“Galaxy morphology auto classification”的版本间差异

来自cluster
跳到导航 跳到搜索
第21行: 第21行:
#Deep learning for galaxy surface brightness profile fitting, MNRAS, Volume 475, Issue 1, March 2018 [https://academic.oup.com/mnras/article/475/1/894/4725057]
#Deep learning for galaxy surface brightness profile fitting, MNRAS, Volume 475, Issue 1, March 2018 [https://academic.oup.com/mnras/article/475/1/894/4725057]
#The weirdest SDSS galaxies: results from an outlier detection algorithm, 2017,MNRAS,465,4530B, [https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.4530B/abstract]
#The weirdest SDSS galaxies: results from an outlier detection algorithm, 2017,MNRAS,465,4530B, [https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.4530B/abstract]
#Galaxy morphology classification with deep convolutional neural networks, 2019, Astrophysics and Space Science, Volume 364, Issue 4, article id. 55, [https://arxiv.org/abs/1807.10406]
#Machine and Deep Learning Applied to Galaxy Morphology -- A Comparative Study, 2020, Astronomy and Computing, Volume 30, article id. 100334, [https://arxiv.org/abs/1901.07047]
#Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey,2021,ApJS,252,18T,[https://ui.adsabs.harvard.edu/abs/2021ApJS..252...18T/abstract]
#Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey,2021,ApJS,252,18T,[https://ui.adsabs.harvard.edu/abs/2021ApJS..252...18T/abstract]
#Dwarfs from the Dark (Energy Survey): a machine learning approach to classify dwarf galaxies from multi-band image, arXiv:2102.12776,[https://arxiv.org/abs/2102.12776]
#Dwarfs from the Dark (Energy Survey): a machine learning approach to classify dwarf galaxies from multi-band image, arXiv:2102.12776,[https://arxiv.org/abs/2102.12776]

2021年3月9日 (二) 07:19的版本

  • This page makes collections for galaxy morphology auto classification project of CSST image survey

projects

  • Classification in parameter space (e.g. parameters from Sextractor)
  • Classification on images, CNN like technic
  • Pixel-based deep learning technic
  • Special objects from auto-classification

Seminors

datasets

  • galaxy zoo data [1]
  • DESI Legacy Imaging Surveys [2]

tools

references

  1. Deep learning for galaxy surface brightness profile fitting, MNRAS, Volume 475, Issue 1, March 2018 [4]
  2. The weirdest SDSS galaxies: results from an outlier detection algorithm, 2017,MNRAS,465,4530B, [5]
  3. Galaxy morphology classification with deep convolutional neural networks, 2019, Astrophysics and Space Science, Volume 364, Issue 4, article id. 55, [6]
  4. Machine and Deep Learning Applied to Galaxy Morphology -- A Comparative Study, 2020, Astronomy and Computing, Volume 30, article id. 100334, [7]
  5. Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey,2021,ApJS,252,18T,[8]
  6. Dwarfs from the Dark (Energy Survey): a machine learning approach to classify dwarf galaxies from multi-band image, arXiv:2102.12776,[9]

links

  • THE COSMOSTATISTICS INITIATIVE [10]