Deep Potential: Recovering the gravitational potential from a snapshot of phase space
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Distribution function

f(x,v,t) is called the distribution function or phase-space density of
the system. Throughout this book we abbreviate “distribution function”
to “DF”. Clearly f > 0 everywhere in phase space.
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The meaning of the collisionless Boltzmann equation can be clar-
ified by extending to six dimensions the concept of the convective or
Lagrangian derivative [see eq. (1E-7)]. We define
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dt ot = Ow,,

(4-14)

(df /dt) repreéents the rate of change of the density of phase points as
seen by an observer who moves through phase space with a star at
velocity w. The collisionless Boltzmann equation (4-13a) is then simply

df
—=0. | (4-13d)
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and then noting that the mean value of v;v; may be broken into a part
v;U; that is due to streaming motion and a part

oy = (vi — ) (v — ;) = U305 ~ 0;T; (4-26)

that arises because the stars near any given point x do not all have the
same velocity. Then using equation (4-26) in equation (4-25), we obtain
the analog of Euler’s equation (1E-8) of fluid flow;
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We shall see below that equation (4-27) is valuable for its ability to
relate observationally accessible quantities, like the streaming velocity,
velocity dispersion, and so forth. But its fundamental defect must be
recognized: we have no analog of the equation of state of a fluid system to
relate the six independent components of the tensor a2 to the density v.
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Differentiable approximation of DF
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The key is to find a parameterized class of highly flexible, nonlinear, bijective transformations, for which the Jacobian
can be efficiently calculated. In this paper, we call the parameters governing this family of coordinate transformations
¢, and we refer to the resulting probability density function in 2" as p, (2). Given a set of points {Z} that are drawn
from an unknown distribution p(Z), we can then search for the parameters ¢ that maximize the likelihood of the
points. This then yields a smooth approximation of the distribution from which the points {Z} were drawn. The
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Once we can describe the distribution function of a stationary system, in all physically plausible cases, the gravitational
potential can be uniquely determined (up to an additive constant) by solving the Collisionless Boltzmann Equation (see
Appendix A, as well as An et al. 2021). Realistic physical systems will not be completely stationary, and as such, there
nay not exist any potential which would render the system stationary. In general, therefore, Deep Potential recovers:
he potential which minimizes the amount of non-stationarity in the system (using a measure that will be discussed.
selow). Fig. 1 gives a graphical overview of Deep Potential. T

Note that we do not assume that the gravitational potential is sourced by the observed stellar population alone.

Accordingly, we do not impose the condition

V2D = 4rG [ £ (#,0) . (3)



2.2. Modeling the gravitational potential

After learning the distribution function, we find the gravitational potential ® (#) that renders the distribution
function stationary. The distribution is stationary when Eq. (2) is satisfied everywhere in phase space. We parameterize
the gravitational potential as a feed-forward neural network, which takes a 3-vector, Z, and returns a scalar, . We
denote the trainable parameters of this network (i.e., the weights and biases) by €, and the resulting approximation
function as ®»(Z). For any given value of 8, we can calculate the non-stationarity of our approximation of the
distribution function at any arbitrary point (&, ) in phase space:
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This is essentially a variational method, in which our Ansatz for the gravitational potential is a neural network ®g,
and in which we vary the parameters 6 to minimize non-stationarity of the distribution function.

We require a measure of the non-stationarity of the distribution function throughout all of phase space, which we
can then use to find the optimal gravitational potential. We also require that the matter density be non-negative

By Poisson’s equation, which links the potential to the density, this implies that V2® > 0.
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