The MicroJy and NanoJy Radio Sky: Source Population and Multi-wavelength Properties

Paolo Padovani

arXiv:1009.6116

Radio Sky

- a view of the Universe unaffected by the absorption
- radio bright (>1 mJy) radio sky consists for the most part of active galactic nuclei (AGN).
- Below 1 mJy there is an increasing contribution to the radio source population
 - synchrotron emission resulting from relativistic plasma ejected from supernovae associated with massive star formation in galaxies

Current radio surveys (10年前)

•大天区巡天 (1.4Ghz)

- The NRAO VLA Sky Survey (NVSS): 2.5 mJy
- FIRST: 1 mJy
- Deep survey with VLA
 - < 0.1 mJy at a few GHz, reaching a maximum area of ~ 2 deg2 (VLA-COSMOS)
 - minimum flux density \sim 15 μJy at 1.4 GHz (SWIRE) and \sim 7.5 μJy at 8.4 GHz (SA 13).

SKA era

- Possibly "all-sky" 1 µJy survey at 1.4 GHz
- 70 MHz ~ 10 GHz extending well into the nanoJy regime with unprecedented versatility.

射电望远镜的灵敏度

 $1 \text{ Jy} = 10^{-26} \text{ W Hz}^{-1} \text{ m}^{-2} = 10^{-23} \text{ erg s}^{-1} \text{ Hz}^{-1} \text{ cm}^{-2}$

$$m_{
m AB} = -2.5 \log_{10}igg(rac{f_
u}{
m 3631 ~Jy}igg),$$

m(AB,1 Jy) = 8.9 mag 1mirco Jy ~ 23.9 mag

射电望远镜的sensitivity

- •射电望远镜的灵敏度的表征的单位通常是m^2/K, 这和源的流量密度的单位Jy有什么关系?
- 信噪比探测公式,详见 Radiometer_Equation Ⅳ以及 [1] ☑

$$rac{S}{N} = rac{T_{src}}{T_{rms}} = rac{T_{src}}{T_{sys}} \sqrt{ au\Delta
u}$$

•信号的探测能力取决于望远镜口径A,射电天文里面通常用温度来描述:

P(接收到的功率) = A * S(流量密度) = 2 * k * T(源温度)

- •对于1平方米接收面积来说, 1Jy的源对应的温度大概是0.74mK
- • T_{sys} 是系统的温度可以假设在200K左右。
- •积分时长和带宽 $\sqrt{ au\Delta
 u}$ 可以提高信噪比,对于100MHz的带宽,60秒积分时间,这个因子大概是 $7.7*10^4$

Radio populations parameters

Class	$N_{ m T}(0)$ $ m Gpc^{-3}$	$P_{\min}(0)$ W Hz ⁻¹	LE	DE	$z_{ m top}$	z_{\max}
\mathbf{FSRQs}	12	2×10^{24}	$\exp[T(z)/0.23]^{a}$		2.25	5.5
\mathbf{SSRQs}	59	3×10^{24}	$\exp[T(z)/0.15]^{a}$		2.25	5.5
FR IIs	590	3×10^{24}	$\exp[T(z)/0.26]^{a}$		2.25	5.5
BL Lacs	2,310	10^{23}	$\exp[T(z)/0.32]^{a}$			3.0
${ m FR}~{ m Is}$	29,300	10^{23}				3.0
RQ AGN	3.9×10^5	5×10^{19}	$(1+z)^{2.4}$		1.7	6.5
\mathbf{SFGs}	4.5×10^7	2×10^{18}	$(1+z)^{2.7}$	$(1+z)^{0.15}$	2.0	6.0
Dwarf Galaxies	2.0×10^8	$< 2 imes 10^{18}$	$(1+z)^{2.7}$		2.0	3.0
Low-power Ellipticals	4.8×10^{6}	$< 3 \times 10^{19}$		$(1+z)^{-1.7}$	••••	3.0

 $^{a}H_{0} = 50, q_{0} = 0; T(z)$ is the look-back time

Could stellar objects also contribute substantially to the µJy and nanoJy sky?

- Extremely unlikely.
- The radio thermal component of the Sun
 - $\sim 0.7 4$ nanoJy at 10 Kpc.
- non-thermal flux density \sim 0.001 nanoJy.

LOw Frequency ARray LOFAR

- Only instrument capable of deep, high-resolution imaging at frequencies below 100 MH
- The LOFAR Multifrequency Snapshot Sky Survey (MSSS)
 - the whole northern sky to a depth of around 10 mJy/beam
 - resolution of 2 arcmin.

LoTSS wide area

- whole northern sky at the full resolution of Dutch LOFAR (6 arcseconds)
- declination-dependent sensitivity: typically ~ 100 μ Jy/beam.
- LoTSS deep fields
 - reach depths approaching 10 μ Jy/beam
- LoLSS wide-area
 - frequency range 42-66 MHz, a resolution of 15 arcsec, average rms noise of 1 mJy/beam.

A	LM	A

Band 1: 35 GHz - 50 GHz Band 2: 67 GHz - 90 GHz Band 3: 84 GHz - 116 GHz Band 4: 125 GHz - 163 GHz Band 5: 163 GHz - 211 GHz Band 6: 211 GHz - 275 GHz Band 7: 275 GHz - 373 GHz Band 8: 385 GHz - 500 GHz Band 9: 602 GHz - 720 GHz Band 10: 787 GHz - 950 GHz

Common Parameters

Declination	00:00:00.00		✓
Polarisation	Dual 🗸		
Observing Frequency	345		GHz 🔻
Observing Band	ALMA_RB_07 V		
Bandwidth per Polarization	7.500000		GHz 🔻
Water Vapour	Automatic Choice	\bigcirc Manual Choice	
Column Density	0.913mm (3rd Octile) 🗸		
Trx, tau, Tsky	72 K, 0.158, 39.538 K		
Tava	153.278 K		

Individual Parameters

	12 m Array		7 m Array		Total Power Array		
Number of Antennas	43		10 🗸		3		~
Resolution	0	arcsec 🔻	0	arcsec 🔻	9.5	arc	sec 🗸
Sensitivity (rms)	192.95594694337473	✔ uJy ▼	2.4234094057554807	mJy 🔻	4.734306968439023	✓ r	nJy 🔻
Equivalent to	Unknown	mK 🔻	Unknown	K 🔻	0.000539		К
Integration Time	60	✓ s ▼	60	🖌 s 🕶	60	~	s 🕶