Dirichlet Distribution

distribution over distribution

Renhao Ye

Binomial Distribution

$$P\{X=k\}=inom{n}{k}p^k(1-p)^{n-k}$$

Beta Distribution

Conjunctive prior of Binomial Distribution

$$f(x;lpha,eta)=rac{x^{lpha-1}(1-x)^{eta-1}}{\mathrm{B}(lpha,eta)}$$

Example

Binomial

N = 10

Beta

 $p_{
m blue} = 0.4, \; p_{
m red} = 0.6$

Multinomial

N = 10

Dirichlet

 $p_{
m blue} = 0.3, \ p_{
m red} = 0.5, \ p_{
m green} = 0.2$

Dirichlet Distribution

$$f(x) = rac{1}{\mathrm{B}(lpha)} \prod_{i=1}^K x_i^{lpha_i-1}$$

K is the dimension of the distribution alpha is the concentration parameter

Normalizing factor:
$$\mathrm{B}(lpha) = rac{\prod_{i=1}^K \Gamma(lpha_i)}{\Gamma(\sum_{k=1}^K lpha_i)}$$

Understanding Concentration

The higher value of α_i , the greater "weight" of X_i and the greater amount of the total "mass" is assigned to it (recall that in total it must be $x_1+\dots+x_k=1$). If all α_i are equal, the distribution is symmetric. If $\alpha_i<1$, it can be thought of as anti-weight that pushes away x_i toward extremes, while when it is high, it attracts x_i toward some central value (central in the sense that all points are concentrated around it, not in the sense that it is symmetrically central). If $\alpha_1=\dots=\alpha_k=1$, then the points are uniformly distributed.

Reference

- https://stats.stackexchange.com/questions/244917/what-exactly-is-the-alpha-in-the-dirichlet-distribution/
- https://zhuanlan.zhihu.com/p/425388698
- https://en.wikipedia.org/wiki/Dirichlet_distribution