“Galaxy morphology auto classification”的版本间差异
跳到导航
跳到搜索
(→links) |
|||
第33行: | 第33行: | ||
==links== |
==links== |
||
*THE COSMOSTATISTICS INITIATIVE [https://cosmostatistics-initiative.org/] |
*THE COSMOSTATISTICS INITIATIVE [https://cosmostatistics-initiative.org/] |
||
* Minutes of exercises on Galaxy Classification Meeting [http://cluster.shao.ac.cn/wiki/index.php?title=Galaxy_morphology_auto_classification&action=edit§ion=6] |
2021年4月22日 (四) 08:46的版本
- This page makes collections for galaxy morphology auto classification project of CSST image survey
projects
- Classification in parameter space (e.g. parameters from Sextractor)
- Classification on images, CNN like technic
- Pixel-based deep learning technic
- Special objects from auto-classification
- merger identification
Seminors
datasets
tools
- Morpheus [3]
- DeepGalaxy (Deep learning to classify the properties of galaxy mergers) [4]
- GalaxyMorphology [5]
- lenstronomy [6]
references
- Deep learning for galaxy surface brightness profile fitting, MNRAS, Volume 475, Issue 1, March 2018 [7]
- The weirdest SDSS galaxies: results from an outlier detection algorithm, 2017,MNRAS,465,4530B, [8]
- An automatic taxonomy of galaxy morphology using unsupervised machine learning, 2018, MNRAS, 473, 1108, [9]
- Galaxy morphology classification with deep convolutional neural networks, 2019, Astrophysics and Space Science, Volume 364, Issue 4, article id. 55, [10]
- Machine and Deep Learning Applied to Galaxy Morphology -- A Comparative Study, 2020, Astronomy and Computing, Volume 30, article id. 100334, [11]
- Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey,2021,ApJS,252,18T,[12]
- Dwarfs from the Dark (Energy Survey): a machine learning approach to classify dwarf galaxies from multi-band image, arXiv:2102.12776,[13]