“Galaxy morphology auto classification”的版本间差异
跳到导航
跳到搜索
无编辑摘要 |
小无编辑摘要 |
||
第35行: | 第35行: | ||
*lenstronomy [https://github.com/sibirrer/lenstronomy] |
*lenstronomy [https://github.com/sibirrer/lenstronomy] |
||
*Unsupervised Image Classification [https://paperswithcode.com/task/unsupervised-image-classification] |
*Unsupervised Image Classification [https://paperswithcode.com/task/unsupervised-image-classification] |
||
*Copulas [https://projecteuclid.org/journals/annals-of-applied-statistics/volume-1/issue-1/Extending-the-rank-likelihood-for-semiparametric-copula-estimation/10.1214/07-AOAS107.full] |
|||
==references== |
==references== |
||
#Deep learning for galaxy surface brightness profile fitting, MNRAS, Volume 475, Issue 1, March 2018 [https://academic.oup.com/mnras/article/475/1/894/4725057] |
#Deep learning for galaxy surface brightness profile fitting, MNRAS, Volume 475, Issue 1, March 2018 [https://academic.oup.com/mnras/article/475/1/894/4725057] |
2021年8月29日 (日) 10:36的版本
- This page makes collections for galaxy morphology auto classification project of CSST image survey
projects
started
- merger identification
- Morphology of Alfalfa galaxies
- Unsupervised classification on images
- bar features
possibilities
- Classification in parameter space (e.g. parameters from Sextractor)
- Pixel-based deep learning technic
- Special objects from auto-classification
Meetings
- Mar. 4/2021
- Minutes of exercises on Galaxy Classification Meeting [1]
datasets
- galaxy zoo data [2]
- Galaxy Zoo DECaLS[3]
Methods
- Non-Negative Matrix Factorization
- Image Fourier Power Spectrum
- Auto-encoders (Rupesh)
- Watershed (Image Segmentation)
tools
- Morpheus [6]
- DeepGalaxy (Deep learning to classify the properties of galaxy mergers) [7]
- GalaxyMorphology [8]
- lenstronomy [9]
- Unsupervised Image Classification [10]
- Copulas [11]
references
- Deep learning for galaxy surface brightness profile fitting, MNRAS, Volume 475, Issue 1, March 2018 [12]
- The weirdest SDSS galaxies: results from an outlier detection algorithm, 2017, MNRAS,465,4530B, [13]
- An automatic taxonomy of galaxy morphology using unsupervised machine learning, 2018, MNRAS, 473, 1108, [14]
- Galaxy morphology classification with deep convolutional neural networks, 2019, Astrophysics and Space Science, Volume 364, Issue 4, article id. 55, [15]
- Machine and Deep Learning Applied to Galaxy Morphology -- A Comparative Study, 2020, Astronomy and Computing, Volume 30, article id. 100334, [16]
- Shadows in the Dark: Low-surface-brightness Galaxies Discovered in the Dark Energy Survey,2021,ApJS,252,18T,[17]
- Dwarfs from the Dark (Energy Survey): a machine learning approach to classify dwarf galaxies from multi-band image, arXiv:2102.12776,[18]
links
- THE COSMOSTATISTICS INITIATIVE [19]