DYNAMICAL EVOLUTION OF NGC 3603

XIAOYING PANG

SHANGHAI INSTITUTE OF TECHNOLOGY

NGC 3603 – star formation arena

Dozens of OB stars (Moffat 1983; Drissen et al. 1995; Melena et al. 2008)

- Mass: 1.0 -1.9·10⁴ Solar Mass (Harayama et al. 2008, Pang et al. 2013)
- Location: Carina arm, 7kpc

Sher 25 (Sher 1965)

Giant Molecular Pillars (elephant trunks) (De Pree et 1999; Lebouteiller et al 2007)

Dust

PIGS(partially ionized globules)-like objects (Brandner et al. 2000)

> va Grebel, Wolfgang Brandner, Yo ua Chu (1999)

NGC 3603 – star formation arena

- Location: Carina arm, 7kpc
- Mass: 1.0 -1.9·10⁴ Solar Mass (Harayama et al. 2008, Pang et al. 2013)

GREY DOTS: NON-MEMBER BLACK DOTS: MEMBER STARS (RELATIVE PROPER MOTIONS BASED ON HST/WFPC2)

NGC 3603 – star formation arena

- Location: Carina arm, 7kpc
- Mass: 1.0 -1.9·10⁴ Solar Mass (Harayama et al. 2008, Pang et al. 2013)
- Age: ~1 Myr (Sung & Bessel 2004); age spread up to 3 Myr among PMS (Pang et al. 2013)

MASS SEGREGATION

 Slope of mass function gets steeper in the outer annulus
 –> mass segregation.

Pang et al. (2013)

MASS SEGREGATION

Minimum spanning tree method to quantify the mass segregation

HOW CAN DYNAMICAL SEGREGATION HAPPEN SO FAST?

2.5

2

 significant segregation down to 30 solar masses.

DYNAMICAL MASS SEGREGATION WITHIN 1 MYR

Allison et al. (2009)

KINEMATIC SIGNATURE

- The tangential velocity dispersion for stars >30 M⊙ is 6.8 ± 0.8 km s⁻¹. It does not change much for stars of 10 M⊙ (5.9±0.6kms⁻¹)
- The tangential velocity dispersion increases
 to9.0±0.9kms⁻¹ for stars of ~2.5 M⊙.

$$t_{\text{seg}}(M) \sim \frac{\langle m \rangle}{M} t_{\text{relax}} = \frac{\langle m \rangle}{M} \frac{N}{8 \ln N} t_{\text{cross}}.$$

N = 10⁴, $\langle M \rangle = 0.4 \text{ M}_{\odot}$, KROUPA'S (2002) IMF SEGREGATE TO 30 M \odot AT ONE CROSSING TI

Pang et al. (2013)

FORMATION SCENARIO – COLLISION MODEL

- Two molecular clouds at 13 km/s and 28 km/s are associated with NGC 3603
- The mass of the clouds is too small to gravitationally bind them, given their relative motion of ~20 km/s.
- The two clouds with stars formed before collided with each other
 1 Myr ago to trigger the formation of the super star cluster.

Fukui et al. (2014)

FORMATION SCENARIO – COLLISION MODEL

- Young PMS stars (<10 Myr):
 blue crosses
- Old PMS stars (>10 Myr):
 red dots

STAR CLUSTER WORKSHOP

NOV 20 2015

FORMATION SCENARIO -MONOLITHIC MODEL

Formation of star clusters through single-starburst events (in-situ) followed by significant residual gas expulsion (<0.6 Myr).

14

12

10

8

6

4

2

0

0

0.5

1

1-dimensional velocity dispersion σ_{1d} (km/s)

Banerjee et al. (2014)

STAR CLUSTER WORKSHOP

NOV 20 2015

DYNAMICAL STATE OF NGC 3603

- Virialization?
 - M_{dyn~} 1.9 ± 0.6 × 10⁴ M⊙ (Pang et al.
 2013)
 - M_{phot} = 1-1.6×10⁴ M⊙ (Harayama et al. 2008)
- Sub-virial?
- Super-virial?
 - Banerjee & Kroupa (2013): virialization timescale > 2 Myr; the observed one dimension velocity dispersion V1d (4.5-6.5km/s; Rochau et al. 2010, Pang et al. 2013) is larger than V1d computed from simulation at 1 Myr.

Banerjee & Kroupa (2013)

NGC 3603 in infrared (ESO)

THE CENTRAL CLUSTER IS ALMOST FREE OF GAS

GAS REDDENING MAP OF NGC 3603

Gas expulsion in the cluster?

FASTER GAS REMOVAL —> FASTER MASS SEGREGATION (MOECKEL & BATE 2010)

GAS MASS ESTIMATION

- Size of the cloud:20 pc * 20 pc
- Column density of molecular hydrogen: ~1*10^23
- Total mass with NGC 3603:
 40000 solar masses
- ▶ SFE: 25%

Pang et al. (2011)

NGC 3603

in infrared (ESO)

THE CENTRAL CLUSTER IS ALMOST FREE OF GAS

Pang et al. (2015)

$$R_{F555W} = 3.75 \pm 0.87$$

STARBURST-LIKE DUST. CLUMPINESS OF DUST DISTRIBUTION LARGER GRAIN SIZE THAN THE AVERAGE DIFFUSE GALACTIC ISM

SUMMARY

- Mass segregation down to 30 solar masses, primordial segregation cannot be excluded
- Dynamical segregation is possible while gas is removed quickly
- Debatable dynamical state: supervirial or virial?
- Fast gas expulsion within the centre generates clumpy dust distribution