Searching for and Characterzation of －Galactic Open Clusters toward the Galactic：Antt－Center wifh Pan－STARRS1

Roger Lin（林建爭），Wen－Ping Chen（陳文屏）： \because ．and PS1 team．

Outline

- Introduction and Motivation
- The Pan-STARRS project
- Search Algorithm
- Characterization Procedures
- Results and Discussions
- Summary and Future Works

Star Clusters

- Stars are formed in a clustered environment
- Members with different masses in a star clusters are at the same distance, with the same chemical composition and the same age.
- Star clusters serve as a good test bed for star formation and evolution theories.
- Star clusters serve to probe the Galactic structure and evolutionary history.
- Stars are formed in groups out of molecular clouds, and at the same time as the stellar birth planets are formed in circumstellar disks.
- Massive stars are centrally concentrated and low-mass stars 'evaporated' as the result of mutual gravitational interactions among members (+ external tidal perturbation)
- A cluster eventually dissolves.
- Do galactic environments influence the origin of stellar masses?

Study of Star Clusters

- Historically, one of the oldest subjects in astronomy, next to stars and planets, e.g., the Messier objects ...
- Progress paused for a few decades because CCD sizes did not catch up.
- Interest revived because of sky surveys and OIR widefield imaging
- Current census: 3000+ open clusters, 100+ globular clusters in the Milky Way
- Special interests in massive star clusters, low-mass star in star clusters, and dynamics of star clusters

Star cluster sample is incomplete

Lin et al. in prep (2014)

- 10^{5} expected (Piskunov et al. 2006), but current sample is only a few 10^{3} catalogued (Kharchenko et al, 2013, mostly < 2 kpc)
- Largely because of dust extinction in the solar neighborhood and lack of systematic search
- We therefore attempt to conduct a comprehensive search for star clusters with Pan-STARRS data

Pan－STARRS（PS1）泛星計劃

 Panoramic Survey Telescope And Rapid Response System

To detect hazardous asteroids．．．

Haleakala，Maui，Hawaii，USA

\square

PS1 Features

1. patrolling $3 / 4$ sky several times a month
2. 1.8 m telescope at $\mathrm{f} / 4.4$ with 3.2 deg FOV
3. 1.4 Gigapixel camera, $10 \mu \mathrm{~m}, 0.245$ "/pixel
4. reaching g,r,i ~24-27, $z, y \sim 21-24$ mag

Tonry et al. 2012, ApJ

PS1 Surveys

1. 3π survey: 56% (low-mass stars, brown dwarfs, star clusters, structure of the Milky Way)
2. medium deep: 25 \% (extragalactic, cosmology, large scale structure, etc.)
3. solar system: 11% (KBOs, asteroids, comets, etc.)
4. others: 8\% (M31)

PS1 status

1. Full survey stared in May 2010, for duration of ~ 4 years.
2. Included ~ 5 billion objects and ~ 120 billion detections
3. Observations were end in March 2014
4. Data will be released to public in April 2015
g,r,i stacks images of 3 pi sky (PV2)

PS1 3 π Data

- Stellar objects are selected with PS1 object flags
- exclude $\mathrm{S} / \mathrm{N}<5$, psf quality <0.85, and extend objects
- measurements > 4
- Total of 1.3 billion stellar objects are in 3π sky (1 billion, USNO)
- The 5d limit. mag. are at 22.30, 22.22, 21.99, 21.29, 20.22 mag

A Pilot Study : Galactic Anti-Center

- A 20×20 deg2 region with 30 million stellar objects
- Contain lower dust extinction than other parts of Galactic plane
- Reveal the galactocentric distribution of star clusters
- Probe the structures of the outer disk

Search Method

Star Counting to Search for Stellar Density Enhancement Regions

Star Counting to Search for Stellar Density Enhancement Regions

G173.0+0.0
-Density Map: grid size contains ~ 10 stars, smoothing with 3×3 boxes, subtracting median value, dividing standard deviation

- Cluster candidate: contains at least 3 adjacent grids, with each gird $\geq 3 \sigma$, and >3 times detections in different fields

Failed on Embedded Clusters (BDSB 73)

Failed on Large Radii Clusters (NGC 1896)

Capability of the Search Algorithm

- 50 of 109 known star clusters were re-found
- 30 are probably not star clusters
- 13 are too large > 10'
- 2 are embedded clusters
- 4 are in HII regions
- 10 are detected twice (three times required)
- Detection rate of the search method is 50/60 ~ 83\%
- 491 star cluster candidates were identified

Characterization

Characterization

- 491 star cluster candidates were identified
- coordinate and radius
- highly probable members
- reddening, distance, age
- low mass members

Coordinate and Radius

- The center coordinate: position of density peak
- Core radius: half of density peak (Gaussian profile)
- Effective radius (re_{e}): $2 \times$ core radius

Radial Density Profile

Zoomed in Density Map

Proper Motions

- secured members
- spatial ($r<0.7$ arcmin)
- PPMXL proper motions (PM) within 2б

Spatial Distribution
Proper Motion Diagram

Reddening

- two-color diagram
- (H-Ks, J-H)
- (g-r, J-H)
- ($g-r, z-y)$
- ($\mathrm{i}-\mathrm{y}, \mathrm{g}-\mathrm{r}$)
- range of $E(B-V)$

stellar loci: Tonry et al., 2012

Distance \& Reddening

- ZAMS fitting
- color-magnitude diagram
- $(g-y, g),(r-z, r)$
- (i-y, i),(J-Ks, z)
- avg. distance
- avg. reddening

ZAMS: Marigo et al., 2008

Age

- secured members
- within r_{e}
- selected PMs
- color-magnitude
- (g-y, g), (r-z, r)
- (i-y, i),(J-Ks, z)
- avg. age
- Stellar masses
- 0.25 M 。 at 1 kpc- 0.7 M 。 at 4 kpc

Isochrone: Marigo et al., 2008

The similar procedures have been applied for two star clusters

Characterization of a young star cluster G144

G144 represented the latest episode of sequential star formation in this cloud complex.

Characterization of an intermediate age cluster Praesepe (750 Myr)

PPMXL + 2MASS + PS1
1040 member candidates 20-40\% binary frequency low-mass stars < 0.1 M。

Praesepe Members

Wang et al. 2013

Characterization of an intermediate age cluster Praesepe (750 Myr)

Mass segregation occurred Low-mass members are escaping

Wang et al. 2013

Results

The completeness limit of revised sample ~ 5 kpc

Spatial Distribution

Summary

- As a pilot program to search for star clusters from PS1 data, we developed the star-counting algorithm to identify 491 stellar density enhancements (50 are matched with known OCs) in a field of 20×20 deg 2 toward the Galactic anti-center.
- The detection rate of known OCs by the search method is $\sim 33 \%$.
- We characterized the star cluster candidates with RDP, PMD, TCD, and CMD to obtain coordinate, radius, mean proper motion, reddening, distance, and age, respectively.
- The completeness limit of revised star cluster sample is up to about 5 kpc toward the Galactic anti-center. The lowest mass of members can be identified down to $0.25 \mathrm{M}_{\odot}$ or $0.7 \mathrm{M}_{\odot}$ at $\sim 1 \mathrm{kpc}$ or 4 kpc with PS1 photometry.
- The separation between the Sagittarius and Perseus arms is estimated to be $3.2 \pm 0.5 \mathrm{kpc}$ and the widths of Sagittarius, Orion, and Perseus arms to be $450 \pm 50,400 \pm 50,800 \pm 100 \mathrm{kpc}$. The metallicity gradient seems to decrease toward the Galactic anti-center.

Future Works

- We aim to provide a more complete sample of star clusters than current samples.
- Verification of newly found candidates either by PS1 image inspection or by follow-up observations.
- Improvements of characterization, in particular the age determination with different metallicities and models (Padova, BT-SettI).
- Expansion of the search area to other parts of the Galactic plane ($|\mathrm{b}|<50$ deg).
- Characterization with supplemental data, such as deep images (WIRCam, HSC), spectral data (SDSS or LAMOST), and proper motions (PS1).

Thanks

