(i) observed against the background of a very bright
source, such as a bright AGN or quasar (even a blazar
[428]) and (ii) along a line of sight that passes through a
substantial cloud of otherwise diffuse ionized gas. In that
case the absorption lines may offer sufficient contrast with
the continuum to enable determination of column densi-
ties in the range of 1015 cm2 or higher, and thereby an
estimate of the total baryonic dark matter in the Universe.

14.7 Time variation of fundamental
constants

The principle of relativity as postulated by Galileo and
Einstein is essentially that the laws of nature are the same
for all observers – there is no absolute or preferred frame

5 Recall from the discussion in Chapter 13 that the O VI absorption ‘line’

is in fact a resonance – resonant absorption due to the inner-shell Kα

transition 1s22s → 1s2s2p. There is somewhat larger uncertainty in the

precision of the resonance wavelength as opposed to the lines O VII

Heα and O VIII Lyα due to dipole allowed E1 transitions.

of reference. Since all frames are equivalent, the basic
laws of nature should manifest themselves with equal dis-
tinction to any observer anywhere in the Universe. We
express these physical laws generally as mathematical
equations relating variables. However, they also involve
quantities that are universally the same, i.e., fundamental
constants of nature. But are these fundamental quanti-
ties really constants for all time, or might they have been
different (albeit slightly) in the past from their present val-
ues? The importance of a positive answer is manifestly
obvious, for it would imply that the same laws of nature
would yield different measured values at different epochs
in the life of the Universe.6

From the point of view of atomic physics and spec-
troscopy, the most intriguing constant is the fine-structure
constant α = e2/�c = 1/137 036, which relates the basic
units of electric charge, quantization and the speed of
light. The α is also the most relevant in the context
of astrophysical spectroscopy as it governs radiative
transitions and relativistic effects in atomic physics and
relativistic fine structure (Section 2.13.2). Spin, and there-
fore fine structure, are introduced by relativity into atomic
structure and transitions. The strength of these relativistic
interactions (viz. the spin–orbit interaction) depends on
powers of α, and the first-order term is of the order α2.

Thus the variation of the fine-structure constant
α =e2/�c is of fundamental interest in cosmology.
However, if there is a variation of the fundamental con-
stants over time, the effect must be very small, since
otherwise it would manifest itself in observed phenomena
rather easily. A variety of efforts are under way to mea-
sure any such possible deviation from the canonical (and
by definition present-day) values. Recent laboratory mea-
surements using 171Yb+ transition frequency [433] give
an upper limit of 2× 10−15year−1, resulting in a change
of α of the order of 10−5 in 10 gigayears. To measure this
effect using astronomical observations, therefore, we need
long look-back timescales. They have to be performed
with high-redshift objects, and the lines to be studied need
to be sufficiently strong features so as to be detectable
from high-z, as well as to enable the analysis of any devi-
ations from their ‘normal’ appearance in the spectrum.

The most common methods are measurements of high-
redshift Lyα forest metal absorption lines. Among the first
ones was the alkali-doublet method [434], with transitions
from the singlet ground level to the two fine-structure dou-
blets in alkali-like systems, such as the C IV and Si IV

systems in QSO spectra [435]. These ions, as well as other

6 Or different cosmologies. The word ‘cosmogony’ is often used to

describe theories of the origin of the Universe.
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FIGURE 14.10 Fine-structure level structure of forbidden emission lines of nebular ions as potential candidates for time variation
of α(t) [438].

alkali-like ions such as Mg II, form a pair of absorption
lines due to the transitions ns(2S1/2)→2 Po

1/2,3/2.7 The
wavelength separation between the two lines depends on
α2 [15], and hence a direct probe of any variation in α.

Absorption line studies have been extended to more
complex multiplets in heavy atomic systems, including
the Fe group elements employing the so-called many-
multiplet method using Lyα forests of quasar lines [436].
Based on high-resolution Keck spectra of several dif-
ferent samples of quasars [436], a value of 
α/α0 =
−0.57 ± 0.10 × 10−5 has been reported, where α0 is the
standard value at the present epoch.

Emission lines, as discussed in Chapter 8, may also
be used to study variations of α. Forbidden lines arise
from higher-order multipole terms involving relativistic
effects (Chapter 4). Therefore, their wavelength separa-
tion would depend on α(t) in a time-dependent man-
ner, and could potentially serve as a chronometer of the
age of the Universe. As we know from nebular studies
(Chapter 12), forbidden fine structure lines of the [O III]
doublet at 5006.84 and 4958.91 Å are extremely bright,
and nearly ubiquitous in the optical spectra of H II regions
in many sources (viz. Fig. 8.3), including high-redshift
AGN and QSOs (Chapter 13). Generally, for any two lines
in a forbidden multiplet one may define a time-dependent
ratio [437]

7 It is useful in many instances in astrophysics to note the analogous

energy level structures of H-like and alkali-type ions, both forming

‘doublet’ line pairs of the type np(1/2, 3/2)→ns(1/2)), e.g., the Lyα

1,Lyα 2 fine structure components in H-like ions, or 3p→3s doublets in

C IV, Si IV, Mg II, etc. A further generalization is to Kα 1,Kα 2

components of X-ray transitions, discussed in Chapter 13.

R(t) = λ2 − λ1

λ2 + λ1
, (14.9)

at cosmological time t related to the ratio at the present
epoch t = 0 by

R(t)

R(0)
= α2(t)

α2(0)
. (14.10)

This is then a measure of the variation in α as a func-
tion of the cosmological look-back time t . An analysis of
[O III] multiplet line ratios of the spectra of quasars from
the Sloan Digital Sky Survey [367] has produced a statis-
tically invariant result 
α/α0 = 0.7± 1.4× 10−4 [437].

The [O III] line ratio technique may also be generalized
into a ‘many-multiplet’ method for emission lines [438],
as opposed to the one based on absorption lines [436]. We
first note that the line ratios of lines originating from the
same upper level depend only on intrinsic atomic prop-
erties, the energy differences between the fine-structure
levels and corresponding spontaneous decay Einstein
A coefficients, and are independent of external physical
conditions, such as the density, temperature and velocities.
For a three-level system, we may write the line ratio as

R = N3 A31hν31

N3 A32hν32
, (14.11)

where level 3 is the common upper level. Thus, the expres-
sion on the right is simply A31hν31/A32hν32. If the
A-values and energies are known to high accuracy, then
we may use the observed ratio to identify pairs of forbid-
den emission lines in many atomic systems (cf. Fig. 8.3),
such as the forbidden multiplets of [Ne III], [Ne V], [O II]
and [S II], shown in Fig. 14.10. Note that an identification
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scheme is essential, since the observed wavelength itself
depends on the redshift and may not be ascertained a
priori [438]. This criterion, in turn, reinforces the require-
ment that the line emissivities and ratios (Eq. 14.11)
be computed theoretically with very high accuracy, to
enable comparison with what must be high-resolution
spectroscopy.

14.8 The distance scale

The rather elementary problem of determining distances
using a ‘yardstick’ for direct measurement becomes
impossible on extraterrestrial scales, with the possible
exception of actual travel to nearby planets and the Moon.
Therefore, indirect methods need to be employed that
might enable accurate determination of distances not only
to nearby stars but also to far away galaxies, and to estab-
lish the extragalactic distance scale. It is necessary to do
so for a variety of practical reasons in astronomy, such as
to ascertain masses, sizes, luminosity and proper motions
of astrophysical objects. In addition, just as mapping out
distances between locations gives us a global image of
the Earth, the cosomological distance scale yields valu-
able information on the spatial–temporal history, and the
future of the Universe itself.

Astronomers often refer to the various practical meth-
ods as the cosmological distance ladder [439]. This is
because each step or method, beginning with the one that
helps ascertain the distances to nearby objects, provides
the calibration for the next step, as in climbing a ladder.
As we shall see, with the exception of the trigonomet-
ric parallax method, all other methods of determining
astronomical distances must rely on some fundamental
intrinsic property of the observed object. The most com-
mon such property is the absolute luminosity. But the
problem is that we can only measure the apparent lumi-
nosity at a distance that is unknown a priori. However,
knowing both allows us to calculate the distance from the
distance modulus (m − M) (Eq.10.6)

D (pc) = 10
m−M+5

5 = 10× 100.2(m−M). (14.12)

But using this relation obviously requires us to know
the absolute luminosity irrespective of distance.8 We
mentioned earlier that observations of bright Cepheid
variable stars (Chapter 10) do provide a means of
measuring absolute luminosity via the period–luminosity

8 Distances are often calibrated in terms of the distance modulus. For

instance the (m − M) for our nearest neighbour, the galaxy Large

Magellanic Cloud (LMC), is about 18.5, or at a distance of about

50 kpc.

relation. More recently, and as we discuss later, Type
1a supernovae have proven to be even brighter sources
observable out to much farther cosmological distances.
Such sources of known intrinsic or absolute luminosity
are called standard candles, just as a light bulb of known
wattage. In crucial ways, the determination of absolute
luminosity depends on atomic physics and spectroscopy.
We have already seen that the pulsation mechanism of
Cepheids, for example, is governed by radiative tran-
sitions in specific zones in the stellar interior. In this
section, we describe the cosmological distance scale more
generally, with particular reference to atomic processes.

14.8.1 Parallax

The standard technique of using trigonometry to deter-
mine distances constitutes the first observational step in
the cosmological distance ladder. Using the mean radius
of the Earth’s orbit around the Sun (1 AU) as the baseline,
one can triangulate and determine the distances to nearby
stars. But the method depends on measurement of at least
one angle of a triangle, or the parallax angle, as shown in
Fig. 14.11. The basic relation, which also defines the unit
parsec (pc) (Chapter 10), is

d (pc) = 1

p (arcsec)
, (14.13)

where p is the angle of parallax measured in arcsec-
onds; correspondingly the distance is in pc. The fact that
Eq. 14.13 requires a direct measurement of an extremely
small angle p (Fig. 14.11) imposes a serious observa-
tional constraint. This is particularly so, since angles much

Star

Background stars

EarthEarth Sun1 AU

p

d(pc)

FIGURE 14.11 The parallax angle p of a star can be measured
from the extremities of the Earth’s orbit around the Sun, against
the far away background stars that have negligible parallax.
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smaller than an arcsecond need to be measured, because
even the nearest star system, α Centauri, is 4.3 light years
away. Since 3.26 light years = 1 pc, the parallax of αCen
is 0.76′′. Therefore, accurate trigonometric parallax mea-
surements from the Earth limit the distance scale only to
nearby stars 10 – 50 pc away (<100 pc for the brightest
visible stars).

In 1990, the launch of the High Precision Parallax
Collecting Satellite (Hipparcos) dramatically improved
the situation. Hipparcos measured high-precision paral-
laxes with milliarcsecond resolution for about 100 000
stars. In addition, the Tycho star catalog based on lower-
precision Hipparcos data was compiled with a list of par-
allaxes of over a million stars out to about 1000 pc (1 kpc).

14.8.2 Spectroscopic parallax

The role of atomic spectroscopy is crucial in nearly
all other methods for building the cosmic distance
ladder – essentially, the relationship(s) between absolute
luminosity and a related property. The expression spectro-
scopic parallax is referred to a combination of photometry
and spectroscopy (Chapter 1), but has nothing to do with
the geometrical parallax discussed above (it is a misnomer
really). The basic idea is to observe the stellar spectral
type with spectroscopy, together with its colour index in
some range, say blue to violet, using photometry. That
enables placing the star on the HR diagram (Fig. 10.2)
to estimate its absolute magnitude, and hence the
distance.

A method widely employed for clusters of stars is
called main sequence fitting. Since the stars of a clus-
ter are approximately the same age and distance, we may
construct a partial HR diagram for the cluster stars based
on their apparent luminosity magnitudes and colours or
spectral types. Plotting and comparing the cluster diagram
based on apparent magnitudes by overlaying on the full
HR diagram, based on absolute magnitudes, practically
allows us to ‘read-off’ the absolute luminosities. The
cluster distance then follows according to the distance
modulus relation Eq. 14.12.

Another useful spectroscopic relationship is known
as the Wilson–Bappu effect: the absolute visual mag-
nitude Mv is related linearly to the width or broad-
ening of the Ca II K line produced by the transition
3p64s 2S1/2→3p64p 2Po

1/2 at 3968 Å. The Wilson–
Bappu effect [440] was discovered for late-type stars, such
as the solar-type G stars or cooler K and M stars. It is
applicable to stars with Mv>15, or absolute luminosities
less than 15th magnitude stars (recall the inverse relation
between increasing magnitude number and decreasing

luminosity – Chapter 10). The effect is remarkably
independent of stellar spectral type; it is mainly a mani-
festation of Doppler broadening in the line core due to
chromospheric activity driven by magnetic fields in nearly
all cool stars, particularly K and M giants and super-
giants. Surface gravity, effective temperature, radiative
transfer and metallicity also bear on Ca II line formation.
Calibration of the Wilson–Bappu effect (e.g., [441]) gen-
erally enables distance determinations even up to a few
hundred kpc.

14.8.3 Cepheid distance scale

The next and perhaps the most reliable step in the cosmic
distance ladder is the Cepheid period-luminosity (PL)
relation discovered by H. Leavitt [442]. As mentioned
in Chapter 10, Cepheids act as standard candles because
their intrinsic luminosities vary periodically: the longer
the period, the greater the luminosity. Recapping the
discussion in Chapter 10, the pulsation periods depend
critically on the opacity in the interior via the so-called
κ-mechanism [443]. As explained in Chapter 11, the opac-
ity κ does not decrease monotonically with temperature
towards the stellar core, as one might expect, because of
increasing ionization of atomic electrons that absorb radi-
ation, and hence less opacity. Rather, there are distinct
zones, mainly the H and He zones, where the opac-
ity has large enhancements or bumps. While the helium
opacity is most important, the metallicity is also crucial,
since there is another bump due to metal opacity – the
Z -bump primarily due to iron (Fig. 11.3). These enhanced
opacity zones dampen the flow of radiation, periodically
heating and cooling these layers, which, in turn, make
the star expand and contract, or pulsate as observed.
Figure 14.12 shows the period–luminosity variation, or
PL curves, for four Cepheids from the Harvard Variables
(HV) catalogue.

The RR Lyrae stars, which are metal-poor galactic halo
stars, also pulsate, but are much less luminous than the
Cepheids and therefore not useful as cosmological dis-
tance indicators. Based on PL curves, such as the ones
shown in Fig. 14.12, one can determine absolute lumi-
nosities of Cepheids. It has been found that there are two
distinct populations of Cepheid, the classical Cepheids.9

which have high metallicity (Type I), and another class
(Type II) with significantly lower metallicity, such as
the prototypical Cepheid W Virginis. Figure 14.13 shows

9 The prototypical Cepheid is the star Delta Cephei. The most

well-known Cepheid is the North star or Polaris with a period of four

days, but its luminosity variation of only about 1% and hence not

discernible by eye.
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FIGURE 14.12 Cepheid pulsation periods and apparent luminosity of four Cepheids. The topmost panel has the longest period and
the highest luminosity.
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three sets of PL data, for the metal-poor RR Lyrae stars,
as well as the two groups of Cepheids: the higher metal-
licity Type I Cepheids and the lower metallicity Type
II Cepheids. The Type II Cepheids yield a significantly
lower PL relation than the Type I Cepheids, which are
also more luminous. The metallicity and type needs to
be determined spectroscopically with sufficient accuracy
for calibration. That is often difficult since metallacity
is usually the Fe/H ratio, and photospheric Fe lines are

difficult to resolve and analyze. The standard Population
I Cepheid PL relation can be expressed in terms of the
absolute visual magnitude Mv and the period (days) as

Mv = −2.81 log10 (P)− 1.43. (14.14)

More recent calibration of the classical Cepheids is
now available, based on the 2 μm survey (2MASS) pho-
tometry, including reddening effects [444]. The Cepheid
distance scale allows measurements out to approximately
10 kpc, although Cepheids have been observed up to Mpc
distances.

14.8.4 Rotation velocity and luminosity

According to the standard mass–luminosity (M/L) corre-
lation noted for stars in Chapter 10, the mass of a galaxy
is also proportional to its intrinsic luminosity. Moreover,
as pointed out earlier in connection with the presence of
dark matter, the rotational velocity is proportional to the
mass. Since the total mass is predominantly hydrogen, an
extremely useful spectroscpic observation may be made:
the 21 cm H I hyperfine structure line in the radio wave-
band. The 21 cm line is due to the transition between the
two coupled-spin states of the electron and the proton,
parallel or anti-parallel, triplet or singlet. Owing to the
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rotation of the galaxy the 21 cm line exhibits a dou-
ble Doppler peak, redshifted and blueshifted. The total
width of the Doppler-broadened line is then related to the
luminosity by the Tully–Fisher relation [445]

L ∝ Wα ∝ R3, (14.15)

where W is the width of the line. The virial theorem also
provides a relationship with the radius R in Eq. 14.15. The
line width is directly related to the Doppler-broadened
twin peaks. If 
λ is the shift of red or the blue peak then
we have

W = 2
λ

λ
= 2v sin i

c
. (14.16)

In practice, one needs to account for the orientation at
angle i of the galaxy to our line of sight, and hence the
relation of W to the (maximum) rotational velocity. The
Tully–Fisher relation Eq. 14.15 is found to be strikingly
linear, with little velocity dispersion, and a good estimate
of absolute luminosities in selected photometric bands out
to distances of galaxies >100 Mpc away.

14.8.5 Supernovae

As we noted in Chapter 10, Type II supernovae are
the end-products of a huge variety of massive stars
(e.g., M>8M�) due to gravitational core collapse. But
Type Ia supernovae all have similar origin in terms of

the progenitor mass. If all Type Ia supernovae arise
from nuclear fusion of the same mass, given by the
Chandrasekhar limit, the energy generated in the cor-
responding supernova should be the same, and hence
the same intrinsic luminosity or absolute magnitude. In
addition, the temporal evolution of their light curves fol-
lowing the supernova explosion are also found to be
similar. Since these explosions are tremendously pow-
erful, they are observed out to much farther distances
than the Cepheids. The key question, of course, is to
ascertain that all Type Ias are indeed the same. The answer
again lies in spectroscopic calibration of detailed spectral
features.

We begin with spectral identification of the different
SN types. Figure 14.14 shows the spectra of Type II and
Types Ia, b, c at the same time after explosion, ∼1 week
[446]. The basic observational difference between Types
I and II is that the Type II supernovae spectra contain
hydrogen lines, whereas the Type Ia, b, c do not. In a Type
II SN, the H I lines are formed in the outermost ejecta
of the exploding star, which consists mainly of hydro-
gen. Types Ib and Ic are physically similar to Type II in
that their progenitors are also sufficiently massive stars,
but evolved to a stage where they have lost their hydrogen
envelopes before the onset of core collapse. Most SNe Ib,
c progenitors are thought to lose their hydrogen via binary
interactions in symbiotic star systems. Massive stars, such
as the Wolf–Rayet stars also undergo immense amounts
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of mass loss through radiatively driven winds.10 Types
Ib and Ic are similar, except that the former still have
their helium envelopes, as evidenced by the He I features
(the lowest curve (d) in Fig. 14.14), whereas the former
(curve (c)) do not show helium lines. The physical mech-
anisms of Types II, Ib and Ic are similar, but their spectra
span a wide range depending on the progenitor mass and
composition.

On the other hand, the observational features of Type
Ia supernovae are remarkably similar. Figure 14.15 is a
compilation of light curves in U, B, V, R, I colour bands
(Chapter 10). Each curve contains photometric observa-
tions of a number of SNe Ia.11 Figure 14.15 illustrates
dramatically the whole point underlying the importance
of SNe Ia as standard candles: not only are the shapes
similar, the light (energy) emitted in each distinct band
appears to be the same for all Type Ias. Obviously, the
sum over all colour bands, i.e., the total or bolometric
luminosity, should also be the same.

Another feature of SNe Ia light curves is the unifor-
mity of their decline from peak luminosity during the
early phase. A correlation has been established between
the absolute luminosity and the decline rate from the peak
value to its value after 15 days, parametrized by the quan-
tity 
m15 [447]. The brighter the SN Ia, the broader the
width 
m15 or the duration of the peak phase. This fact
is crucial to the calibration of the absolute luminosity of

10 The most spectacular example of observed mass-loss is again the

luminous blue variable Eta Carinae (cover jacket), which has

undergone periodic episodes of huge mass loss in what may be a

frantic effort to prevent core collapse by an extremely massive star.
11 It is customary to denote the plural ‘supernovae’ as SNe, and the

singular as SN.

SNe Ia. In addition to the photometric light curves, the
spectroscopic homogeneity of SNe Ia has also been con-
firmed. Figure 14.16 compares detailed spectral features
of three SNe Ia in galaxies with different Hubble veloc-
ities (cf. Eq. 14.3), but at the same early temporal epoch
(as in Fig. 14.14) of about ∼1 week past peak luminos-
ity [446]. The most outstanding feature is the blueshifted
Si II λλ 6347.10, 6371.36 (blended at ∼ λ 6355) due
to the lowest dipole allowed transitions (‘resonance’
lines): 3s2 4s(2S1/2)→ 4p(2Po

3/2,1/2). Nucleosynthesis
of silicon is understood to be due to the fusion of carbon
and oxygen in the progenitor C-O white dwarf. Therefore
the Si II λ 6355 feature is regarded as the signature of the
early phase of SNe Ia. Other lines indicate their origin in
the expanding (hence the observed blueshift) photosphere
of the progenitor star, such as the Ca II H&K 3934, 3968
(Fig. 10.8) and the CaT near-IR lines λλ 8498, 8542, 8662
(Fig. 10.9) discussed in Chapter 10. At later times, the
Fe group elements manifest themselves in the expanding
ejecta, which eventually overwhelms the receding photo-
sphere and photospheric features, such as the CaT lines.

Despite the commonality exemplified in Fig. 14.16,
how do we ascertain that all SNe Ia are indeed sufficiently
identical to be precise standard candles? Although there
must be significant deviations in the masses of white
dwarf progenitors, as characterized by their zero-age-
main-sequence (ZAMS) masses,12 the range of ejected
masses in Sne Ia do not appear to range widely away from

12 This is when stars first begin producing thermonuclear energy and

arrive at the main sequence in the HR diagram (Fig. 10.2), following

gravitational contraction of the protostellar masses to the

temperature–density regime to initiate nuclear p–p ignition.
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the canonical Chandrasekhar limit of 1.4 M�. But the
physical environments of SNe Ia span a wide range of host
galaxies over much of the history of the Universe. The
nucleosynthetic yields of common elements differ, and are
observed to show variations. Furthermore, the detonation
mechanism that pervades throughout the white-dwarf pro-
genitor is not entirely explained by models. This is
where it becomes important to determine the precise

elemental composition, physical conditions, and kinemat-
ics of supernovae ejecta using detailed spectroscopy. It
is necessary to carry out high-resolution spectroscopic
observations at different epochs since various spectral
features manifest themselves at particular times, as the
physical conditions in the expanding ejecta evolve.

Figure 14.17 illustrates two sets of spectra represent-
ing an early phase with prominent photospheric features,
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and a late nebular phase with much lower temperatures
and densities characteristic of physical conditions in H II

regions. The basic atomic physics is revealed by the intrin-
sic nature of the observed lines. In the photospheric phase,
and relatively high temperature–density regime, the lines
are due to dipole allowed transitions betweeen relatively
far apart atomic levels of opposite parity. By contrast, the
late-time spectra show the familiar forbidden lines owing
to the excitation of low-lying levels, indicative of a less
energetic and optically thin environment. We may also
note the aforementioned large Si II absorption line(s) at
λ 6355 that characterize the early phase of SN Ia.

Another important fact apparent from Fig. 14.17 is
the relative abundances of nucleosynthesized material in
supernovae. Lines of iron-group elements, particularly
Fe-Co-Ni, are seen mainly in absorption during the early
phase. But as the high density SN ejecta expands into a
thinner (i.e., optically thin) nebula, forbidden emission
lines of these elements become the strongest features.
These are extremely useful in abundance determination.
We have seen in Chapters 8 and 12 that emission line
ratios can be used to estimate relative abundances, pro-
vided the relevant excitation collision strengths and transi-
tion probabilities are accurately known. Since the nebular
phase is observable for a much longer period than the
early phase, such observational and theoretical analysis is
especially valuable for both the physical conditions and
abundances.

The determination of Fe-Co-Ni abundances is an
essential requirement for studying a particular supernova
(Type I or II). This is because supernovae are powered
largely by the radioactive decay chain

56Ni (6d)→56Co (77d)→56Fe.

The nickel isotope 56Ni is the preferred nuclear prod-
uct in supernovae. But 56Ni is unstable, and beta-decays
in six days into 56Co, which is also unstable and decays
into the stable iron isotope 56Fe in 77 days. Therefore,
during most of the decay phase shown in Fig. 14.15
the energetics of the supernova is driven by the radioac-
tive decay of cobalt to iron. Nearly two-thirds of all
iron in the Universe is believed to be nucleosynthe-
sized and released in SNe Type Ia, and the remainder
in SNe Type II. The γ -rays emitted in these nuclear
reactions eventually degrade into lower energy X-rays,
ultraviolet, optical and infrared radiation. The higher
energy photons are reprocessed within the ejecta, which
also fuels its expansion.13 Initially, the γ -radiation is

13 In core-collapse Type II SNe, the dominant release of energy is via

neutrinos produced during nucleosynthesis.

completely trapped by the dense ejecta, which thermalize
to drive lower energy emission in the ultraviolet, opti-
cal and infrared. Optical and infrared monitoring pro-
grammes search for this sudden brightening to follow the
decay curve of supernova light, which eventually decays
and is usually observed in nebular infrared emission
lines.

The tremendous luminosity of SNe Ia makes it possi-
ble to employ them as standard, or standardizable, candles
up to distances >1 Gpc. However, an examination of
spectroscopic calibration makes it clear that variations in
spectra exist, and need to be further studied and modelled
using high-resolution spectroscopy and elaborate radiative
transfer models (e.g., [449]).

14.8.6 Acceleration of the Universe
and dark energy

We end this chapter as we began, with the ‘simple’ Hubble
diagram. The reason for this revisitation is an astonishing
strand of evidence based on the observations of distant
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SNe Ia. Recent work in the past decade or so appears to
indicate that the expansion of the Universe is accelerating.
The usual Hubble diagram, in Fig. 14.1, shows uniformly
linear expansion characterized by its slope H0. But using
SNe Ia as standard distance indicators, two independent
groups, the Supernova Cosmology Project [450] and the
High-z Supernova Search Team [451], have obtained data
that deviates from the linear Hubble law, as shown in
Fig. 14.18. The deviations occur towards higher z, and
although slight they are regarded as a statistically signifi-
cant signature of accelerating expansion. According to the
distance modulus (m-M) vs. z plotted in Fig. 14.18, the
more distant SNe are fainter than the ones that are closer.
That means that the nearby objects are moving with faster
velocities than in those in the more distant past, i.e., mov-
ing farther away faster than the linear Hubble law would
predict.

What could be causing a more rapid expansion of the
Universe? As far as we know, gravity plays the ultimate

role. So one possible answer is that some form of dark
energy is causing a negative pressure or repulsion to
counterbalance the attraction due to matter, which would
otherwise make the Universe collapse gravitationally, or
at least slow down the expansion. The idea is reminiscent
of Einstein’s famous cosmological constant $, which he
introduced to explain a similar conundrum in theoretical
models of a static Universe based on the general theory
of relativity. Einstein abandoned the apparently unphys-
ical term in the field equations when Hubble discovered
the expansion of the Universe, and the ensuing big bang
scenario that has since been amply verified.14 Thus the
notion of ‘dark energy’ seems to be harking back to the
future, and is perhaps the most intriguing area of current
research in cosmology.

14 Einstein called it his ‘greatest blunder’, apparently unhappy at having

had to introduce an ad-hoc expression into the otherwise elegant

mathematical framework of the general theory of relativity.
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Appendix B Physical constants

Notation: cv = conventional value, vc = vacuum, BM = Bohr magneton

Quantity Symbol Value

Angstrom Å 1.00× 10−10 m
Astronomical distance unit AU 1.496× 1011 m
Atomic mass unit (12C = 12 scale) mu = 1 u 1.660 538 86(28)× 10−27 kg

Atomic time unit τ0 = h3

8π3mee4 2.4189× 10−17 s

Avogadro’s number NA, L 6.022 141 5(10)× 1023 mol−1

Bohr magneton μB 9.2740154× 10−24 J T−1

in eV 5.78838263× 10−5 eV T−1

in Hz 1.39962418× 1010 s−1 T−1

in wavenumber 46.686437 m−1 T−1

in K 0.6717099 K T−1

Bohr radius a0 = α/4πR∞ 5.291 772 108E18× 10−11 m
Boltzmann constant k = kB = R

NA
1.3806504(24)× 10−23 J K−1

in eV 8.617385× 10−5 eV K−1

Characteristic impedance of vc Z0 = μ0c 376.730 313 461
Compton wavelength h

mec 2.426310× 10−10 cm
h

2πmec 3.861592× 10−11 cm

Conductance quantum G0 = 2e2/h 7.748 091 7004(53)× 10−5 S
Coulomb constant ke = 1/4πε0 8.987551 787× 109 Nm2 C−2

Earth’s radius RE 6.37× 106 m
Electron–alpha-particle mass ratio me/mα 0.000137093354
Eletron charge e 1.602 176 487× 10−19 C
Electron compton wavelength λc,e 2.42631× 10−12 m
Electric constant (vc permittivity) ε0 = 1/(μ0c2) 8.854 187 817× 10−12 F m−1

Electron–deuteron mass ratio me/md 0.000272443707
Electron g-factor ge 2.002319304386
Electron magnetic moment 1.001159652193 BM
Electron mass me 9.109 382 15× 10−31 kg

5.4857990943(23)× 10−4 u
Electron molar mass 5.48579903× 10−7 kg mol−1

Electron–muon mass ratio me/μ 0.00483633218
Electron–proton mass ratio me/pe 0.000544617013
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Quantity Symbol Value

Electron radius re = e2

4πε0mec2 2.817 940 2894(58)× 10−15 m

Electron rest mass energy 0.510998910(13) MeV
Electron specific charge q 1.75881962× 1011 C kg−1

Electron speed in first Bohr orbit a0
τ0

2.18769× 108 cm s−1

Electron volt eV 1.60217733× 10−19 J

Faraday constant F = NAe 96 485.3383(83) C mol−1

Fermi coupling constant GF/(�c)3 1.166 39× 10−5 GeV−2

Fine-structure constant α = e2μ0c
2h 7.297 352 537 6× 10−3

1
α 137.0360

First radiation constant c1 = 2πhc2 3.741 771 18× 10−16 Wm2

For spectral radiance c1L 1.191 042 82× 10−16 Wm2 sr−1

Frequency of first Bohr orbit 6.5797× 1015 s−1

Gas constant R 8.314 472(15) J K−1 mol−1

1.9858775(34) cal K−1 mol−1

8.205746× 10−5 m3atm K−1 mol−1

1.9872 cal g−1 mol−1 K−1

Gravitational acceleration g 9.80665 m s−2

Gravitational constant G 6.67428(67)× 10−11 m3 kg−1 s−2

Hartree energy (atomic unit) Eh = 2R∞hc 4.359 744 17× 10−18 J
27.21165 eV

Ice point T = 0 ◦C 273.15 K

Inverse conductance quantum G−1
0 = h/2e2 12 906.403 7787(88)

Josephson constant KJ = 2e/h 1.835 978 91(12)× 1014 Hz V−1

Josephson constant (cv) KJ−90 4.835 979× 1014 Hz V−1

Loschmidt constant at n0 = NA/Vm

T = 273.15 K, p = 101.325 kPa 2.686 777 3× 1025 m−3

Magnetic constant (vc permeability) μ0 4π × 10−7 N/A2

Magnetic flux quantum φ0 = h/2e 2.067 833 667× 10−15 Wb

Molar mass constant Mu = M( 12C)
12 1× 10−3 kg/mol

Molar Planck constant NAh 3.990 312 716× 10−10 Js mol−1

Molar volume of an ideal gas at Vm = RT/p
T = 273.15 K, p = 100 kPa 2.2710 981(40)× 10−2 m3 mol−1

T = 273.15 K, p = 101.325 kPa 2.2413 996(39)× 10−2 m3 mol−1

Nuclear magneton μN = e�/2mp 5.050 783 43(43)× 10−27 J T−1

Planck charge qP =
√

4πε0�c 1.875545870(47)× 10−18 C

Planck constant h 6.626 068 96× 10−34 Js
� = h/(2π) 1.054 571 628× 10−34 Js

Planck length lP =
√

�G
c3 1.616252× 10−35 m

Planck mass mP =
√

�c
G 2.17644× 10−8 kg

Planck temperature TP =
√

�c5

Gk2 1.416785× 1032 K

Planck time tP =
√

�G
c5 5.39124× 10−44 s

Proton mass mp 1.672 621 637× 10−27 kg
in au 1.00727647 u
in eV 9.3827231× 108 eV
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Quantity Symbol Value

Proton Compton wavelength λC,p 1.32141002× 10−15 m
Proton magnetic moment λC,p 1.41060761× 10−26 J T−1

Quantum of circulation h
me

3.63695× 10−4 J s kg−1

7.27389 erg s g−1

Radiation constant c1 3.7418× 10−16 W m2

Radiation constant c2 1.43879× 10−2 m K

Rydberg constant R∞ = α2mec
2h 10 973 731.568 525 m−1

1
R∞ 911.26708 I.A.

Rydberg energy (atomic unit) Ry = hcR∞ 2.17992× 10−11 erg
13.605 6923(12) eV

Second radiation constant c2 = hc/k 1.438 775 2× 10−2 mK
Solar constant 1367 W/m2

433.3 Btu ft2 h−1

Speed of light in vacuum c 299 792 458 m s−1

Standard atmosphere atm 101 325 Pa
Standard temperature and pressure STP T = 273.15 K, p = 101.325 kPa

Stefan–Boltzmann constant σ = π2

60
k4

�3c2 5.670 400× 10−8 W m−2 K−4

Sun’s radius 6.96× 108 m
Sun’s mean subtended full angle 0.532 degrees

31.99 arc min

Thomson cross section (8π/3)r2
e 6.652 458 73× 10−29 m

Triple point H2O 273.16 K

Wien displacement law constant for b = hc
4.965114231k

power max 2.897 768 5× 10−3 mK
photons max 3669 m K

The Earth’s atmospheric composition (%volume)

N2 78.08%
O2 20.95%
CO2 0.033%
Ar 0.934%
Ne 1.82× 10−3%
He 5.24× 10−4%
Kr 1.14× 10−4%
Xe 8.7× 10−6%
H2 5.0× 10−5%
CH4 2.0× 10−4%
N2O 5.0× 10−5%



Appendix C Angular algebra and
generalized radiative transitions

The angular algebra for radiative processes is not straight-
forward to solve. However, we will describe only some
basics of angular momenta algebra relevant to solutions of
problems with three angular momentum functions. These
are needed to derive probabilities for radiative transitions
and relevant atomic parameters. A common integral in
particle physics is

〈l ′m′|YL M |lm〉 =
∫ 2π

0
dφ

∫ π

0
Y∗l ′m′YL M Ylm sin θdθ.

(C.1)

These integrals are sometime called Gaunt’s coefficients.

C.1 3-j symbols

An integral of three related angular functions j1, j2 and
j3, such that they satisfy the triangular conditions

j1+ j2− j3 ≥ 0, j1− j2+ j3 ≥ 0,

− j1+ j2+ j3≥ 0,

(C.2)

and j1 + j2 + j3 is an integer, can be expressed conve-
niently by a 3- j symbol as

(−1) j1− j2−m3

(2 j3 + 1)1/2
( j1m1 j2m2| j1 j2 j3 − m3)

=
(

j1 j2 j3
m1 m2 m3

)
, (C.3)

where the right-hand side is the 3- j symbol. Numerical
computaion of a 3- j symbol is given by

(
j1 j2 j3

m1 m2 m3

)

= (−1) j1− j2−m3 ×
[
( j1+ j2− j3)!( j1− j2+ j3)!(− j1+ j2+ j3)!( j1+m1)!( j1−m1)!( j2+m2)!( j2−m2)!( j3+m3)!( j3−m3)!

( j1+ j2+ j3+1)!
]1/2

×
∑

k

(−1)k
k!( j1+ j2− j3−k)!( j1−m1−k)!( j2+m2−k)!( j3− j2+m1+k)!( j2− j1−m2+k)! . (C.4)

Two frequently encountered 3- j symbols are

(
j1 0 j3
0 0 0

)
= (−1) j1 1√

2 j3 + 1
δ j1, j3

(
j1 j2 j3
0 0 0

)
= (−1)J/2

[
( j − 2 j1)!( j − 2 j2)!( j − 2 j3)!

( j + 1)!
]1/2

× ( j/2)!
( j/2− j1)!( j/2− j2)!( j/2− j3)! , (C.5)

where j = j1 + j2 + j3 is even; otherwise the expression
becomes zero.

For even permutations of columns, the numerical value
remains unchanged while for odd permutations, the value
changes by the factor (−1) j1+ j2+ j3 . The orthogonality
properties are

∑
j3m3

(2 j3 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m′1 m′2 m3

)

= δ (m1m′1
)
δ
(
m2m′2

)
,

∑
m1m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j ′3

m1 m2 m′3

)

= δ
(

j3 j ′3
)
δ
(
m3m′3

)
(2 j3 + 1)

δ( j1 j2 j3), (C.6)

where δ( j1 j2 j3) = 1 if j1, j2, j3 satisfy the triangular
conditions, and zero otherwise.

The 3- j symbols are most commonly used for physi-
cal systems where two momenta vector-couple to form a
resultant to give another good quantum number.
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C.2 6-j symbols

While 3- j symbols are involved in coupling two angu-
lar momenta, 6- j symbols appear in problems concerned
with couplings of three angular momenta. Consider a sys-
tem of total angular momentum j composed of three
subsystems of angular momenta j1, j2 and j3. There is
no unique way that j can form from the three angular
momenta. For example, we can have j1 + j2 = j ′ and
j = j3 + j ′. The wavefunction in this representation
is then |( j1 j2) j ′, j3 j〉. We can also have j2 + j3 = j ′
and j = j1 + j ′′. The wavefunction in this coupling
scheme is then | j1( j2 j3) j ′′, j〉. The overlap between the
two representations is proportional to a 6- j symbol:

〈( j1 j2) j ′, j3 j | j1( j2 j3) j ′′, j〉
= (−1) j1+ j2+ j3+ j

√
(2 j ′ + 1)(2 j ′′ + 1)

×
{

j1 j2 j ′
j3 j j ′′

}
, (C.7)

where the quantity in curly brackets on the right-hand side
is a 6- j symbol. It differs from the Racah-coefficient W in
a sign factor,{

j1 j2 j3
l1 l2 l3

}
= (−1) j1+ j2+l1+l2 W( j1 j2l2l1; j3l3);

(C.8)

similarly for Jahn coefficients, U:

U( j1 j2l2l1; j3l3) = (−1) j1+ j2+l1+l2

×√
(2 j3 + 1)(2l3 + 1)

{
j1 j2 j3
l1 l2 l3

}
. (C.9)

Numerical computation of a 6- j symbol is obtained using
the formula

{
j1 j2 j3
l1 l2 l3

}
= (−1) j1+ j2+l1+l2
( j1 j2 j3)
( j1l2l3)
(l1 j2l3)
(l1l2 j3)

×
∑

k

(−1)k( j1 + j2 + l1 + l2 + 1− k)!
k!( j1 + j2 − j3 − k))!(l1 + l2 − j3 − k)!( j1 + l2 − l3 − k)!(l1 + j2 − j3 − k)!

× 1

(− j1 − l1 + j3 + l3 + k)!(− j2 − l2 + j3 + l3 + k)! (C.10)

where


(abc) =
[
(a + b − c)!(a − b + c)!(−a + b + c)!

(a + b + c + 1)!
]1/2

.

(C.11)

The 6- j symbol is invariant under interchange of
columns, and the interchange of any two numbers in the
bottom row with the corresponding two numbers in the top
row. A 6- j symbol is automatically zero unless each of the

four triads ( j1, j2, j3), ( j1, l2, l3), (l1, j2, l3), (l1, l2, j3)
satisfies the triangular conditions and the elements of each
triad sum up to an integer. The orthogonality condition is

∑
l

(2l + 1)(2 j ′′ + 1)

{
j1 j2 j ′
l1 l2 l

}{
j1 j2 j ′′
l1 l2 l

}

= δ( j ′, j ′′). (C.12)

The 6- j symbol is extensively used in the computation
of reduced matrix elements of tensor operators.

C.3 Vector and tensor components

A tensor Tk of order k is a quantity with 2k+1 compo-
nents, Tkq with q = k, k−1, . . . 0, . . . ,−k. The spherical
components of a vector A can be expressed in the form of
components of a tensor of order 1 as follows:

A0 = Az

= |A| cos θ = |A|
√

4π

3
Y1,0,

A+1 = − 1√
2
(Ax + iAy) = −|A|√

2
eiφ sin θ

= |A|
√

4π

3
Y1,+1,

A−1 = 1√
2
(Ax − iAy) = |A|√

2
e−iφ sin θ

= |A|
√

4π

3
Y1,−1. (C.13)

An irreducible tensor, also known as a spherical tensor
Tk, whose components under rotation of the coordinate
system transform as the spherical harmonics Ylm , trans-
form and obey the same commutation rules of the angular
momentum J of the system with Ykq , that is

[(Jx ± iJy), Tkq ]
= √

(k ∓ q)(k ± q + 1)Tk,q+1, [Jz, Tkq ] = qTkq .

(C.14)

When k=1, the above commutation rules coincide with
those for the spherical components of a vector A.
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C.4 Generalized radiative transitions

With reference to the discussion in Chapter 4, evalua-
tion of the transition matrix element 〈 j |D|i〉 for complex
atoms is rather more involved, owing to angular and spin
dependences, on the one hand, and the inherent com-
plexity of computing wavefunctions for a many-electron
system, on the other hand. The latter problem is the more
difficult one, and hitherto we have described various meth-
ods to solve it. Now we sketch the basic expressions for
carrying out the spin-angular algebra of vectorial (ten-
sorial) additions of spin and orbital angular momenta.
The simplification inherent in the division between the
two parts is made possible by the Wigner–Eckart theo-
rem, which enables the exact and a-priori computation of
the spin-angular problem exactly, and the radial matrix
element approximately.

At first glance, transition matrix elements
∫∫∫

ψ∗O
ψ ′dτ look rather complex if the operator O involves
products of several spherical harmonics Ylm(ϑ, ϕ) =
〈r̂|lm〉, especially if spin is also added. As demonstrated
in the case of magnetic two-body magnetic integrals
(Section 2.13.5), it would be impractical to perform the
integrations over the direction space, that is the angles
(ϑ, ϕ). It is here that the spherical calculus enables such
operations to be performed in the space of the state vectors
|lm〉: instead of computing integrals over 4π , one exploits
the algebraic properties of rotations in three-dimensional
space, starting with the basics of angular momentum alge-
bra, as developed by E. U. Condon and G. H. Shortley [3],
but later using the more powerful identities derived by G.
Racah (e.g., [13]). In spherical or ‘rotational’, rather than
Cartesian, coordinates the components of the radius vector
r read

r± = ∓ x ± i y√
2
, r0 = z . (C.15)

The components of J (integer like L or half-integer like
s) act as step-up and step-down operators on the quantum
number m of Slater states:

J± | j m〉 = �

√
( j ∓ m)( j ± m + 1) | j m ± 1〉 (C.16)

J0 | j m〉 = � m | j m〉 ,

reproducing the eigenvalues of the angular operator L2,
Eq. 2.10, without resort to spherical harmonics Y. Sim-

ilarly, the tensor operator C[k]κ , like Pκk of Eq. 2.17,
representing the components of the unit radius vector r/r
or its dyadic products of order k but acting on Slater states
(Eq. C.16), can raise or lower the value of l as seen in its
matrix elements

ck(lm, l ′m′) ≡
〈
lm

∣∣∣C[k]κ ∣∣∣ l ′m′
〉

= (−1)m〈l ′m′ kκ|lm〉 〈l0 k0|l ′0〉

= (−1)k
√
(2l+1)(2l ′+1)

(
l k l ′
−m κ m′

)

×
(

l k l ′
0 0 0

)
. (C.17)

In Eq. C.17 we have introduced the basic quantities
related to coupling of two angular momentum quantum
numbers: the Clebsch–Gordon coefficients or the vector
coupling coefficient (VCC) in the bra-ket notation in the
first equation, and the equivalent 3- j symbol in the second
equation. Their relationship to spherical harmonics is as
outlined above.

The magnetic components κ = k, k − 1, . . . , −k of
any spherical operator T[k] can be related to a single quan-
tity, the reduced matrix element of this operator according
to the Wigner–Eckart theorem〈

J M
∣∣∣T[k]κ ∣∣∣ J ′M ′〉 = 〈J M J ′M ′|kκ〉√

2J + 1
〈J‖T[k]‖J ′〉

= (−1)J−M

(
J ′ k J
−M ′ κ M

)
〈J‖T[k]‖J ′〉 , (C.18)

incidentally relating the transparent vector coupling or
Clebsch–Gordan coefficients to the highly symmetric
3- j symbols. Moreover, the reduced matrix element of
C is readily derived. Here are more examples of reduced
matrix elements, beginning with the identity operator I :

〈J‖I‖J ′〉 = √
2J + 1 δJ J ′

〈J‖J‖J 〉 = √
J (J + 1)(2J + 1)

〈sl j‖Yk‖sl ′ j ′〉 = (−1) j−1/2

√
(2 j + 1)(2k+ 1)(2 j ′ + 1)

4π

×
(

j k j ′
−1/2 0 1/2

){
1+ (−1)l+k+l ′

}
/2. (C.19)

ending with the first example of a coupled state (and
without the need to formulate spin angular functions1).

Without any presumption of the physical nature of
states, the inital i and final j levels may be desginated with

1 Simply to retain the letter P for C would miss the decisive difference in

phase factors imposed on spherical operators and embodied in

Eq. C.15. Summation over pairs of identical magnetic quantum

numbers (adding up to angular quantum numbers inside 6- j or Racah

coefficients) would otherwise not work when embedded in such a

complex context as two-body magnetic couplings (Eq. 2.196). The

respective other-orbit terms (the ones with twice s) give a flavour of

tensor operations involving two systems i and j . It shows that simple

tools like the addition theorem of spherical harmonics (Section 2.1.1)

had to give way to spherical tensor operations. But those detailed

evaluations are well beyond the scope of this text.



Angular algebra and generalized radiative transitions 331

their relevant quantum numbers as ln(α1L1S1)ni li Li Si
and ln(α1L1S1)n j l j L j S j , where ln(α1L1S1) is the total
angular momentum of the electrons staying inert dur-
ing the transition (here the symbol α denotes a generic
expression for all other characteristic parameters, such as
configuration and principal quantum numbers of the ‘par-
ent’ ion core). We generalize the transition probability
with respect to the degeneracies of the initial and final
states. If Li and Si are the total oribital and spin angu-
lar momenta of the initial state, and degeneracy gi =
(2Si + 1)(2Li + 1), then the line strength S is expressed
as (in the length formulation)

Si j =
∑

MSi ,MS j

∑
MLi ,ML j

|〈ln(α1L1S1)n j l j L j S j ML j MSJ |D|ln

× (α1L1S1)ni li Li Si MLi MSi 〉|2, (C.20)

where the sum is over all initial and final degenerate lev-
els. In the radiative perturbation operator e/(mc)(p.A)
there is no spin dependence, that is, the spin cannot change
during the transition. This leads to the selection rule for
dipole E1 transitions,

S j = Si , i. e.,
S = 0. (C.21)

However, the spin rule can be violated, owing to depar-
ture from L S coupling via the spin–orbit interaction. In
that case, if S is no longer a good quantum number, then
we need to further consider the J = L + S intermediate
coupling scheme, discussed later.

The dipole moment operator D is equivalent to an
irreducible tensor of order 1 with three spherical compo-
ments Dq ,

D0 = Dz = |D|
√

4π

3
Y10,

D+1 = − 1√
2
(Dx + iDy) = |D|

√
4π

3
Y1,+1, (C.22)

D−1 = 1√
2
(Dx − iDy) = |D|

√
4π

3
Y1,−1,

which can be expressed in short as Dq = |D|
√

4π
3 Y1q .

Using the Wigner–Eckart theorem (Eq. C.18) the dipole
transition matrix element is

〈(α1L1)n j l j L j ML j |Dq |(α1L1)ni li Li MLi 〉

= (−1)L j−M j

(
L j 1 Li

−ML j q MLi

)

× 〈(α1L1)n j l j L j ||D||(α1L1)ni li Li , (C.23)

where we have dropped the parent configuration ln as
the quantum states are specified. The properties of 3- j
symbols dictate that the matrix element is zero unless


L = L j − Li = 0,±1, 
M = ML j − MLi = 0,±1.

(C.24)

However, for each of the three possible transitions
M =
0,±1, only one term in Dq is non-zero, i.e.,

〈(α1L1)n j l j L j ML j |D0|(α1L1)ni li Li MLi 〉
× for 
M = 0,

〈(α1L1)n j l j L j ML j |D1|(α1L1)ni li Li MLi 〉
× for 
M = 1,

〈(α1L1)n j l j L j ML j |D−1|(α1L1)ni li Li MLi 〉
× for 
M = −1. (C.25)

Again, using the Wigner–Eckart theorem (Eq. C.18),
the summation over Ms reduces the matrix element to

Si j =
∣∣〈(α1L1)n j l j L j ||D||(α1L1)ni li Li 〉

∣∣2 . (C.26)

Since the angular momenta are coupled, the matrix
element can be expressed in terms of a 6- j symbol
(which describes the coupling of three angular momem-
tum quantum numbers, as opposed to two) by the 3- j
symbol as

〈(α1L1)n j l j L j |D|(α1L1)ni li Li 〉
= (−1)l j+L1+Li+1

√
(2Li + 1)(2L j + 1)

×
{

L j 1 Li
li L1 l j

}
〈n j l j ||D||ni li 〉. (C.27)

From the algebraic properties of the 6- j symbol this
equation is zero, unless


L = L j − Li = 0,±1, 
l = l j − li = 0,±1. (C.28)

The permutation properties of the 6- j symbol also dictate
that 
l = 0. The reduced matrix element can be written in
a scalar form a

〈n j l j ||D||ni li 〉 =
〈

n j l j |||D|
√

4π

3
Y1||ni li

〉

= (−1)l j+g
√

lmax〈n j l j |D|ni li 〉, (C.29)

where

〈n j l j |D|ni li 〉 �=
∫ ∞

0
R∗n j l j

er Rni li r
2dr. (C.30)

Here D = er and lmax is the larger of li and l j . So the
reduced matrix element Eq. C.29 vanishes for all l j except
l j = li + 1, which implies that lmax = (li + l j + 1)/2.

The square of matrix element in Si j is expressed
conveniently using the Racah coefficient W as
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∣∣〈(α1L1)n j l j L j ||D||(α1L1)ni li Li 〉
∣∣2

= (2Li + 1)(2L j + 1)

{
li Li L1
l j L j 1

}2

×
∣∣∣〈n j l j ||D||ni li 〉

∣∣∣2
= (2Li + 1)(2L j + 1)W2 (li Li l j L j ; L11)∣∣〈n j l j ||D||ni li 〉

∣∣2. (C.31)

Combining Eq. C.31 with the reduced matrix element
Eq. C.29, we obtain the line strength

Si j = (2Li + 1)(2L j + 1)
(li + l j + 1)

2

×W2(li Li l j L j ; L11)|〈n j l j |D|ni li 〉|2. (C.32)

The oscillator strength fi j and the radiative decay rate
AJi can now be obtained from Si j as before. Since Si, j
does not depend on MSi ,

∑
MSi

= 2Li + 1 = gi . Hence,
the corresponding f -value is

fi j =
E ji

3gi e2
Si j (C.33)

= Ei j

3
(2L j + 1)lmaxW2(li Li l j L j ; L11)

×
∣∣∣∣
∫ ∞

0
Rn j l j (r)Rni li (r)r

3dr

∣∣∣∣2 ,
and the A-coefficient may be obtained from Eq. 4.113.



Appendix D Coefficients of the fine
structure components of an LS
multiplet

The numerical values of the coefficients, C(Li , L j ; Ji , J j ) obtained by Allen [184], for the fine structure components
of a LS multiplet are given in this table1

Numerical values of the coefficient C(Li , L j ; Ji , J j ) for relative strengths of fine-structure components of the LS
multiplets, Li → L j ; g = (2Si + 1(2Li + 1)(2L j + 1)

2Si +1 = 1 2 3 4 5 6 7 8 9 10 11

LS multiplet: SP
g = 3 6 9 12 15 18 21 24 27 30 33

x1 3 4 5 6 7 8 9 10 11 12 13

y1 2 3 4 5 6 7 8 9 10 11

z1 1 2 3 4 5 6 7 8 9

LS multiplet: PP
g = 9 18 27 36 45 54 63 72 81 90 99

x1 9 10 11.25 12.6 14 15.4 16.9 18.3 19.8 21.3 22.8

x2 4 2.25 1.6 1.25 1.04 0.88 0.75 0.68 0.61 0.55

x3 0 1 2.25 3.6 5 6.4 7.9 9.3 10.8

y1 2 3.75 5.4 7 8.6 10.1 11.65 13.2 14.7 16.2

y2 3 5 6.75 8.4 10 11.6 13.1 14.7 16.2

LS multiplet: PD
g = 15 30 45 60 75 90 105 120 135 150 165

x1 15 18 21 24 27 30 33 36 39 42 45

x2 10 11.25 12.6 14 15.4 16.9 18.3 19.8 21.3 22.8

x3 5 5 5.25 5.6 6 6.4 6.9 7.3 7.8

y1 2 3.75 5.4 7 8.6 10.1 11.65 13.2 14.7 16.2

y2 3.75 6.4 8.75 11 13.1 15.2 17.3 19.3 21.4

y3 5 6.75 8.4 10 11.6 13.1 14.7 16.2

z1 0.25 0.6 1 1.43 1.88 2.33 2.8 3.27 3.75

z2 1 2.25 3.6 5 6.4 7.86 9.3 10.8

z3 3 6 9 12 15 18 21

1 Ref: NORAD: www.astronomy.ohio-state.edu/ nahar/nahar_radiativeatomicdata/index.html
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2Si +1 = 1 2 3 4 5 6 7 8 9 10 11

LS multiplet: DD
g = 25 50 75 100 125 150 175 200 225 250 275

x1 25 28 31.1 34.3 37.5 40.7 44 47.3 50.6 53.8 57.2

x2 18 17.4 17.2 17.5 17.9 18.3 19 19.6 20.1 20.9

x3 11.25 8 6.25 5.14 4.37 3.81 3.37 3.03 2.75

x4 5 1.25 0.22 0.0 0.14 0.48 0.95 1.5

x5 0 2.23 5 8 11.1 14.3 17.5

y1 2 3.9 5.7 7.5 9.25 11 12.75 14.4 16.1 17.8

y2 3.75 7 10 12.85 15.6 18.4 21 23.6 26.3

y3 5 8.75 12 15 17.8 20.6 23.4 26

y4 5 7.8 10 12 13.9 15.7 17.5

LS multiplet: DF
g = 35 70 105 140 175 210 245 280 315 350 385

x1 35 40 45 50 55 60 65 70 75 80 85

x2 28 31.1 34.3 37.5 40.7 44 47.3 50.6 53.8 57.2

x3 21 22.5 24 25.8 27.5 29.4 31.2 33.1 35

x4 14 14 14.4 15 15.7 16.5 17.4 18.2

x5 7 6.2 6 6 6.1 6.3 6.5

y1 2 3.9 5.7 7.5 9.2 11 12.8 14.4 16.1 17.8

y2 3.9 7.3 10.5 13.6 16.5 19.4 22.2 25.1 27.8

y3 5.6 10 13.9 17.5 21 24.4 27.5 30.8

y4 7 11.4 15 18.3 21.4 24.4 27.3

y5 7.8 10 12 13.9 15.7 17.5

z1 0.11 0.29 0.5 0.74 1 1.28 1.56 1.84 2.14

z2 0.4 1 1.71 2.5 3.33 4.2 5.1 6

z3 1 2.4 4 5.7 7.5 9.3 11.2

z4 2.22 5 8 11.1 14.3 17.5

z5 5 10 15 20 25

LS multiplet: FF
g = 49 98 147 196 245 294 343 392 441 490 539

x1 49 54 59 64.1 69.3 74.4 79.6 84.8 90 95.2 100.4

x2 40.4 41.2 42.7 44.5 46.2 48.2 50.1 52.2 54.2 56.4

x3 31.1 28.9 27.6 26.7 26.3 25.9 25.9 25.9 26.

x4 22.4 17.5 14.4 12.3 10.7 9.5 8.5 7.7

x5 14 7.6 4.38 2.5 1.36 0.67 0.26

x6 6.2 0.89 0 0.49 1.6 3.06

x7 0 3.5 7.89 12.6 17.5

y1 2 3.94 5.8 7.7 9.5 11.4 13.2 15 16.8 18.6

y2 3.88 7.5 11 14.2 17.5 20.7 23.9 26.9 30

y3 5.6 10.5 15 19.2 23.3 27.4 31.1 35

y4 7 12.6 17.5 22 26.3 30.3 34.2

y5 7.7 13.1 17.5 21.4 25 28.5

y6 7 10.5 13.1 15.4 17.3
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2Si +1 = 1 2 3 4 5 6 7 8 9 10 11

LS multiplet: FG
g = 63 126 189 252 315 378 441 504 567 630 693

x1 63 70 77 84 91 98 105 112 119 126 133

x2 54 59 64.1 69.3 74.4 79.6 84.8 90 95.2 100.4

x3 45 48.2 51.5 55 58.4 62 65.8 69.3 73

x4 36 37.5 39.3 41.2 43.4 45.5 47.8 49.9

x5 27 27 27.5 28.3 29.3 30.4 31.5

x6 18 16.9 16.5 16.5 16.8 17

x7 9 7.5 6.9 6.6 6.5

y1 2 3.94 5.8 7.7 9.5 11.4 13.2 15 16.8 18.6

y2 3.94 7.6 11.2 14.5 17.9 21.2 24.4 27.6 30.7

y3 5.8 11 15.7 20.2 24.6 28.9 33 37.1

y4 7.5 13.7 19.2 24.5 29.3 34 38.5

y5 9 15.6 21.2 26.3 31 35.5

y6 10.1 16 20.6 24.6 28.5

y7 10.5 13.2 15.4 17.5

LS multiplet: FG
g = 63 126 189 252 315 378 441 504 567 630 693

z1 0.06 0.17 0.3 0.46 0.62 0.81 1 1.2 1.41

z2 0.21 0.56 1 1.5 2.05 2.63 3.23 3.85

z3 0.5 1.29 2.25 3.34 4.51 5.7 7

z4 1 2.5 4.29 6.25 8.3 10.5

z5 1.88 4.5 7.5 10.7 14

z6 3.5 7.9 12.6 17.5

z7 7 14 21

LS multiplet: GG
g = 81 162 243 324 405 486 567 648 729

x1 81 88 95 102.1 109.2 116.4 123.4 130.6 137.7

x2 70 73 76.1 79.9 83.5 87 90.9 94.2

x3 59 58.4 58.4 59 59.6 60.4 61.3

x4 48.2 44.5 41.8 39.7 38.2 37.1

x5 37.5 30.9 26.3 22.8 20.2

x6 27 18.4 13 9.4

x7 16.9 7.7 3.36

x8 7.5 0.67

x9 0

y1 2 3.96 5.9 7.8 9.7 11.6 13.4 15.3

y2 3.94 7.7 11.4 14.9 18.4 21.8 25.1

y3 5.8 11.2 16.2 21.1 25.7 30.4

y4 7.5 14.2 20.2 26 31.5

y5 9 16.5 23.2 29.2

y6 10.1 17.8 24.3

y7 10.5 17.3

y8 9
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2Si +1 = 1 2 3 4 5 6 7 8 9 10 11

LS multiplet: GH
g = 99 198 297 396 495 594 693

x1 99 108 117 126 135 144 153

x2 88 95 102.1 109.2 116.3 123.4

x3 77 82 87.4 92.6 97.9

x4 66 69.1 72.9 76.5

x5 55 56.6 58.4

x5 44 44

x6 33

y1 2 3.96 5.9 7.8 9.7 11.6

y2 3.96 7.8 11.4 15.1 18.6

y3 5.9 11.3 16.5 21.6

y4 7.7 14.6 21.1

y5 9.4 17.5

y6 11

z1 0.04 0.11 0.2 0.31 0.43

z2 0.13 0.36 0.65 1

z3 0.3 0.8 1.44

z4 0.57 1.5

z5 1

LS multiplet: HH LS multiplet: HI
g = 121 242 363 484 605 726 857 143 286 429 572 715

x1 121 130 139 148.1 157.2 166.2 175.3 143 154 165 176 187

x2 108 113 118 123.7 129.2 134.7 130 139 148.1 157.2

x3 95 96.3 98.1 100 102 117 124 131

x4 82.3 79.9 78.3 77.3 104 109

x5 69.2 63.7 59.5 91

x6 56.6 48.2

x7 44.1

y1 2 3.97 5.9 7.8 9.8 11.7 2 3.97 5.9 7.8

y2 3.97 7.8 11.6 15.2 19.8 3.97 7.8 11.6

y3 5.9 11.4 16.8 22 5.9 11.6

y4 7.7 14.8 21.6 7.8

y5 9.4 17.8

y6 11

z1 0.03 0.08 0.14

z2 0.09 0.25

z3 0.2



Appendix E Effective collision
strengths and A-values

In this table all data pertain to fine-structure transitions; however, in cases where the fine-structure collision strengths are
not available, the total LS multiplet value is listed under the first fine-structure transition within the multiplet, followed
by blanks for the other transitions in the multiplet.

Ion Transition λ (Å) A(s−1) ϒ(T × 104 K)

T = 0.5 1.0 1.5 2.0

H I 1s− 2s 1215.67 8.23+ 0 2.55− 1 2.74− 1 2.81− 1 2.84− 1

1s− 2p 1215.66 6.265+ 8 4.16− 1 4.72− 1 5.28− 1 5.85− 1

He I 11S− 23S 625.48 1.13− 4 6.50− 2 6.87− 2 6.81− 2 6.72− 2

11S− 21S 601.30 5.13+ 1 3.11− 2 3.61− 2 3.84− 2 4.01− 2

11S− 23Po 591.29 1.76+ 2 1.60− 2 2.27− 2 2.71− 2 3.07− 2

11S− 21Po 584.21 1.80+ 9 9.92− 3 1.54− 2 1.98− 2 2.40− 2

23S− 21S 15553.7 1.51− 7 2.24+ 0 2.40+ 0 2.32+ 0 2.20+ 0

23S− 23Po 10817.0 1.02+ 7 1.50+ 1 2.69+ 1 3.74+ 1 4.66+ 1

23S− 21Po 8854.5 1.29+ 0 7.70− 1 9.75− 1 1.05+ 0 1.08+ 0

21S− 23Po 35519.5 2.70− 2 1.50+ 0 1.70+ 0 1.74+ 0 1.72+ 0

21S− 21Po 20557.7 1.98+ 6 9.73+ 0 1.86+ 1 2.58+ 1 3.32+ 1

23Po − 21Po 48804.3 − 1.45+ 0 2.07+ 0 2.40+ 0 2.60+ 0

He II 1s− 2s 303.92 5.66+ 2 1.60− 1 1.59− 1 1.57− 1 1.56− 1

1s− 2p 303.92 1.0+ 10 3.40− 1 3.53− 1 3.63− 1 3.73− 1

Li II 11S− 23S 210.11 2.039− 2 5.54− 2 5.49− 2 5.43− 2 5.38− 2

11S− 21S − 1.95+ 3 3.81− 2 3.83− 2 3.85− 2 3.86− 2

11S− 23Po 202.55 3.289− 7 9.07− 2 9.17− 2 9.26− 2 9.34− 2

11S− 21Po 199.30 2.56+ 2 3.82− 2 4.05− 2 4.28− 2 4.50− 2

C I 1D2 − 3P0 9811.03 7.77− 8 6.03− 1 1.14+ 0 1.60+ 0 1.96+ 0
1D2 − 3P1 9824.12 8.21− 5 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 9850.28 2.44− 4 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 4621.57 2.71− 3 1.49− 1 2.52− 1 3.20− 1 3.65− 1
1S0 − 3P2 4628.64 2.00− 5
1S0 − 1D2 8727.18 5.28− 1 1.96− 1 2.77− 1 3.40− 1 3.92− 1
3P1 − 3P0 6.094+ 6 7.95− 8 2.43− 1 3.71− 1 − −
3P2 − 3P0 2304147 1.71− 14 1.82− 1 2.46− 1 − −
3P2 − 3P1 3704140 2.65− 7 7.14− 1 1.02+ 0 − −
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Ion Transition λ (Å) A(s−1) ϒ(T × 104 K)

T = 0.5 1.0 1.5 2.0

5So
2 − 3P1 2965.70 6.94+ 0 4.75− 1 6.71− 1 8.22− 1 9.50− 1

5So
2 − 3P2 2968.08 1.56+ 1 ⇓ ⇓ ⇓ ⇓

C II 2Po
3 2
− 2Po

1 2
1.5774+ 5 2.29− 6 1.89+ 0 2.15+ 0 2.26+ 0 2.28+ 0

4P1 2 − 2Po
1 2

2325 7.0+ 1 2.43− 1 2.42− 1 2.46− 1 2.48− 1
4P1 2 − 2Po

3 2
2329 6.3+ 1 1.74− 1 1.77− 1 1.82− 1 1.84− 1

4P3 2 − 2Po
1 2

2324 1.4+ 0 3.61− 1 3.62− 1 3.68− 1 3.70− 1
4P3 2 − 2Po

3 2
2328 9.4+ 0 4.72− 1 4.77− 1 4.88− 1 4.93− 1

4P3 2 − 4P1 2 4.55+ 6 2.39− 7 6.60− 1 8.24− 1 9.64− 1 1.06+ 0
4P5 2 − 2Po

1 2
2323 – 2.29− 1 2.34− 1 2.42− 1 2.45− 1

4P5 2 − 2Po
3 2

2326 5.1+ 1 1.02+ 0 1.02+ 0 1.04+ 0 1.05+ 0
4P5 2 − 4P1 2 1.99+ 6 3.49− 14 7.30− 1 8.53− 1 9.32− 1 9.71− 1
4P5 2 − 4P3 2 3.53+ 6 3.67− 7 1.65+ 0 1.98+ 0 2.23+ 0 2.39+ 0

C III 3Po
2 − 1S0 1907 5.19− 3 1.12+ 0 1.01+ 0 9.90− 1 9.96− 1

3Po
1 − 1S0 1909 1.21+ 2 ⇓ ⇓ ⇓ ⇓

3Po
0 − 1S0 1909.6 – ⇓ ⇓ ⇓ ⇓

1Po
1 − 1S0 977.02 1.79+ 9 3.85+ 0 4.34+ 0 4.56+ 0 4.69+ 0

3Po
1 − 3Po

0 4.22+ 6 3.00− 7 8.48− 1 9.11− 1 9.75− 1 1.03+ 0
3Po

2 − 3Po
0 1.25+ 6 – 5.79− 1 6.77− 1 7.76− 1 8.67− 1

3Po
2 − 3Po

1 1.774+ 6 2.10− 6 2.36+ 0 2.66+ 0 2.97+ 0 3.23+ 0

C IV 2Po
3 2
− 2S1 2 1548.2 2.65+ 8 – 8.88+ 0 – 8.95+ 0

2Po
1 2
− 2S1 2 1550.8 2.63+ 8 – ⇓ – ⇓

N I 2Do
5 2
− 4So

3 2
5200.4 6.13− 6 1.55− 1 2.90− 1 – 4.76− 1

2Do
3 2
− 4So

3 2
5197.9 2.28− 5 1.03− 1 1.94− 1 – 3.18− 1

2Po
3 2
− 4So

3 2
3466.5 6.60− 3 5.97− 2 1.13− 1 – 1.89− 1

2Po
1 2
− 4So

3 2
3466.5 2.72− 3 2.98− 2 5.67− 2 – 9.47− 2

2Do
5 2
− 2Do

3 2
1.148+ 7 1.24− 8 1.28− 1 2.69− 1 – 4.65− 1

2Po
3 2
− 2Po

1 2
2.59+ 8 5.17− 13 3.29− 2 7.10− 2 – 1.53− 1

2Po
3 2
− 2Do

5 2
10397.7 5.59− 2 1.62− 1 2.66− 1 – 4.38− 1

2Po
3 2
− 2Do

3 2
10407.2 2.52− 2 8.56− 2 1.47− 1 – 2.52− 1

2Po
1 2
− 2Do

5 2
1040.1 3.14− 2 6.26− 2 1.09− 1 – 1.90− 1

2Po
1 2
− 2Do

3 2
10407.6 4.80− 2 6.01− 2 9.70− 2 – 1.57− 1

N II 1D2 − 3P0 6529.0 5.35− 7 2.57+ 0 2.64+ 0 2.70+ 0 2.73+ 0
1D2 − 3P1 6548.1 1.01− 3 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 6583.4 2.99− 3 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 3062.9 3.38− 2 2.87− 1 2.93− 1 3.00− 1 3.05− 1
1S0 − 3P2 3071.4 1.51− 4
1S0 − 1D2 5754.6 1.12+ 0 9.59− 1 8.34− 1 7.61− 1 7.34− 1
3P1 − 3P0 2.055+ 6 2.08− 6 3.71− 1 4.08− 1 4.29− 1 4.43− 1
3P2 − 3P0 7.65+ 5 1.16− 12 2.43− 1 2.72− 1 3.01− 1 3.16− 1
3P2 − 3P1 1.22+ 6 7.46− 6 1.01+ 0 1.12+ 0 1.21+ 0 1.26+ 0
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Ion Transition λ (Å) A(s−1) ϒ(T × 104 K)

T = 0.5 1.0 1.5 2.0

5So
2 − 3P1 2144 4.80+ 1 1.19+ 0 1.19+ 0 1.21+ 0 1.21+ 0

5So
2 − 3P2 2140 1.07+ 2

N III 2Po
3 2
− 2Po

1 2
5.73+ 5 4.77− 5 1.32+ 0 1.45+ 0 1.55+ 0 1.64+ 0

4P1 2 − 2Po
1 2

1748 3.39+ 2 1.89− 1 1.98− 1 2.04− 1 2.07− 1
4P1 2 − 2Po

3 2
1754 3.64+ 2 1.35− 1 1.51− 1 1.62− 1 1.68− 1

4P3 2 − 2Po
1 2

1747 8.95+ 2 2.81− 1 2.98− 1 3.09− 1 3.16− 1
4P3 2 − 2Po

3 2
1752 5.90+ 1 3.67− 1 3.99− 1 4.23− 1 4.35− 1

4P3 2 − 4P1 2 1.68+ 6 – 1.01+ 0 1.10+ 0 1.14+ 0 1.16+ 0
4P5 2 − 2Po

1 2
1744.4 – 1.78− 1 2.01− 1 2.19− 1 2.29− 1

4P5 2 − 2Po
3 2

1747 3.08+ 2 7.93− 1 8.44− 1 8.80− 1 8.98− 1
4P5 2 − 4P1 2 7.10+ 5 – 6.12− 1 6.67− 1 6.95− 1 7.11− 1
4P5 2 − 4P3 2 1.23+ 6 – 1.88+ 0 2.04+ 0 2.12+ 0 2.16+ 0

N IV 3Po
2 − 1S0 1483.3 1.15− 2 9.37− 1 9.05− 1 8.79− 1 8.58− 1

3Po
1 − 1S0 1486.4 5.77+ 2 ⇓ ⇓ ⇓ ⇓

3Po
0 − 1S0 1487.9 – ⇓ ⇓ ⇓ ⇓

1Po
1 − 1S0 765.15 2.40+ 9 3.84+ 0 3.53+ 0 3.41+ 0 3.36+ 0

3Po
1 − 3Po

0 1.585+ 6 6.00− 6 – – – –
3Po

2 − 3Po
0 4.83+ 5 – – – – –

3Po
2 − 3Po

1 6.94+ 5 3.63− 5 – – – –

N V 2Po
3 2
− 2S1 2 1238.8 3.41+ 8 6.61+ 0 6.65+ 0 6.69+ 0 6.72+ 0

2Po
1 2
− 2S1 2 1242.8 3.38+ 8 – ⇓ – ⇓

Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

O I 1D2 − 3P0 6393.5 7.23− 7 1.24− 1 2.66− 1 – 5.01− 1
1D2 − 3P1 6363.8 2.11− 3 ⇓ ⇓ ⇓
1D2 − 3P2 6300.3 6.34− 3 ⇓ ⇓ ⇓
1S0 − 3P1 2972.3 7.32− 2 1.53− 2 3.24− 2 – 6.07− 2
1S0 − 3P2 2959.2 2.88− 4 ⇓ ⇓ ⇓
1S0 − 1D2 5577.3 1.22+ 0 7.32− 2 1.05− 1 – 1.48− 1
3P0 − 3P1 1.46+ 6 1.74− 5 1.12− 2 2.65− 2 – 6.93− 2
3P0 − 3P2 4.41+ 5 1.00− 10 1.48− 2 2.92− 2 – 5.36− 2
3P1 − 3P2 6.32+ 5 8.92− 5 4.74− 2 9.87− 2 – 2.07− 1

O II 2Do
5 2
− 4So

3 2
3728.8 3.50− 5 7.95− 1 8.01− 1 8.10− 1 8.18− 1

2Do
3 2
− 4So

3 2
3726.0 1.79− 4 5.30− 1 5.34− 1 5.41− 1 5.45− 1

2Po
3 2
− 4So

3 2
2470.3 5.70− 2 2.65− 1 2.70− 1 2.75− 1 2.80− 1

2Po
1 2
− 4So

3 2
2470.2 2.34− 2 1.33− 1 1.35− 1 1.37− 1 1.40− 1

2 Do
5 2
− 2Do

3 2
4.97+ 6 1.30− 7 1.22+ 0 1.17+ 0 1.14+ 0 1.11+ 0

2Po
3 2
− 2Po

1 2
5.00+ 7 2.08− 11 2.80− 1 2.87− 1 2.93− 1 3.00− 1
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

2Po
3 2
− 2Do

5 2
7319.9 1.07− 1 7.18− 1 7.30− 1 7.41− 1 7.55− 1

2Po
3 2
− 2Do

3 2
7330.7 5.78− 2 4.01− 1 4.08− 1 4.14− 1 4.22− 1

2Po
1 2
− 2Do

5 2
7321.8 6.15− 2 2.90− 1 2.95− 1 3.00− 1 3.05− 1

2Po
1 2
− 2Do

3 2
7329.6 1.02− 1 2.70− 1 2.75− 1 2.81− 1 2.84− 1

O III 1D2 − 3P0 4932.6 2.74− 6 2.13+ 0 2.29+ 0 2.45+ 0 2.52+ 0
1D2 − 3P1 4958.9 6.74− 3 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 5006.7 1.96− 2 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 2321.0 2.23− 1 2.72− 1 2.93− 1 3.17− 1 3.29− 1
1S0 − 3P2 2332.1 7.85− 4 ⇓ ⇓ ⇓ ⇓
1S0 − 1 D2 4363.2 1.78+ 0 4.94− 1 5.82− 1 6.10− 1 6.10− 1
3P1 − 3P0 883562 2.62− 5 5.24− 1 5.45− 1 5.59− 1 5.63− 1
3P2 − 3P0 326611 3.02− 11 2.58− 1 2.71− 1 2.83− 1 2.89− 1
3P2 − 3P1 518145 9.76− 5 1.23+ 0 1.29+ 0 1.34+ 0 1.35+ 0
5So

2 − 3P1 1660.8 2.12+ 2 1.07+ 0 1.21+ 0 1.25+ 0 1.26+ 0
5So

2 − 3P2 1666.1 5.22+ 2 ⇓ ⇓ ⇓ ⇓
O IV 2Po

3 2
− 2Po

1 2
2.587+ 5 5.18− 4 2.02+ 0 2.40+ 0 2.53+ 0 2.57+ 0

4P1 2 − 2Po
1 2

1426.46 1.81+ 3 1.21− 1 1.33− 1 1.42− 1 1.48− 1
4P1 2 − 2Po

3 2
1434.07 1.77+ 3 8.67− 2 1.02− 1 1.15− 1 1.24− 1

4P3 2 − 2Po
1 2

1423.84 2.28+ 1 1.80− 1 2.00− 1 2.16− 1 2.28− 1
4P3 2 − 2Po

3 2
1431.42 3.28+ 2 2.36− 1 2.68− 1 2.98− 1 3.18− 1

4P3 2 − 4P1 2 1.68+ 6 – 1.04+ 0 1.09+ 0 1.13+ 0 1.16+ 0
4P5 2 − 2Po

1 2
1420.19 – 1.15− 1 1.36− 1 1.55− 1 1.69− 1

4P5 2 − 2Po
3 2

1427.78 1.04+ 3 5.08− 1 5.67− 1 6.15− 1 6.48− 1
4P5 2 − 4P1 2 3.26+ 5 – 7.14− 1 6.88− 1 7.06− 1 7.36− 1
4P5 2 − 4P3 2 5.62+ 5 1.02− 4 2.04+ 0 2.05+ 0 2.12+ 0 2.20+ 0

O V 3Po
2 − 1S0 1213.8 2.16− 2 7.33− 1 7.21− 1 6.74− 1 6.39− 1

3Po
1 − 1S0 1218.3 2.25+ 3 ⇓ ⇓ ⇓ ⇓

3Po
0 − 1S0 1220.4 – ⇓ ⇓ ⇓ ⇓

1Po
1 − 1S0 629.7 2.80+ 9 2.66+ 0 2.76+ 0 2.82+ 0 2.85+ 0

3Po
1 − 3Po

0 7.35+ 5 5.81− 5 7.26− 1 8.39− 1 8.65− 1 8.66− 1
3Po

2 − 3Po
0 2.26+ 5 – 2.74− 1 6.02− 1 7.51− 1 8.16− 1

3Po
2 − 3Po

1 3.26+ 5 3.55− 4 3.19+ 0 2.86+ 0 2.80+ 0 2.77+ 0

O VI 2Po
3 2
− 2S1 2 1031.9 4.15+ 8 4.98+ 0 5.00+ 0 5.03+ 0 5.05+ 0

2Po
1 2
− 2S1 2 1037.6 4.08+ 8 ⇓ ⇓ ⇓ ⇓

Ne II 2Po
1 2
− 2Po

3 2
1.28+ 5 8.55− 3 2.96− 1 3.03− 1 3.10− 1 3.17− 1

Ne III 1D2 − 3P0 4012.8 8.51− 6 1.63+ 0 1.65+ 0 1.65+ 0 1.64+ 0
1D2 − 3P1 3967.5 5.42− 2 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 3868.8 1.71− 1 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 1814.6 2.00+ 0 1.51− 1 1.69− 1 1.75− 1 1.79− 1
1S0 − 3P2 1793.7 3.94− 3 ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 3342.5 2.71+ 0 2.00− 1 2.26− 1 2.43− 1 2.60− 1
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

3P0 − 3P1 3.60+ 5 1.15− 3 3.31− 1 3.50− 1 3.51− 1 3.50− 1
3P0 − 3P2 1.07+ 5 2.18− 8 3.00− 1 3.07− 1 3.03− 1 2.98− 1
3P1 − 3P2 1.56+ 5 5.97− 3 1.09+ 0 1.65+ 0 1.65+ 0 1.64+ 0

Ne IV 2Do
5 2
− 4So

3 2
2420.9 4.58− 4 8.45− 1 8.43− 1 8.32− 1 8.24− 1

2Do
3 2
− 4So

3 2
2418.2 5.77− 3 5.63− 1 5.59− 1 5.55− 1 5.50− 1

2Po
3 2
− 4So

3 2
1601.5 1.27+ 0 3.07− 1 3.13− 1 3.12− 1 3.09− 1

2Po
1 2
− 4So

3 2
1601.7 5.21− 1 1.53− 1 1.56− 1 1.56− 1 1.55− 1

2Do
5 2
− 2Do

3 2
2.237+ 6 1.48− 6 1.37+ 0 1.36+ 0 1.35+ 0 1.33+ 0

2Po
3 2
− 2Po

1 2
1.56+ 7 2.82− 9 3.17− 1 3.43− 1 3.58− 1 3.70− 1

2Po
3 2
− 2Do

5 2
4714.3 3.88− 1 8.56− 1 9.00− 1 9.08− 1 9.09− 1

2Po
3 2
− 2Do

3 2
4724.2 4.37− 1 4.73− 1 5.09− 1 5.15− 1 5.16− 1

2Po
1 2
− 2Do

5 2
4717.0 1.15− 2 3.40− 1 3.68− 1 3.73− 1 3.74− 1

2Po
1 2
− 2Do

3 2
4725.6 3.93− 1 3.24− 1 3.36− 1 3.39− 1 3.39− 1

Ne V 1D2 − 3P0 3301.3 2.37− 5 2.13+ 0 2.09+ 0 2.11+ 0 2.14+ 0
1D2 − 3P1 3345.8 1.31− 1 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 3425.9 3.65− 1 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 1574.8 4.21+ 0 2.54− 1 2.46− 1 2.49− 1 2.51− 1
1S0 − 3P2 1592.3 6.69− 3 ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 2972.8 2.85+ 0 6.63− 1 5.77− 1 6.10− 1 6.49− 1
3P1 − 3P0 2.428+ 5 1.28− 3 1.68+ 0 1.41+ 0 1.19+ 0 1.10+ 0
3P2 − 3P0 90082 5.08− 9 2.44+ 0 1.81+ 0 1.42+ 0 1.26+ 0
3P2 − 3P1 1.432+ 5 4.59− 3 7.59+ 0 5.82+ 0 4.68+ 0 4.20+ 0
5So

2 − 3P1 1137.0 2.37+ 3 1.11+ 0 1.43+ 0 1.39+ 0 1.34+ 0
5So

2 − 3P2 1146.1 6.06+ 3 ⇓ ⇓ ⇓ ⇓
Ne VI 2Po

3 2
− 2Po

1 2
7.642+ 4 2.02− 2 3.22+ 0 2.72+ 0 2.37+ 0 2.15+ 0

4P1 2 − 2Po
1 2

1003.6 1.59+ 4 1.54− 1 1.37− 1 1.26− 1 1.18− 1
4P1 2 − 2Po

3 2
1016.6 1.43+ 4 1.85− 1 1.53− 1 1.36− 1 1.27− 1

4P3 2 − 2Po
1 2

999.13 3.20+ 2 2.69− 1 2.32− 1 2.10− 1 1.96− 1
4P3 2 − 2Po

3 2
1012.0 3.33+ 3 4.51− 1 3.73− 1 3.32− 1 3.08− 1

4P3 2 − 4P1 2 2.24+ 5 – 5.34− 1 5.73− 1 5.95− 1 6.22− 1
4P5 2 − 2Po

1 2
992.76 – 2.56− 1 2.11− 1 1.89− 1 1.76− 1

4P5 2 − 2Po
3 2

1005.5 1.14+ 4 7.88+ 0 6.75− 1 6.09− 1 5.68− 1
4P5 2 − 4P1 2 92166 – 4.12− 1 4.23− 1 4.36− 2 4.56− 1
4P5 2 − 4P3 2 1.56+ 5 – 1.10+ 0 1.16+ 0 1.20+ 0 1.26+ 0

Ne VII 3Po
2 − 1S0 887.22 5.78− 2 1.29− 1 1.72− 1 2.05− 1 2.28− 1

3Po
1 − 1S0 895.12 1.98+ 4 ⇓ ⇓ ⇓ ⇓

3Po
0 − 1S0 898.76 – ⇓ ⇓ ⇓ ⇓

1Po
1 − 1S0 465.22 4.09+ 9 1.39+ 0 1.56+ 0 1.63+ 0 1.66+ 0

3Po
1 − 3Po

0 2.20+ 5 1.99− 3 – – – –
3Po

2 − 3Po
0 69127.6 – – – – –

3Po
2 − 3Po

1 1.01+ 5 1.25− 2 – – – –
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

Na III 2Po
1 2
− 2Po

3 2
7.319+ 4 4.59− 2 3.00− 1

Na IV 1D2 − 3P0 3417.2 2.24− 5 1.17+ 0
1D2 − 3P1 3362.2 1.86− 1 ⇓
1D2 − 3P2 3241.7 6.10− 1 ⇓
1S0 − 3P1 1529.3 7.10+ 0 1.63− 1
1S0 − 3P2 1503.8 1.05− 2 ⇓
1S0 − 1D2 2803.7 3.46+ 0 1.57− 1
3P0 − 3P1 2.129+ 5 5.57− 3 1.77− 1
3P0 − 3P2 62467.9 1.67− 7 1.11− 1
3P1 − 3P2 90391.4 3.04− 2 4.71− 1

Na V 2 Do
5 2
− 4So

3 2
2068.4 1.39− 3 5.51− 1

2Do
3 2
− 4So

3 2
2066.9 2.70− 2 3.68− 1

2Po
3 2
− 4So

3 2
1365.1 4.23+ 0 2.39− 1

2Po
1 2
− 4So

3 2
1365.8 1.76+ 0 1.20− 1

2Do
5 2
− 2Do

3 2
2.78+ 6 1.56− 6 6.96− 1

2Po
3 2
− 2Po

1 2
2.70+ 6 3.66− 7 4.38− 1

2Po
3 2
− 2Do

5 2
4010.9 9.07− 1 5.02− 1

2Po
3 2
− 2Do

3 2
4016.7 1.28+ 0 2.79− 1

2Po
1 2
− 2Do

5 2
4017.9 1.35− 1 2.01− 1

2Po
1 2
− 2Do

3 2
4022.7 9.75− 1 1.90− 1

Na VI 1D2 − 3P0 2816.1 – 1.55+ 0 1.45+ 0 1.39+ 0 1.38+ 0
1D2 − 3P1 2872.7 4.06− 1 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 2971.9 1.27+ 0 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 1356.6 1.69+ 1 1.73− 1 1.72− 1 1.72− 1 1.73− 1
1S0 − 3P2 1343.9 – ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 2568.9 5.27+ 0 1.07− 1 1.16− 1 1.28− 1 1.39− 1
3P1 − 3P0 1.43+ 5 6.14− 3 7.24− 1 7.70− 1 7.73− 1 7.58− 1
3P2 − 3P0 5.37+ 4 – 5.02− 1 5.21− 1 5.08− 1 4.94− 1
3P2 − 3P1 8.61+ 4 2.11− 2 2.03+ 0 2.13+ 0 2.10+ 0 2.05+ 0

Mg II 2Po
3 2
− 2S1 2 2795.5 2.6+ 8 1.59+ 1 1.69+ 1 1.78+ 1 1.86+ 1

2Po
1 2
− 2S1 2 2802.7 2.6+ 8 ⇓ ⇓ ⇓ ⇓

Mg IV 2Po
1 2
− 2Po

3 2
4.487+ 4 1.99− 1 3.44− 1 3.46− 1 3.49− 1 3.51− 1

Mg V 1D2 − 3P0 2993.1 5.20− 5 1.31+ 0 1.33+ 0 1.32+ 0 1.30+ 0
1D2 − 3P1 2928.0 5.41− 1 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 2782.7 1.85+ 0 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 1324.4 2.14+ 1 1.42− 1 1.48− 1 1.46− 1 1.44− 1
1S0 − 3P2 1293.9 2.45− 2 ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 2417.5 4.23+ 0 1.91− 1 1.97− 1 2.02− 1 2.08− 1
3P0 − 3P1 1.354+ 5 2.17− 2 2.48− 1 3.00− 1 3.18− 1 3.18− 1
3P0 − 3P2 39654.2 1.01− 6 2.31− 1 2.92− 1 3.04− 1 2.99− 1
3P1 − 3P2 5.608+ 4 1.27− 1 8.30− 1 1.03+ 0 1.08+ 0 1.07+ 0
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

Mg VII 1D2 − 3P0 2441.4 – 7.96− 1 8.57− 1 9.11− 1 9.42− 1
1D2 − 3P1 2509.2 1.17+ 0 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 2629.1 3.36+ 0 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 1189.8 4.58+ 1 2.08− 1 1.85− 1 1.75− 1 1.73− 1
1S0 − 3P2 1174.3 – ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 2261.5 6.16+ 0 5.25− 1 4.46− 1 3.90− 1 3.82− 1
3P1 − 3P0 9.03+ 4 2.44− 2 2.75− 1 3.37− 1 3.95− 1 4.14− 1
3P2 − 3P0 3.42+ 4 – 1.90− 1 3.01− 1 3.88− 1 4.09− 1
3P2 − 3P1 5.50+ 4 8.09− 2 7.69+ 0 1.08+ 0 1.32+ 0 1.39+ 0

Al II 3Po
2 − 1S0 2661.1 – 3.062+ 0 3.564+ 0 3.612+ 0 3.54+ 0

3Po
1 − 1S0 2669.9 – ⇓ ⇓ ⇓ ⇓

3Po
0 − 1S0 2674.3 – ⇓ ⇓ ⇓ ⇓

1Po
1 − 1S0 1670.8 1.46+ 9 2.045+ 0 3.251+ 0 4.096+ 0 4.717+ 0

3Po
1 − 3Po

0 1.6426+ 6 4.10− 6 – – – –
3Po

2 − 3Po
0 5.4124+ 5 – – – – –

3Po
2 − 3Po

1 8.072+ 5 2.45− 5 – – – –

Si II 2Po
3 2
− 2Po

1 2
3.48+ 5 2.17− 4 5.59+ 0 5.70+ 0 5.78+ 0 5.77+ 0

4P1 2 − 2Po
1 2

2335 4.55+ 3 5.50− 1 5.16− 1 4.88− 1 4.67− 1
4P1 2 − 2Po

3 2
2350 4.41+ 3 4.33− 1 4.02− 1 3.81− 1 3.65− 1

4P3 2 − 2Po
1 2

2329 1.32+ 1 8.32− 1 7.80− 1 7.37− 1 7.06− 1
4P3 2 − 2Po

3 2
2344 1.22+ 3 1.13+ 0 1.05+ 0 9.97− 1 9.56− 1

4P3 2 − 4P1 2 9.23+ 5 – 4.92+ 0 4.51+ 0 4.18+ 0 3.94+ 0
4P5 2 − 2Po

1 2
2319.8 – 5.71− 1 5.34− 1 5.08− 1 4.88− 1

4P5 2 − 2Po
3 2

2335 2.46+ 3 2.33+ 0 2.19+ 0 2.08+ 0 1.99+ 0
4P5 2 − 4P1 2 3.53+ 5 – 1.68+ 0 1.67+ 0 1.63+ 0 1.57+ 0
4P5 2 − 4P3 2 5.70+ 5 – 7.36+ 0 6.94+ 0 6.58+ 0 6.32+ 0

Si III 3Po
2 − 1S0 1882.7 1.20− 2 6.96+ 0 5.46+ 0 4.82+ 0 4.41+ 0

3Po
1 − 1S0 1892.0 1.67+ 4 ⇓ ⇓ ⇓ ⇓

3Po
0 − 1S0 1896.6 – ⇓ ⇓ ⇓ ⇓

1Po
1 − 1S0 1206.5 2.59+ 9 5.30+ 0 5.60+ 0 5.93+ 0 6.22+ 0

3Po
1 − 3Po

0 7.78+ 5 3.86− 5 1.78+ 0 1.81+ 0 1.83+ 0 1.83+ 0
3Po

2 − 3Po
0 2.56+ 5 3.20− 9 3.66+ 0 3.62+ 0 3.53+ 0 3.43+ 0

3Po
2 − 3Po

1 3.82+ 5 2.42− 4 1.04+ 1 1.04+ 1 1.02+ 1 1.00+ 1

Si IV 2Po
3 2
− 2S1 2 1393.8 7.73+ 8 1.69+ 1 1.60+ 1 1.61+ 1 1.62+ 1

2Po
1 2
− 2S1 2 1402.8 7.58+ 8 ⇓ ⇓ ⇓ ⇓

Si VI 2Po
1 2
− 2Po

3/2 1.964+ 4 2.38+ 0 2.42− 1

S II 2Do
5 2
− 4So

3 2
6716.5 2.60− 4 4.90+ 0 4.66+ 0 4.44+ 0 4.26+ 0

2Do
3 2
− 4So

3 2
6730.8 8.82− 4 3.27+ 0 3.11+ 0 2.97+ 0 2.84+ 0

2Po
3 2
− 4So

3 2
4068.6 2.25− 1 1.67+ 0 2.07+ 0 1.98+ 0 2.07+ 0

2Po
1 2
− 4So

3 2
4076.4 9.06− 2 8.31− 1 8.97− 1 9.87− 1 1.03+ 0

2Do
5 2
− 2Do

3 2
3.145+ 6 3.35− 7 7.90+ 0 7.46+ 0 7.11+ 0 8.65+ 0
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

2Po
3 2
− 2Po

1 2
2.14+ 6 1.03− 6 2.02+ 0 2.54+ 0 2.13+ 0 2.22+ 0

2Po
3 2
− 2Do

5 2
10320.4 1.79− 1 5.93+ 0 4.77+ 0 4.75+ 0 4.68+ 0

2Po
3 2
− 2Do

3 2
10286.7 1.33− 1 3.41+ 0 2.74+ 0 2.74+ 0 2.71+ 0

2Po
1 2
− 2Do

5 2
10373.3 7.79− 2 2.47+ 0 1.99+ 0 1.99+ 0 1.97+ 0

2Po
1 2
− 2Do

3 2
10336.3 1.63− 1 2.20+ 0 1.76+ 0 1.76+ 0 1.73+ 0

S III 1D2 − 3P0 8833.9 5.82− 6 9.07+ 0 8.39+ 0 8.29+ 0 8.20+ 0
1D2 − 3P1 9068.9 2.21− 2 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 9531.0 5.76− 2 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 3721.7 7.96− 1 1.16+ 0 1.19+ 0 1.21+ 0 1.24+ 0
1S0 − 3P2 3797.8 1.05− 2 ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 6312.1 2.22+ 0 1.42+ 0 1.88+ 0 2.02+ 0 2.08+ 0
3P1 − 3P0 3.347+ 5 4.72− 4 2.64+ 0 2.59+ 0 2.38+ 0 2.20+ 0
3P2 − 3P0 1.20+ 5 4.61− 8 1.11+ 0 1.15+ 0 1.15+ 0 1.14+ 0
3P2 − 3P1 187129 2.07− 3 5.79+ 0 5.81+ 0 5.56+ 0 5.32+ 0
5So

2 − 3P1 1683.5 6.22+ 3 – 3.8+ 0 3.7+ 0 3.6+ 0
5So

2 − 3P2 1698.86 1.70+ 4 ⇓ ⇓ ⇓ ⇓
S IV 2Po

3 2
− 2Po

1 2
1.05+ 5 7.73− 3 – 6.42+ 0 6.41+ 0 6.40+ 0

4P1 2 − 2Po
1 2

1404.9 5.50+ 4 – 5.50− 1 4.80− 1 4.60− 1
4P1 2 − 2Po

3 2
1423.9 3.39+ 4 – 6.60− 1 6.30− 1 6.10− 1

4P3 2 − 2Po
1 2

1398.1 1.40+ 2 – 8.70− 1 8.30− 1 8.00− 1
4P3 2 − 2Po

3 2
1017.0 1.95+ 4 – 1.47+ 0 1.40+ 0 1.34+ 0

4P3 2 − 4P1 2 2.91+ 5 – – 3.04+ 0 2.85+ 0 2.72+ 0
4P5 2 − 2Po

1 2
1387.5 – – 9.5− 1 9.1− 1 8.8− 1

4P5 2 − 2Po
3 2

1406.1 3.95+ 4 – 2.53+ 0 2.41+ 0 2.33+ 0
4P5 2 − 4P1 2 1.12+ 5 – – 2.92+ 0 2.71+ 0 2.56+ 0
4P5 2 − 4P3 2 1.85+ 5 – – 7.01+ 0 6.57+ 0 6.20+ 0

S V 3Po
2 − 1S0 1188.3 6.59− 2 9.11− 1 9.10− 1 9.14− 1 9.05− 1

3Po
1 − 1S0 1199.1 1.26+ 5 ⇓ ⇓ ⇓ ⇓

3Po
0 − 1S0 1204.5 – ⇓ ⇓ ⇓

1Po
1 − 1S0 786.48 5.25+ 9 7.30+ 0 7.30+ 0 7.29+ 0 7.27+ 0

3Po
1 − 3Po

0 2.71+ 5 9.16− 4 2.72− 1
3Po

2 − 3Po
0 88401.7 – 4.00− 1

3Po
2 − 3Po

1 1.312+ 5 5.49− 3 1.24+ 0
S VI 2Po

3 2
− 2S1 2 933.38 1.7+ 9 1.18+ 1 1.19+ 1 1.19+ 1 1.19+ 1

2Po
1 2
− 2S1 2 944.52 1.6+ 9 ⇓ ⇓ ⇓ ⇓

2Po
1 2
− 2Po

3 2
1.0846+ 5 7.75− 3 5.85+ 0 6.67+ 0 7.10+ 0 7.27+ 0

Cl II 1D2 − 3P0 9383.4 9.82− 6 3.86+ 0
1D2 − 3P1 9123.6 2.92− 2 ⇓
1D2 − 3P2 8578.7 1.04− 1 ⇓
1S0 − 3P1 3677.9 1.31+ 0 4.56− 1
1S0 − 3P2 3587.1 1.97− 2 ⇓
1S0 − 1D2 6161.8 2.06+ 0 1.15+ 0
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

3P0 − 3P1 3.328+ 5 1.46− 3 9.33− 1
3P0 − 3P2 1.004+ 5 4.57− 7 4.43− 1
3P1 − 3P2 1.437+ 5 7.57− 3 2.17+ 0

Cl III 2Do
5 2
− 4So

3 2
5517.7 7.04− 4 1.94+ 0 2.05+ 0 2.04+ 0 2.04+ 0

2Do
3 2
− 4So

3 2
5537.9 4.83− 3 1.29+ 0 1.36+ 0 1.36+ 0 1.35+ 0

2Po
3 2
− 4So

3 2
3342.9 7.54− 1 7.69− 1 8.37− 1 8.88− 1 9.20− 1

2Po
1 2
− 4So

3 2
3353.3 3.05− 1 3.85− 1 4.18− 1 4.44− 1 4.61− 1

2Do
5 2
− 2Do

3 2
1.516+ 6 3.22− 6 4.45+ 0 4.52+ 0 4.51+ 0 4.48+ 0

2Po
3 2
− 2Po

1 2
1.081+ 6 7.65− 6 1.73+ 0 1.76+ 0 1.81+ 0 1.86+ 0

2Po
3 2
− 2Do

5 2
8480.9 3.16− 1 3.75+ 0 4.20+ 0 4.33+ 0 4.32+ 0

2Po
3 2
− 2Do

3 2
8433.7 3.23− 1 2.01+ 0 2.19+ 0 2.34+ 0 2.25+ 0

2Po
1 2
− 2Do

5 2
8552.1 1.00− 1 1.44+ 0 1.56+ 0 1.60+ 0 1.60+ 0

2Po
1 2
− 2Do

3 2
8500.0 3.03− 1 1.45+ 0 1.65+ 0 1.71+ 0 1.72+ 0

Cl IV 1D2 − 3P0 7263.4 1.54− 5 5.10+ 0 5.42+ 0 5.88+ 0 6.19+ 0
1D2 − 3P1 7529.9 5.57− 2 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 8045.6 2.08− 1 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 3118.6 2.19+ 0 2.04+ 0 2.27+ 0 2.32+ 0 2.30+ 0
1S0 − 3P2 3204.5 2.62− 2 ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 5323.3 4.14+ 0 9.35− 1 1.39+ 0 1.73+ 0 1.92+ 0
3P1 − 3P0 2.035+ 5 2.13− 3 4.75− 1
3P2 − 3P0 74521 2.70− 7 4.00− 1
3P2 − 3P1 1.1741+ 5 8.32− 3 1.50+ 0

Cl V 2Po
3 2
− 2Po

1 2
67049 2.98− 2 1.05+ 0

Ar II 2Po
1 2
− 2Po

3 2
69851.9 5.27− 2 6.35− 1

Ar III 1D2 − 3P0 8038.7 2.21− 5 4.74+ 0
1D2 − 3P1 7751.1 8.23− 2 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 7135.8 3.14− 1 ⇓ ⇓ ⇓ ⇓
1S0 − 3P1 3109.1 3.91+ 0 6.80− 1
1S0 − 3P2 3006.1 4.17− 2 ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 5191.8 2.59+ 0 8.23− 1
3P0 − 3P1 2.184+ 5 5.17− 3 1.18+ 0
3P0 − 3P2 63686.2 2.37− 6 5.31− 1
3P1 − 3P2 89910 3.08− 2 2.24+ 0

Ar IV 2Do
5 2
− 4So

3 2
4711.3 1.77− 3 2.56+ 0 6.13+ 0 1.64+ 0 1.46+ 1

2Do
3 2
− 4So

3 2
4740.2 2.23− 2 1.71+ 0 1.30+ 0 1.14+ 0 9.70− 1

2Po
3 2
− 4So

3 2
2853.7 2.11+ 0 3.01− 1 2.93− 1 3.06− 1 3.25− 1

2Po
1 2
− 4So

3 2
2868.2 8.62− 1 1.49− 1 1.46− 1 1.53− 1 1.63− 1

2Do
5 2
− 2Do

3 2
7.741+ 5 2.30− 5 6.35+ 0 6.13+ 0 6.03+ 0 5.93+ 0

2Po
3 2
− 2Po

1 2
564721 4.94− 5 2.24+ 0 2.33+ 0 2.53+ 0 2.72+ 0

2Po
3 2
− 2Do

5 2
7237.3 5.98− 1 4.29+ 0 4.44+ 0 4.40+ 0 4.34+ 0

2Po
3 2
− 2Do

3 2
7170.6 7.89− 1 2.45+ 0 2.47+ 0 2.44+ 0 2.39+ 0
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

2Po
1 2
− 2Do

5 2
7333.4 1.19− 1 1.78+ 0 1.79+ 0 1.76+ 0 1.72+ 0

2Po
1 2
− 2Do

3 2
7262.8 6.03− 1 1.61+ 0 1.69+ 0 1.68+ 0 1.66+ 0

Ar V 1D2 − 3P0 6135.2 3.50− 5 4.37+ 0 3.72+ 0 3.52+ 0 3.42+ 0
1D2 − 3P1 6435.1 1.61− 1 ⇓ ⇓ ⇓ ⇓
1D2 − 3P2 7005.7 4.70− 1 4.37+ 0 3.72+ 0 3.52+ 0 3.42+ 0
1S0 − 3P1 2691.0 5.89+ 0 1.17+ 0 1.18+ 0 1.11+ 0 1.03+ 0
1S0 − 3P2 2686.8 5.69− 2 ⇓ ⇓ ⇓ ⇓
1S0 − 1D2 4625.5 5.18+ 0 1.26+ 0 1.25+ 0 1.24+ 0 1.23+ 0
3P1 − 3P0 1.307+ 5 8.03− 3 2.57− 1
3P2 − 3P0 49280.5 1.24− 6 3.20− 1
3P2 − 3P1 79040 2.72− 2 1.04+ 0

Ar VI 2Po
3 2
− 2Po

1 2
45275 9.69− 2 7.98− 2

K III 2Po
1 2
− 2Po

3 2
46153.2 1.83− 1 1.78+ 0

K IV 1D2 − 3P0 7110.9 4.54− 5 1.90+ 0
1D2 − 3P1 6795.0 1.98− 1 ⇓
1D2 − 3P2 6101.8 8.14− 1 ⇓
1S0 − 3P1 2711.1 1.00+ 1 2.92− 1
1S0 − 3P2 2594.3 8.17− 2 ⇓
1S0 − 1D2 4510.9 3.18+ 0 7.98− 1
3P0 − 3P1 1.539+ 5 1.48− 2 4.21− 1
3P0 − 3P2 43081.2 1.01− 5 2.90− 1
3P1 − 3P2 59830.0 1.04− 1 1.16+ 0

K V 2Do
5 2
− 4So

3 2
4122.6 4.59− 3 9.25− 1 8.51− 1 8.24− 1 8.18− 1

2Do
3 2
− 4So

3 2
4163.3 8.84− 2 6.17− 1 5.67− 1 5.50− 1 5.45− 1

2Po
3 2
− 4So

3 2
2494.2 5.19+ 0 1.49− 1 3.68− 1 4.94− 1 5.47− 1

2Po
1 2
− 4So

3 2
2514.5 2.14+ 0 7.40− 2 1.84− 1 2.47− 1 2.73− 1

2Do
5 2
− 2Do

3 2
4.22+ 5 1.42− 4 5.24+ 0 5.31+ 0 5.13+ 0 4.96+ 0

2Po
3 2
− 2Po

1 2
3.11+ 5 2.96− 4 4.43− 1 6.27− 1 7.83− 1 9.02− 1

2Po
3 2
− 2Do

5 2
6315.1 1.21+ 0 2.56+ 0 3.07+ 0 3.31+ 0 3.40+ 0

2Po
3 2
− 2Do

3 2
6221.9 1.86+ 0 1.39+ 0 1.76+ 0 1.93+ 0 2.00+ 0

2Po
1 2
− 2Do

5 2
6448.1 1.41− 1 9.92− 1 1.28+ 0 1.41+ 0 1.46+ 0

2Po
1 2
− 2Do

3 2
6349.2 1.25+ 0 9.83− 1 1.14+ 0 1.21+ 0 1.24+ 0

Ca II 2Po
3 2
− 2S1 2 3933.7 1.47+ 8 1.56+ 1 1.75+ 1 1.92+ 1 2.08+ 1

2Po
1 2
− 2S1 2 3968.5 1.4+ 8 ⇓ ⇓ ⇓ ⇓

Ca IV 2Po
1 2
− 2Po

3 2
32061.9 5.45− 1 1.06+ 0

Ca V 1D2 − 3P0 6428.9 8.42− 5 9.04− 1
1D2 − 3P1 6086.4 4.26− 1 ⇓
1D2 − 3P2 5309.2 1.90+ 0 ⇓
1S0 − 3P1 2412.9 2.31+ 1 1.16− 1
1S0 − 3P2 2281.2 1.45− 1 ⇓
1S0 − 1D2 3997.9 3.73+ 0 7.93− 1
3P0 − 3P1 1.1482+ 5 3.54− 2 2.02− 1
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Ion Transition λ(Å) A(s−1) ϒ(0.5) ϒ(1.0) ϒ(1.5) ϒ(2.0)

3P0 − 3P2 30528.8 3.67− 5 2.24− 1
3P1 − 3P2 41574.2 3.10− 1 7.60− 1

Fe III 5D4 − 5D3 229146 2.38+ 0 2.87+ 0 3.02+ 0 3.01+ 0
5D4 − 5D2 135513 9.70− 1 1.23+ 0 1.31+ 0 1.32+ 0
5D4 − 5D1 107294 4.75− 1 5.91− 1 6.29− 1 6.36− 1
5D4 − 5D0 97436 1.43− 1 1.78− 1 1.90− 1 1.94− 1
5D3 − 5D2 331636 1.65+ 0 2.03+ 0 2.16+ 0 2.18+ 0
5D3 − 5D1 201769 6.12− 1 7.94− 1 8.45− 1 8.46− 1
5D3 − 5D0 169516 1.70− 1 2.23− 1 2.36− 1 2.35− 1
5D2 − 5D1 515254 1.04+ 0 1.28+ 0 1.36+ 0 1.36+ 0
5D2 − 5D0 346768 2.35− 1 3.09− 1 3.31− 1 3.33− 1
5D1 − 5D0 1060465 4.00− 1 4.85− 1 5.15− 1 5.20− 1
3H6 − 3G5 22189.8 2.80+ 0 2.72+ 0 2.67+ 0 2.60+ 0
3H6 − 3G4 20448.4 1.18+ 0 1.20+ 0 1.19+ 0 1.16+ 0
3H6 − 3G3 19655.2 2.77− 1 2.90− 1 2.97− 1 2.96− 1
3H5 − 3G5 23505.2 1.26+ 0 1.28+ 0 1.26+ 0 1.23+ 0
3H5 − 3G4 21560.3 1.60+ 0 1.69+ 0 1.70+ 0 1.66+ 0
3H5 − 3G3 20680.3 1.07+ 0 1.12+ 0 1.12+ 0 1.10+ 0
3H4 − 3G5 24516.1 3.43− 1 3.75− 1 3.88− 1 3.88− 1
3H4 − 3G4 22407.9 1.18+ 0 1.23+ 0 1.23+ 0 1.21+ 0
3H4 − 3G3 21458.8 1.80+ 0 1.94+ 0 1.96+ 0 1.92+ 0
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