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iStatisticaI view of the world

= All measurements have uncertanity
= D: data/Measurement
= M: Model/Fact
= Bayesian approach: P(D|M) --> P(M|D)
= World/Fact may also be statistical
= Model the data/world statistically



i Distribution function



‘-L LF of galaxies

= The basic statistical
properties of galaxies
in any galaxy survey

s Schechter function

= Characteristic
luminosity M«

=« Faint end slope a

iz = (L) enf L)

dL
L:l:

Blanton et al. (2003) (astro-ph/0210215)
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Traditional Vmax estimation of
‘L LF(Felton 1977)

= Vmax: maximum volume of
a galaxy with certain
absolute luminosity can be
observed in the flux limited
sample

= For flux limit complete
sample: <V/Vmax>=0.5

= Advantage: no assumption
of the LF shape

= Shortcoming: based on the
assumption that galaxy
distribution is homogenous

1V, corrections for Malmquist bias
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i Maximum likelihood estimation

= The probability of a galaxy in the sample

2 )
Bt = ( j;m{z(an)(L) dL | alh)dk z*ﬁ*(f?) cop - LL)iL

s L. (d), the minimum luminosity above the qux limit.
= Selection effect

« The likelihood function P =[] p,

= Maximize L as function of M, a AP
= How to maximize? e 0
= Analytical: exercise on a Gaussian distribution.
« numerical calculations in parameter space —_
n

= No direct constraint on ¢, =0
OL*




Step-Wiese Maximum Likelihood
‘-L method (Efstathiou et al. 1988)

s LF is function of N steps
» Avoid to use Schechter function as a prior

o(L)= o, Le(Ly—AL/2,Lx+AL/2), k=1,...,N

The likelihood, as in the previous method, then is:

N N N
InL=> W(Li—Li)lngy — > In{) ¢;ALH[L; — Limin(2:)]} + C
i=1 i=1

i=1




{ LF estimator of SDSS (Blanton et al. 2003)

Blanton et al. (2003) (astro-ph/0210215)
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i()ther methods

Choloniewski method (Choloniewski 1986)

= Consider the selection in the (M,un) plane
together

= Get the normalization



i Notes on LF estimation

x Sample completeness is most important
» Low surface brightness galaxies are always the

topic

= Should consider cosmic variance in high
redshift survey

s With modern data, conditional LFs are

discussec

more and more

= Morpho

ogy, color, environment etc.



‘-L IV: stacking technique

= Only upper limits for very faint source
= Needs deeper exposure

= Upper limit includes information

s Stacking: sources supposed to share similar
properties, stacking then is equivalent to
increase the exposure time
= Space - time

= get average properties
= Signal may be dominated by few bright sources



iMean VS median

Mean L at given L IN
stackméKev J 2500 Excellent agreement between stacks and

individual detection here is misleadin
= Median /.., at given L 9
2Ke\(I 2500

in individual linear fitting
= Fitting in Log Lykey-LOGg L5
space

= Scatter of Log L.y is ~0.4
= Mmean and median difference

is a factor of 1.7 F 10w T ==
= Answer maybe the quasar e 10°%
. .y osoo LETES'Hz™Y)
variability
= Log-normal Solid: data from stacks of QSO.

Dotted: data from individual detection.
Shen et al. 2006




‘L V: Extreme value statistics

= Extreme value populations are easily observed

» e.g. the brightest group/cluster galaxies, the brightest star of a
star cluster
= Order statistics of the early-type galaxy luminosity function (Dobos &
Csabai 2012)

= What can a extreme value tell us ?
« How unusual are the Shapley Supercluster and the Sloan Great
Wall (Sheth & Diaferio 2011)
o (ZQOulalr;tifying the rareness of extreme galaxy clusters (Hotchkiss

= An application of extreme value statistics to the most massive
galaxy clusters at low and high redshift (Waizmann, Ettori, &
Moscardini 2012)

= [emperature maximum in CMB (coles 1988)



i Extreme value statistics

= Three types of extreme value distribution, Depends
on the tail shape (Fisher—Tippett—Gnedenko theorem)

« Weibull(no tail)
= Lowest temperature

» Fréchet(flat tail)
= Money of richest people

= Gumbel (exponential tail)
= Height of people
= Requires sample size N>>1
= Brightest group/cluster galaxy
« Gumbel distribution?



Extreme value statistics/Order
i statistics (EVS/OS Dobos & Csabai 2011)

= Cumulative distribution of Fx) = / £y du.
distribution function £ (x) -

= probability of a number x < X
= Nindependently drawn  Pa(Xm) = P(xi < Xa) = PY¥(x < Xp) = F¥(Xa)).
numbers X, X%, . . ., X}, the
probability of max{x.} = X

= the probability density function (X N) = NF¥ LX) f(x),
of the maximum of a sample of

P(x < X) = F(X).

size N
= The probability distribution of P Xy, N)
the 4th largest value BL o it e s spesy

~ k—DYN —k)!



EVS/OS:
basic conclusions

= The mean extreme values of
a lager sample is larger

= Height of Chinese basket-ball
team player is taller than
Japanese

= Brightest galaxies of rich
clusters is more luminous than
poor groups
s The scatter of the extreme
values of a lager sample is
smaller
» BCGs have small scatter

= The scatter of the higher order
members is even smaller
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I[. Correlation between Parameters

s Pearson correlation coefficient
= cler<d St~ T~ 7

= Spearman rank: replacing x;, y; by the rank R, S;

iy it — BG5S
VIR~ R /T(5: - 52

The significance of a nonzero value of r, 1s tested by computing

N2
t=rg 14.6.2
o T2 (14.6.2)

t: Student's distribution with N — 2 degrees of freedom.

(14.6.1)




K-S test: applicable to unbinned distributions

m K~Stest defined as the
maximum value of the
absolute difference
between two cumulative
distribution functions.

cumulative probability distribution

D= max |Sy,(x)— Sn,(z)|

— OO I D0

o0
> D L )Z —2ni2D?

n Can be generalized to

two-dimensional e jnvariant of the parameterization of x

e most sensitive around the median

distributions



+

Is the correlation between A and B real or
because A and B are both correlated with C?



i Partial correlation

s X correlated with Z, Y correlated with Z,
whether X correlated with Y

= Distance dependent parameters, e.g. Ly VS Ly

s Idea: calculate the correlation between the

residuals
sy = Txzfyz

= assumes linear relationship. "sy.z = —
..f'(l—rﬂj(l—rﬂ)

= More generalized: multiple regression



i Control sample

s We see different b/a values between AGNs
and normal spirals. What does it mean?
(Shen et al. 2010)
= b/a is function of stellar mass, size etc.
= AGNSs biased to high stellar mass sample

= We build a control sample of galaxies, which
have the same stellar mass, size,
concentration, color distributions as AGNs

= We then compare the b/a of AGNs with control
sample



Machine learning: Decesion tree

= Correlation exsit: if we can predict y (output) from
xi(input) by any way
= Nfreedom < Ngata
= For lot of X (e.g. stellar mass, size, color, Age, redshift), how
they correlate y (e.g. AGN?)
» the smallest number of dataset x; that can best predict y
= Which X contribute the most info?

feature importance

6 HA_LUM 0.248381
11 star_red 0.215805
Met_line 0.119788

Age 0.073806

EW_HA 0.062337

MtoL 0.059757

RtoRe 0.054103

Meta 0.041470
HA_SIGMA 0.041362
LOGU 0.038559




iII. Linear fitting

Y=ax+Db



Famous linear relations in
i astronomy

= period -luminosity relation of Cepheids
s My,-o relation

s Tully-Fisher (L - V.,) relation

s Fundamental plane of ellipticals

s [-7, L-o relation of groups and clusters

= All are statistical scaling relations, none of
them are first principle like F=ma




Nature of the scaling relations

= Observables: (x;, y;) with error (A;, Ay)
s First, we should find some correlations, e.g. rank
analysis
= T0 the first order, all the correlations are linear
s Y=aX+Db+o0o
= o is the intrinsic scatter, may not be a constant

= Observables maybe biased

= e.g. some low-luminosity galaxies are not observed at given
Vmax

= Some observables may only be upper limits
= E.g. we only get the upper-limit of L, of some cluster



Ordinary Linear regression

‘L OLS(y|x)

= y; with measurement error o;

i 1 a — ba 4
9 _ Yi— @— 0Fq
x“(a,b) = ( )
i =3 (2

Code: /it in numeric recipes



‘-L Error on both x and y

i: —ﬂ—bﬂ‘l)z
aa e Pa,

i=1
Code: fitexy in numeric recipes

b ~ biased to infinity



i Eddington(Malmquist) bias

= Distance dependent observable
»« Eddington (1915) Malmquist(1920)

= In magnitude limit sample, more faint source
scattered in than bright source scattered out
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Caveat: choose proper parameterization

If we fit M = alog
W+ b, a will be
biased to smaller
values

FitlogW=a M + b’
is better

= At given M, no obvious
in W

Luminosity log L,

1

10

. Obvj us“MaImquisat bias here

1.5 20 25
Hl-linewidth log dvy,

3.0



Attenuation bias

= 'Why Machine Learning Models Systematically Underestimate
Extreme Values” arXiv:2412.05806 (Yuan-Sen Ting)

Ytrue = 6mtrum (1)

Yobs = Ytrue T 5y7 (2)

E[3] = 8 s B :
= U?ange = ()’% 1+ (O’;c/orange)g .

(10)



Six different linear regression

= Reference
= Linear regression in astronomy I (1990, ApJ,364,104)
= Different regression method
= Linear regression in astronomy (1992ApJ...397...55)
= Truncated, censored data
= IDL code: sixlin
= Ordinary Least Squares (OLS) Y vs. X (c.f. linfit.pro)
= Ordinary Least Squares X vs. Y
Ordinary Least Squares Bisector
= Orthogonal Reduced Major Axis ;
= Reduced Major-Axis
Mean ordinary Least Squares



X

Fig. 1. —lustration of the different methods for minimizing the distance of
the data from a fitted line: {(a) OLS(Y | X), where the distance 1s measured
vertically; (b) OLS(X | Y), where the distance is taken horizontally; (c) OR,
where the distance is measured vertically to the line; and (d) RMA, where the
distances are measured both perpendicularly and horizontally. No illustration
of the OLS bisector is drawn in this figure.

e The applicability of the procedures is dependent on the nature of the
astronomical data under consideration and the scientific purpose of the
regression.

e For problems needing symmetrical treatment of the variables, the OLS
bisector performs significantly better than orthogonal or reduced major-axis
regression.



Error on both x and y and with a
i constant intrinsic scatter o

=i Zln (o +U%-+HE”%5)

| Vi — (aX; + h)]
— Z -+ constant.
2(0? + {J' .+ a? cr )



BCES (Akritas & Bershady, ApJ
i47o, 706 1996)

= Regression with correlated measurement
errors and intrinsic scatter
= allows for measurement errors on both variables

= allows the measurement errors for the two
variables to be dependent

= allows the magnitudes of the measurement errors
to depend on the measurements

s Intrinsic scatter: constant

= IDL code: BCES.pro (BCES: bivariate,
correlate errors and scatter )




Regression for Astronomical Data with Realistic
Distributions, Errors and Non-linearity (rao jing & cheng Li)

s arXiv:2411.08747

Table 1. Comparison of Different Regression Methods

Method F(x) P(xerr|x)  P(y|x,0)  Optimization Objective

ML based method (This work) NF NF Any Likelihood /Posterior

KS-test based method (This work) NF NF Any p-value of 2D KS test
OLS/WLS v ik Linear Likelihood
ODR/wODR Uniform Linear Likelihood
mODR o e Linear Likelihood
LINMIX/ROXY GMM s Linear/Any Posterior

Leopy Input (heuristic) Any Likelihood /Posterior
LtsFit - - Linear Likelihood

NOTE—P(yerr|y) is modelled by the same method as P(xerr|x).

Normalizing Flows (NF)
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Special cases



narrow

central peak
e P

iRobust estimation

s Data with outlier

N : .
P T i — .3'{"! i-d) Eﬂ%l?:ts
mimnimmize over a P /
Ty =Tt" :
i=1 ;
(@
1Yi —a — bz
g==1
S~ rabust straight-line fit

(b)

5 ee Nume r/'C reC/;DeS C 1 5 7 l-'_igu_re 1_5.?.1_. ]_Example_s u.'here_ Ic_:bus.t statisl_ica.l _mel:hods are desirable: (a) A one-dimer_lsioz_ml
. distmbution witha tail of outliers; statistical fluctuations m these outliers can prevent aceurate determination
of the position of the central peak. (b) A distribution in two dimensions fitted to a straight line; non-robust

techniques such as least-squares fitting can have undesired sensitivity to outlying points.



iTruncation due to flux limits

T 1 |

Malmquist bias in Hubble diagram (Deeming, Vistas Astr 1968, Segal,
PNAS 1975)



iCensoring due to non-detections

1 T T T T T T T |

Presented for astronomy by Isobe, Feigelson & Nelson (ApJ 1986)
Implemented in Astronomy Survival Analysis (ASURV) package



B NALAZRIE s o AT R EL(y [ X)

A likelihood function describing a given data set can be defined using the above formulations. Consider a detected point falling in
a bin (z;, z; + Az). The probability that this occurs is determined by the probability density and is

Pp(z) = f(z)Az . (10)

If an object is right censored at z;, so that the true location of the point is somewhere between z; and oo, the contribution from this
point can be written in terms of the survival function

zj
If there are m detected observations, and n censored observations, the likelihood function is expressed by
L=1]fGz)- ] SE)Az)™,
D C

where [ [} denotes the product over the m detected points, and [ J¢ denotes the product over the n censored points. Since (Az)™ does
not contribute to the maximum, the likelihood can be rescaled to be

e li[f(zf) 1;[ S(z,) . (12)

Taking the logarithm, we get the log likelihood function

Vi ; log f(z) + % log S(z;) . (13)



A more straight-forward way

= Especially when amount of data is large in modern
surveys

m First, at given bin of x, what is the distribution of y
after correction for selection bias?

= Is y Gaussian distributed? What is the scatter compared
with its measurement error?

= Then what is the PDF(y|x) changes as function of x
= IS this relation linear or non-linear?

s Build the likelihood function and fit the model
parameters



L — R relation of galaxies (Shen et al. 2003)
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We find, after
correction for selection
effect, at given Mr, Log
R is intrinsically
Gaussian distributed.

Data Is
biased here
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10

R, (kpe)

o Early type (¢>2.86)
s late type (c<2.86)

Intrinsic scatter is not a constant

We plot P(R|M) as
function of M.
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II. Luminosity function of
galaxies




iMachine learning technic

= (Statistical Machine Learning for Astronomy) by
Yuan-Sen Ting arXiv:2506.12230



iFinaI thoughts

= Use proper model
= Depend on your question.
= Question is the first step of your science

s Use proper way to do the statistics
= Need to know the principle, may need not know the detail.

= Use proper evidence
= Model explains everything is wrong
= Depend on your knowledge and experience

= Data mining



