Stars with LAMOST Data

Outline

- What are Be stars?
- How to find Be stars?
- Be stars in open clusters
- Summary

Emission-Line Stars

- Emission-line stars are almost in any evolutionary stage:
- Early type stars: Wolf-Rayet star, Of, Oe/Be/Ae stars, Luminous Blue Variables.
- Late type stars: dMe stars, flare stars, red giants, Mira variables.
- Close binaries: Algol stars, cataclysmic variables, symbolic stars.
- Pre-main sequence stars: Herbig Be/Ae stars, T Tauri stars
- The first Be star (y Cas) was classified by Father Angelo Secchi in 1866.

Absolute magnitude

Spectral Type

Classical Be Stars

- Non-supergiants B-type stars with/ever with one or more Balmer emission lines (Collins 1987).

Hou+ 2015 submitted

j044943.86+441400.8
$1023220.37+544609.8$

SN R: 307.9
1.00

p43131.26+475350.7

Be Star Sample is Incomplete

- The increase fraction of Be stars in star clusters were found with increasing cluster distance from Galactic center (McSwain+ 2005). ==> Lower metallicity region "may have" more Be stars.
- $B==>$ Be phenomenon - evolution process?
- environments?
- A homogenous and comprehensive (age, distance, metallicity, rotation, etc.) Be star sample is needed

Outline

- What are Be stars?
- How to find Be stars?
- Be stars in open clusters
- Summary

```
■ DR1 2011.10-2013.06 (~2.2 M, 88\% stars)
DR2 2011.10-2014.06 (~4.1 M, 91\% stars) + DR1
DR3 2014.09-2015.05 (~1.5 M, 92\% stars)
■ DR4 2015.09-2015.11 (~0.5 M, 92\% stars)
```

Kepler Field

- DR4 2015.09-2015.11 (~0.5 M, 92\% stars)

Observations

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

Sample

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

 Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

H-alpha normalized flux

$$
10 \begin{array}{lllll}
6520 & 6540 & 6560 & 6580 & 6600
\end{array}
$$

10 | 6520 | 6540 | 6560 | 6580 | 6600 |
| :---: | :---: | :---: | :---: | :---: |

8

65206540656065806600
Wavelength (A)

65206540656065806600
Wavelength (A)

10 | 6520 | 6540 | 6560 | 6580 | 6600 |
| :--- | :--- | :--- | :--- | :--- |

$6520 \quad 65406560 \quad 65806600$

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)
H-alpha normalized flux

$$
\begin{array}{r}
10 \\
8 \\
6
\end{array}
$$

$$
065206540656065806600
$$

10 | 6520 | 6540 | 6560 | 6580 |
| :--- | :--- | :--- | :--- |

	6520	6540	6560	6580	6600
8					
6					
4					
2					

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)
H-alpha normalized flux

Wavelength (\AA)

Envelope Fraction

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)
Spatial Distribution

IPHAS: Raddi+ 2013 $100 \mathrm{deg}^{2}, 181$ Be stars

Zhang+ 2005, Neiner+ 2011 $>\mathbf{3 0 0 0}+$ Be stars ${ }^{15}$

Distance

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

Distance

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

Distance

Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)

If most ar

Outline

- What are Be stars?
- How to find Be stars?
- Be stars in open clusters
- Summary

2 Be Stars in OCs by LAMOST

- α, δ (J2000): (102.625, +06.600) deg
- $\mu \alpha, \mu \delta=(-1.65,-1.70)$ mas/yr
- Radius: 4', Distance: 2095 pc

RA.J2000	DE,J2000	pmRA pmDE		Jmag	Kmag
deg	deg	$\underline{\text { mas/yr }}$	$\underline{\text { mas/yr }}$	mag	mag
102.622640	+06.605820	-1.4	-0.5	$\stackrel{\rightharpoonup}{4}$	0.3

- E(B-V): 0.3 mag, $\log (t): 398$ Myr

$$
\text { FSR } 1025
$$

Be Stars in Star Clusters

- Difficulties to complete the sample of Be stars in star clusters:
- a comprehensive spectroscopic survey is time consuming (5 years)
- spectroscopic surveys are often limited to bright stars ($\mathrm{R}<18 \mathrm{mag}$)
- some Be-phenomena are transient/various events - short term: hourly to few days (Hubert+ 1997) - medium term: few years (Vakili+ 1998)
- long term: few decades

PTF Ha and rimages

- Palomar Transient Factory 2009-2012 (Law et al. 2009)
- supernova, asteroids, variable stars, etc.
- wide field of view (7.3 square degrees)
- 48 inch (1.2 m) Samuel Oschin Telescope
- With HA 656 (Ha) and HA 663 (r) narrow-band filters
- SED-machine: low resolution IFU spectrograph R~100, mounted on the Palomar 1.5-m telescope
- http://www.ptf.caltech.edu/

```
PTF Second Public Data Release
```

5

Ha emitters with PTF

Membership Identification

Proper Motion Diagram
Color-Color ${ }^{H-K s}$ Diagram

Be Stars in the Star Cluster NGC 663

- Pilot study on NGC 663 with PTF, 2MASS, and PPMXL (Yu+ 2015)
- 4 new Be stars, 1 known excluded in NGC 663.
- [$\mathrm{N}(\mathrm{Be}) / \mathrm{N}(\mathrm{B})] \sim 4.5 \%$,
- lower than that of NGC 7419, NGC 2345 (>10\%)
- The low fraction of Be stars in NGC 663 might be a consequence of the effects of mass segregation and stellar winds or supernova explosions.

Be Stars in the Star Cluster NGC 6830

- Program improved on NGC 6830 with PTF, 2MASS, and PPMXL (Yu+ submitted.)
- 2 new Be stars, 1 known reidentified in NGC 6830. Age ~ 125 Myr.
- The low fraction of Be stars in NGC 6830 indicates that older open cluster lack Be stars.
- Due to time constraints during the commission runs, we only observed the two brightest candidates

Searching for Be Stars in 100 OCs

Name	RA	Dec	Distance	log（age）	Candidates
ASCC＿3	7.77	55.275	1550	7.729	2
FSR＿0106	267.81	11.162	1596	7.95	4
FSR＿0771	75.945	32.165	1705	8.515	3
FSR＿1102	118.39	5.7	1659	8.77	3
FSR＿1147	120.08	1.26	1508	8.72	0
Koposov＿12	90.261	35.277	1900	8.91	1
FSR＿1139	111.13	-2.884	1964	8.855	0
FSR＿0728	67.47	38.5	1816	8.255	0
FSR＿0905	98.427	22.288	1786	8.3	0
FSR＿1094	92.497	-6.32	1627	8.85	0
FSR＿0866	103.81	29.73	1664	9.2	1
FSR＿0683	77.16	53.22	1522	9.2	0
FSR＿0757	62.47	26.57	1900	9	0

13 OCs have been done by C．S．You（游昌憲），NCU

Summary

- The LAMOST DR1, DR2, and DR3 contain > 5 M spectrums (> 90\% are stars and with stellar parameters). More than 500 objects were identified as Be candidates and mostly distributed near Galactic Anti-Center due to the survey strategy. In DR1, only 2 Be stars are in star clusters with age 15 Myr and 398 Myr, respectively.
- As a pilot project, we have searched for Be stars in 2 star clusters with Ha- and r-band images from PTF survey and confirmed their membership photometrically and kinematically with 2MASS and PPMXL, respectively. Searing for Be star candidates in 100 star clusters is ongoing. The SED machine will efficiently verify Be candidates in the future.

