
Compact Group

The densest system known in our universe

• WHAT IS COMPACT GROUP

- **1** CRITERIA OF COMPACT GROUP
- **2** COMPACT GROUPS IN THEORY
- **3** COMPACT GROUPS IN SDSS

What is Compact Group

Compact Group

- Similar environment to the early universe
- High Number Density
- Low Velocity difference
- Dynamically bound system
- Short time scales due to merging

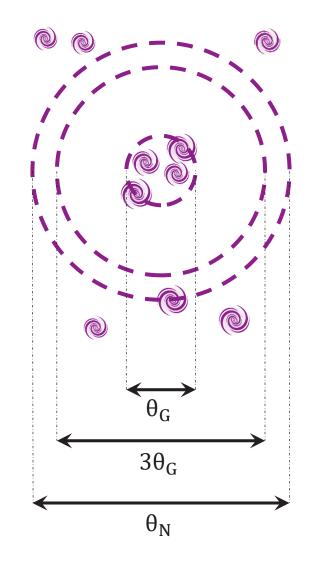
Inevitable Problem

How to identify compact groups based on the data we have?

Criteria of Compact Group

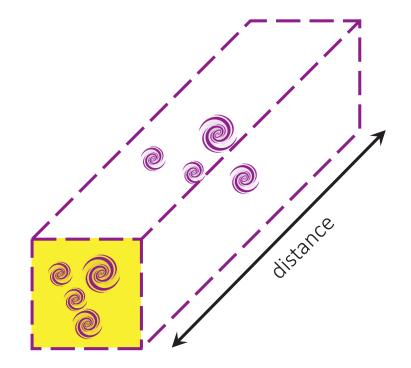
Hickson criteria

Paul Hickson (1982)


- (1) $N(\Delta m = 3) \ge 4$
- $(2) \quad \theta_{\rm N} \ge 3\theta_{\rm G}$
- 3 $\mu_e \leq 26.0 \text{ mags arcsec}^{-2}$

 $N(\Delta m=3):$ the number of galaxies within 3 mag of the brightest galaxy

 $\theta_G\colon$ the smallest circle contains these galaxies


 $\theta_N :$ the largest concentric circle contains no additional galaxies in this mag range or brighter

 μ_e : the effective surface brightness of these galaxies and the total flux of these galaxies over the smallest circle with angular diameter θ_G

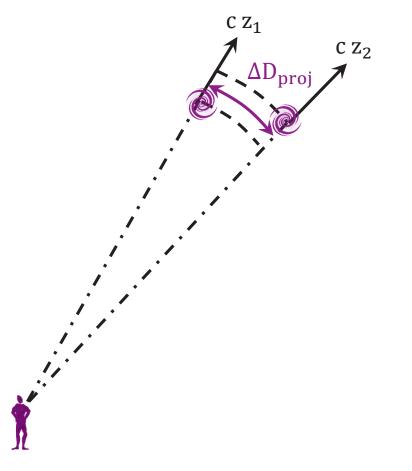
The Interlopers

Friends-of-Friends Algorithm

Elizabeth Barton et al. (1996)

- (1) $\Delta D_{\text{proj}} = 2\left(\frac{cz}{H_0}\right)\sin\left(\frac{\Delta\theta}{2}\right) \le D_0$
- $(2) \quad \Delta V_{LOS} = c \, \Delta z \leq V_0$
- (3) $\mu_{G,Zw} \leq 27.7 \text{mags arcsec}^{-2}$

 ΔD_{proj} : the projected separation of two galaxies


Z: the average redshift

 $\Delta \theta :$ the angular separation on the sky

 ΔV_{LOS} : their line-of-sight velocity difference

 $D_0 = 50h^{-1} \text{ kpc}$

 $V_0 = 1000 \text{ km/s}$

Hickson VS FoF

Hickson Criteria

> Mag limit: $\Delta m = 3$

CGs have small ang extent, not all of them have redshift data because of fiber collision. Similar mag are more likely to be at the same redshift.

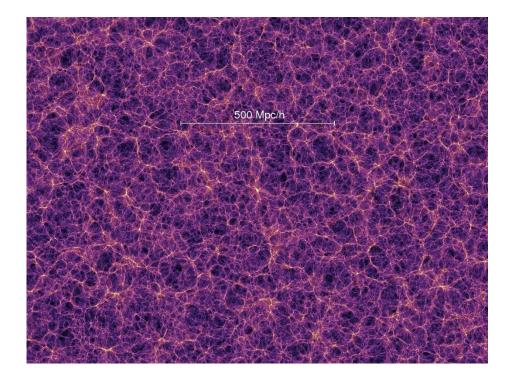
 $\begin{tabular}{lll} $& $\theta_N \geq 3\theta_G$ \\ $& $Only have projected information$ \end{tabular} \end{tabular} \end{tabular}$

Exclude groups containing only low luminosity, low surface brightness galaxies

FoF Algorithm

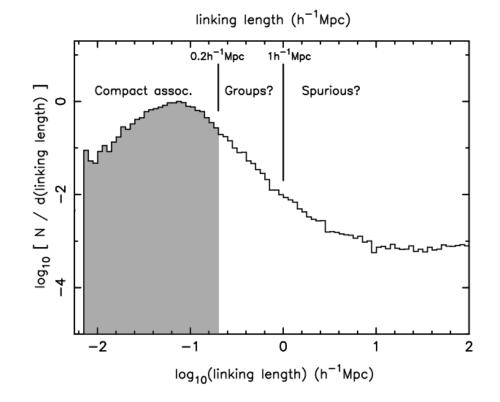
Apply to the Redshift surveys
 It's not a problem for redshift survey

- A complete catalog in redshift
 Prefer a cleaner isolation criterion in 3-dim
- $\label{eq:magsarcsec} \begin{array}{l} & \mu_{G,Zw} \leq 27.7 \; mags \, arcsec^{-2} \\ & \mbox{Translate the left criterion to Zwicky mag scale} \end{array}$

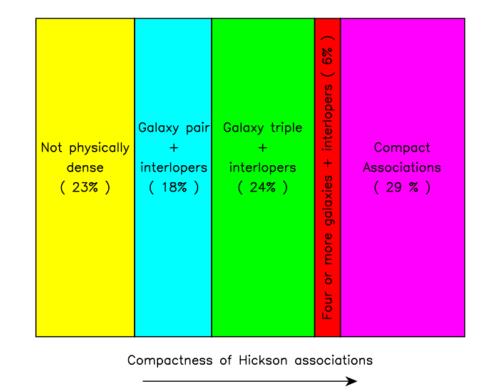

Compact groups in theory

Effect of Interlopers

• Mamon (1986) :


~50% loose groups or unassociated galaxies.

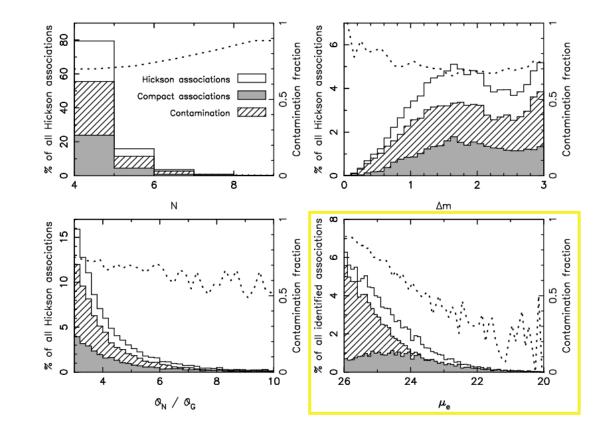
- Hickson (1990) : 17% HCGs are line-of-sight galaxies. 13% projections of loose groups.
- McConnachie et al.(2009): analysis the mock catalogue. De Lucia & Blaizot (2007) all-sky mock catalogues based on Millennium Simulation.
 ~5.7 millionn galaxies brighter than r = 18.


Compactness distribution McConnachie et al.(2008)

- Hickson Association(HA) All galaxies association identified by Hickson criteria
- Compact Association(CA) truly compact in 3-dim
- 15122 HAs (64525 galaxies) identified from the mock catalogue.
- If linking length $l < 200 \; kpc \; h^{-1}$, CA
- ~29%(4446) HAs is CAs

Interloping Groups McConnachie et al.(2008)

- Though Interlopers are significant, but: 29% no interlopers 77% consist in part of a compact arrangement of at least 2 galaxies 35% have true groups 24% Trip + intelopers 18% Pair + intelopers
- What affect the contamination? Number of galaxies? Apparent magnitude range? Projected distance to nearest non-member galaxy? Surface brightness?

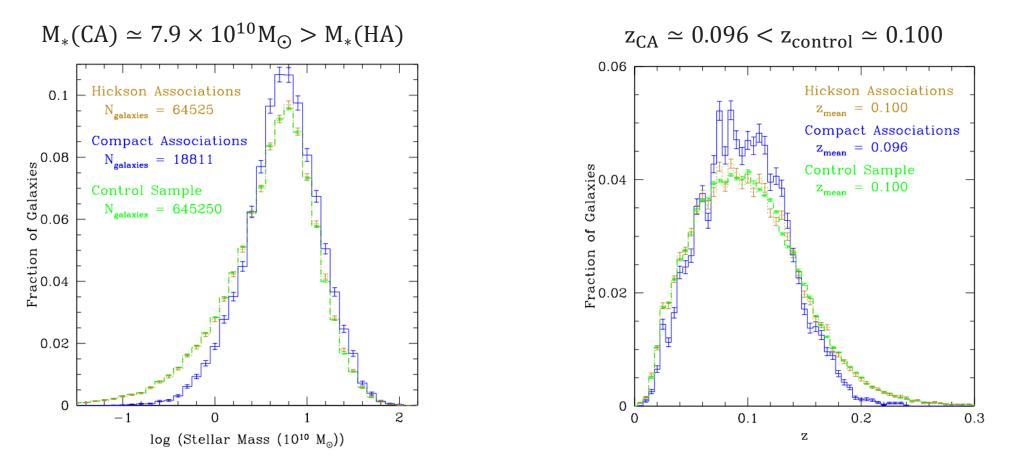


Contamination

McConnachie et al.(2008)

N	$\% \ CAs$	% HAs	Δm	$\% \ CAs$	% HAs
4	100	29	3.0	100	29
5	19	27	2.5	79	30
6	4	22	2.0	57	29
7	1	17	1.5	31	27
$ heta_N/ heta_G$	$\% \ \mathrm{CAs}$	% HAs	μ_e	$\% \ CAs$	% HAs
$\frac{\theta_N/\theta_G}{3}$	% CAs 100	% HAs 29	μ_e 26	% CAs 100	% HAs 29
3	100	29	26	100	29

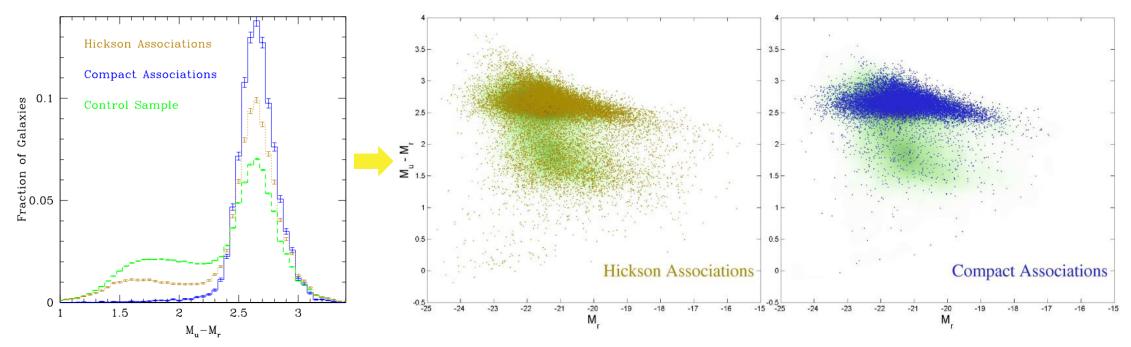
• Only select by surface brightness can reduce contamination rates dramatically.



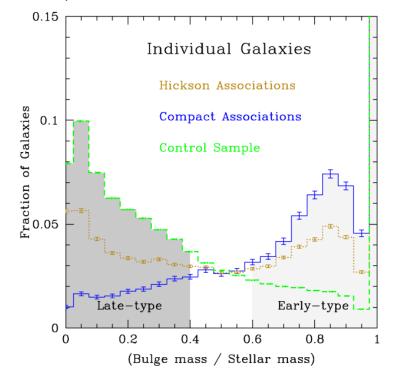
The nature of galaxies in CGs

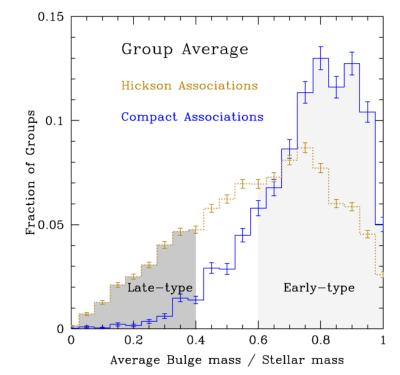
- Stellar Mass
- Redshift
- Colour
- Morphology

Stellar Mass & Redshift

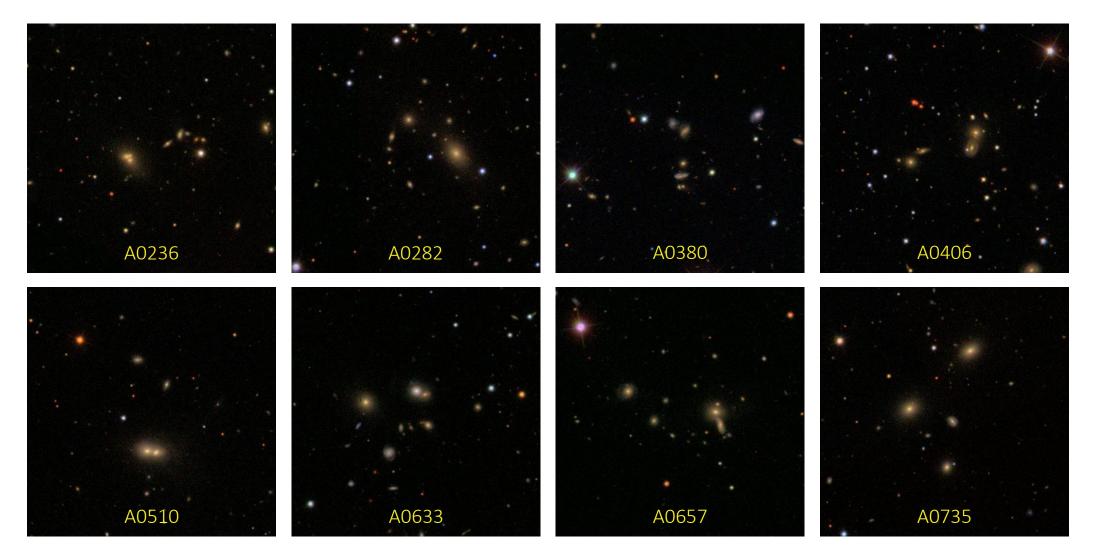

Brasseur et al.(2008)

Colour

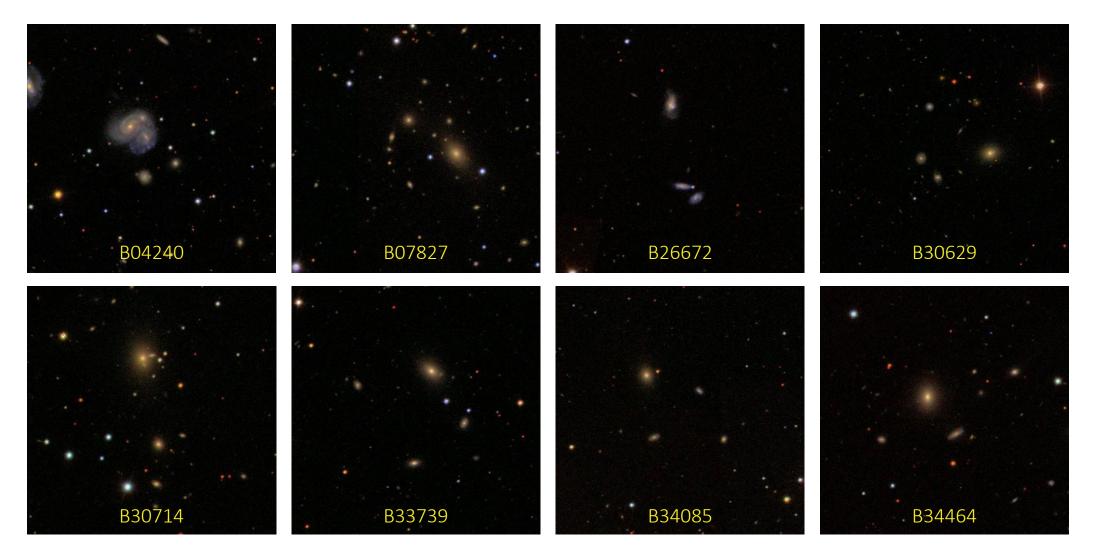

Brasseur et al.(2008)


CAs are nearly all red, $(M_u - M_r) > 2.25$, only a very low level tail to bluer colours. CAs effectively lack a blue population and nearly all galaxies are found in a very strong red sequence.

Galaxies in the HA sample possess a much higher fraction of bulge-dominated galaxies than the control sample.


Compact groups in SDSS

Compact Groups in SDSS DR6

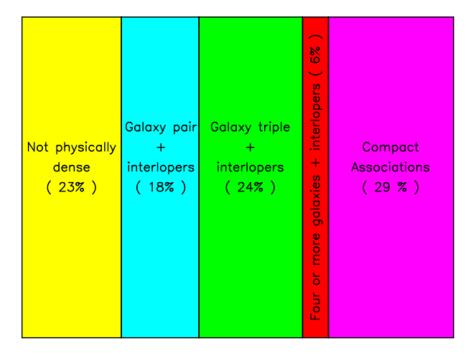

McConnachie et al.(2009)

Catalogue A: ~1.1 M galaxies $14.5 \le r \le 18.0$ Catalogue B: ~29 M galaxies $14.5 \le r \le 21.0$

ID	C	x (J20	00)	δ	(J200	0)	n_{mem}	μ	$ heta_G$	ID	C	α (J200)))	δ	(J200)	0)	n_{mem}	μ	$ heta_G$
SDSSCGA00001	14	49	34.3	+11	14	53.4	4	20.991	0.22	SDSSCGB00001	14	12	15.8	+35	50	59.0	4	19.730	0.08
SDSSCGA00002	2	14	4.5	+13	18	54.3	4	21.238	0.28	SDSSCGB00002	16	15	45.9	+54	40	19.6	4	19.791	0.10
SDSSCGA00003	23	54	13.5	-10	23	17.2	4	21.279	0.16	SDSSCGB00003	13	25	10.4	+17	3	8.0	4	20.333	0.13
SDSSCGA00004	15	25	53.7	+5	44	17.8	4	21.501	0.16	SDSSCGB00004	11	44	12.1	+27	0	12.0	4	20.347	0.09
SDSSCGA00005	23	33	23.6	-1	8	43.8	4	21.519	0.29	SDSSCGB00005	7	55	30.4	+10	25	51.8	4	20.366	0.14
SDSSCGA00006	21	40	17.4	-8	4	11.7	4	21.566	0.14	SDSSCGB00006	9	4	34.9	+14	35	42.4	5	20.547	0.19
SDSSCGA00007	8	24	31.6	+20	27	28.5	4	21.585	0.19	SDSSCGB00007	13	54	19.5	+7	23	8.3	4	20.577	0.12
SDSSCGA00008	16	10	2.6	+5	54	53.5	4	21.747	0.31	SDSSCGB00008	11	4	36.7	+6	23	46.1	4	20.725	0.13
SDSSCGA00009	12	3	12.9	+57	53	39.2	4	21.755	0.32	SDSSCGB00009	16	28	28.3	+41	13	6.2	4	20.749	0.21
SDSSCGA00010	16	26	50.4	+25	53	34.7	4	21.913	0.20	SDSSCGB00010	16	13	18.9	+50	2	12.7	4	20.805	0.04
SDSSCGA00011	16	21	56.5	+25	41	20.1	4	22.054	0.21	SDSSCGB00011	14	29	17.4	-3	9	13.3	4	20.889	0.16
SDSSCGA00012	7	44	42.7	+16	55	21.6	4	22.130	0.29	SDSSCGB00012	13	39	44.9	+45	39	58.9	4	20.966	0.05

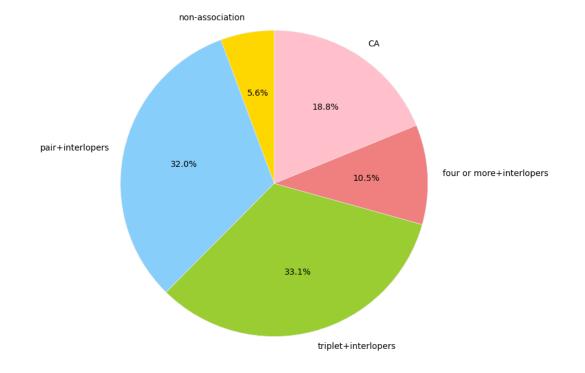
Compact Association in Catalogue A

Compact Association in Catalogue B


Compact Groups in SDSS DR7

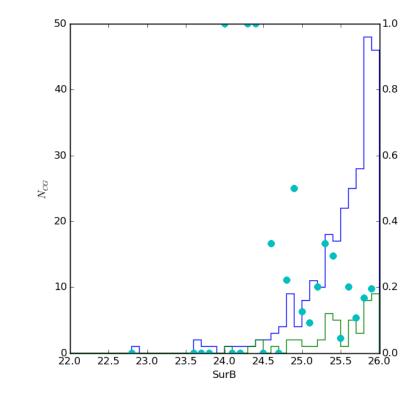
- SDSS DR7 main galaxy catalogue
- ~0.7 M galaxies $14.5 \le r \le 17.77$

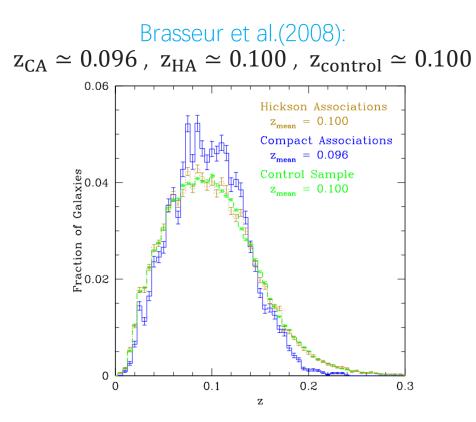
GroupID	RA	DEC	Radius	Ν	intelopers	SurBri
1	176.964	66.0856	0.0134613	4	1	24.6455
2	181.78	64.9676	0.0237859	5	1	25.873
3	184.947	65.0958	0.015706	4	2	25.8945
4	175.163	64.1841	0.0179041	4	2	25.393
6	170.67	63.5264	0.0190296	4	1	25.7776
9	185.403	62.9438	0.0187959	4	1	25.173
10	171.571	62.7384	0.032246	4	1	25.8059
11	166.227	61.6324	0.0291424	4	2	25.9475


Interlopers in HAs

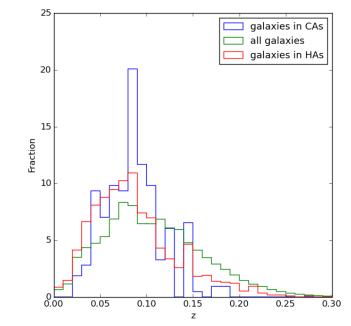
Mock Catalogue

Compactness of Hickson associations

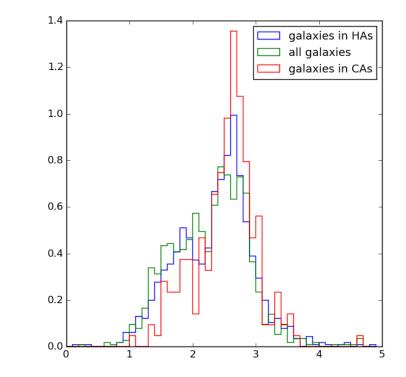

SSDS DR7 main galaxy catalogue:(~260)

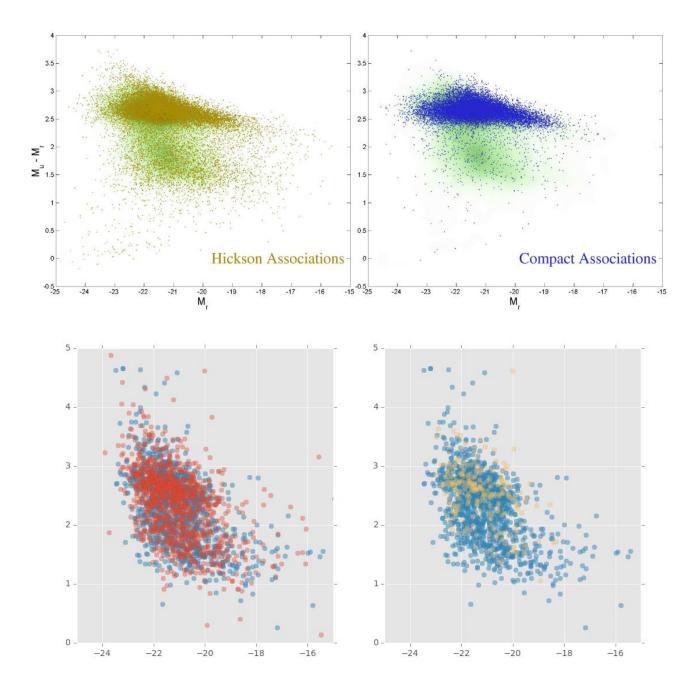

Contamination

Mock Catalogue ø of all identified associations fraction ഗ Contamination വ 4 o 2 8 0 О 26 24 22 20 μ_{e}


SSDS DR7 main galaxy catalogue:

Redshift of galaxies in CGs


$\begin{array}{l} \text{SSDS DR7 main galaxy catalogue:} \\ z_{CA}\simeq 0.085 \;,\; z_{HA}\simeq 0.088 \;,\; z_{all}\simeq 0.107 \end{array}$



Colour of galaxies in CGs

Mock Catalogue Hickson Associations **Compact Associations** Fraction of Galaxies 0.1 Control Sample 0 1.5 2 2.5 З $M_u - M_r$

SSDS DR7 main galaxy catalogue

