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Outline
• Statistical inference: Definition and use in astronomy

• Nonparametric inference

• Parametric inference (point estimation) 

• Methods for point estimation:
– Least squares estimation
– Maximum likelihood estimation
– Bayesian inference (tomorrow)



Statistical Inference

“Statistical inference is the process of drawing conclusions from 
data that is subject to random variation, for example, 
observational errors or sampling variation.”            
(Wikipedia, 2014)

“The outcome of statistical inference may be an answer to the 
question "what should be done next?", where this might be a 
decision about making further experiments or surveys, or 
about drawing a conclusion before implementing some 
organizational or governmental policy.”(Wikipedia, 2013)



Why do astronomers need statistical inference?
1. smooth over discrete observations to estimate the underlying 

continuous phenomenon density estimation
2. quantify relationships between observed properties regression
3. explore a multivariate dataset to find relationships among variables 

multivariate analysis
4. divide a sample into subsamples with distinct properties           

clustering & classification
5. try to compensate for flux limits and nondetections survival analysis 
6. investigate temporal behaviors of variable sources time series analysis
7. characterize and model patterns in wavelength, images or space  

spatial processes, image analysis
8. test whether an observation agrees with an astrophysical theory 

regression
Statistical inference is the process of learning something about 

the populations and processes that underlie a dataset.  
It is so pervasive throughout astronomy 

that we are hardly aware of its ubiquitous role.



Nonparametric inference: Motivation
Most standard statistical procedures (e.g. least squares or Bayesian model 
fitting) are parametric assuming: 
– the underlying dataset and population is homogeneous (no outliers or 

mixtures) 
– the assumed model family correctly and completely explain the physical 

phenomenon (model specification)
– the accuracy of measurement is invariant across the sample 

(homoscedasticity)
– the accuracy of measurement improves as sqrt-N (Central Limit Theorem)
– sample residuals from the correct model of the data exhibit a Gaussian 

distribution (normality).

When any of these assumptions does not hold
nonparametric (or more sophisticated parametric) 

methods are desirable



Ø Is this sample compatible with that sample?  2-sample test
Ø Is this sample compatible with that model? Goodness-of-fit test
Ø Is there a correlation between these variables? 

Correlation coefficient
Ø Are the populations in the different classes compatible?

Contingency table tests
Ø What is the shape of the empirical distribution function?

EDF, spline, local nonparametric regression (MSMA Chpt 6)
Ø What are the distinct classes of objects in the sample? 

Hierarchical clustering (MSMA Chpt 9)

Many of these nonparametric procedures are hypothesis tests,
giving probabilities associated with Yes/No questions

Astronomers should more often ask questions 
that can be addressed nonparametrically (MSMA Chpt 5)

this should precede regression!



Concepts of nonparametric inference
Nonparametric:  No assumed parametric model.  No point/interval 

estimation.  Hypothesis tests play an important role.  

Distribution-free: Does not depend on (asymptotic) normality.  
Excellent for small samples, classificatory variables, and 
comparisons between samples. Probabilities often based on 
binomial/multinomial/combinatorial calculations.    

Rank procedures: Operate on location in ordered list rather than 
actual values.  Examples: quantiles (e.g. IQR), rank correlation

Robust (resistant):  Results are insensitive to outliers or 
inhomogeneities. Breakdown point = fraction of outliers permitted 
for a given procedure.

See Wikipedia for the diverse meanings of `nonparametric statistics’

http://en.wikipedia.org/wiki/Non-parametric_statistics


Limitations of nonparametric procedures

v Only a few statistics (functions) of data have known distributions for 
arbitrary data that allow probabilities to be estimated.   For other 
statistics, bootstrap resampling can often give accurate distributions. 

v Many methods are restricted to one-dimension;  e.g., there is no 
unique ranking or empirical distribution fnction for multidimensional 
data.  However, multidimensional two-sample tests are available with 
bootstrap probabilities.   

v Some methods are heuristic (i.e. without theorems establishing their 
power, efficiency, etc)



Empirical distribution function

The empirical distribution function (e.d.f.) is the normalized sample 
cumulative distribution function (c.d.f.) for a univariate random 
variable.  It is the step function from 0 to 1 with a jump of 1/n at the 
value of every data point.  

Magnitude distribution 
of globular clusters in 
the Milky Way and 
Andromeda galaxies

Samples discussed in 
Appendix A.3.  Datasets 
available at 
http://astrostatistics.ps
u.edu/MSMA/datasets



E.D.F.-based statistics and tests

The Kolmogorov-Smirnov      
statistic.  The maximum 
vertical distance between the 
e.d.f. and a second dataset or 
a model F0.

The Cramer-von Mises
statistic: the sum of squared 
vertical distances between the 
e.d.f. and the model.  

The Anderson-Darling
statistic: a tail-weighted CvM
statistic. This is the most 
sensitive e.d.f.-based test.

See Beware the Kolmogorov-Smirnov test! page on ASAIP



Robust estimators of location & spread

While the mean is commonly used to estimate the central location of a 
random variable, it is sensitive to non-Gaussianity and outliers.  The 
median, or central value, is more robust.  (If n is even, the median is the 
mean of the two central values.)  

The variance is particularly sensitive to outliers with `breakdown’ of 
1/n% , and more robust estimators of spread are desired.  The 
interquartile range (IQR, 25%-ile to 75%-ile distance) has  `breakdown’ 
of 25%.  The most stable estimator is the median absolute deviation

1.48xMAD is approximately equal to the standard deviation (√Var) 
when the distributions are approximately Gaussian.  The variance of the 
median can also be estimated by bootstrap resampling.



Some hypothesis tests in R and CRAN
(many but not all are nonparametric)

# ks.test, wilcox.test, mood.test (R) for univariate 2-sample test
# chisq.test, fisher.test (R) for contingency tables (categorical data)
# cor (R) Pearson r, Kendall tau, Spearman rho tests for correlation
# ad.test (ADGofTest, ksamples) for univariate Anderson-Darling test 
# surv2.ks (surv2sample) for univariate 2-sample test with censoring (upper limits)
# cenken (NADA) for bivariate correlation test with censoring
# dip (diptest) for Hartigan's test for univariate multimodality
# grubbs.test (outliers) test for outliers
# durbin.watson (car) test for serial autocorrelation
# cramer.test (Cramer) for multivariate 2-sample test with bootstrap resample
# mshapiro.test (mvnormtest) for multivariate normality test
# moran.test (sped) test for randomness vs. autocorrelation in 2 or more dimensions
# kuiper.test, r.test, rao.test, watson.test (CircStats) tests for uniformity of circular data



Parametric inference

The inferential process is based on assumptions that the 
underlying  distributions and relationships have a known 
functional form (e.g. linear relationships with normal  
scatter).   

Astronomers often use nonlinear models based  on 
astrophysical theory:  isothermal sphere, thermal 
bremsstrahlung spectrum with emission lines, LCDM 
cosmology, etc.  This is not common in other fields      
(e.g. biostatistics, econometrics). 



Point estimation (= parameter estimation)

In classical parametric estimation, the observations are assumed to be 
i.i.d. (independent and identically distributed) values of r.v.’s (random 
variables) with known probability distributions (statistical models).  
These distributions are typically characterized by a small number of 
parameters, often noted by a p-dimensional vector  q = (q1, q2, …,  qp). 

The goal of estimating plausible or `best' values based on the 
observations is called point estimation.  The point estimator 
(pronounced `theta-hat’) is a function of the data (x1, x2, …, xn)

Such functions are often called statistics.  The estimators are random 
variables, while the true value q = g(X) of the underlying population X 
is a fixed number.  



Example of point estimation with an astrophysical model 
The statistical model for an exoplanet orbit has a vector q with six 
parameters: semi-major axis, eccentricity, inclination, ascending node 
longitude, argument of periastron, and true anomaly.  The estimation of 
`best fit’ values of q is from a dataset is an example of `point estimation’. 

Wright et al.
(2009)



Confidence intervals (normal approx)
Point estimates cannot be perfectly accurate, at least due to sampling 
variations.  The estimation of confidence intervals around the      
estimators is a common form of interval estimation.  The confidence 
interval of a r.v. statistic Y dependent on the r.v. X has lower and upper 
values defined by 

where 0<a<1 is usually chosen a=0.05 (0.01) giving the `95% (99%) 
confidence interval of Y’.   Some statistics exhibit asymptotic normality
either by parametric assumption or application of the Central Limit 
Theorem.  

Consider estimators of the mean and standard deviation of a normally 
(Gaussian) distributed variable X.  The 95% confidence interval can be 
expressed three ways (astronomers are more familiar with the third):



Confidence intervals (resampling)

However, astronomers encounter many cases where the sample is 
small and the Central Limit Theorem does not apply, or where the 
statistic of interest is derived in a non-standard fashion so that its 
distribution is difficult or impossible to calculate. In such cases, 
confidence intervals based on asymptotic normality may be very 
unreliable.

Fortunately, statisticians a class of computationally intensive 
procedures known as resampling methods where simulated 
samples are drawn from the data in specified ways.  Powerful 
theorems (1980s) demonstrated that they provide inference on a 
wide range of statistics under very general conditions.  These 
include the bootstrap and cross-validation.

The simulated populations derived from the observations are 
analyzed however the original dataset is analyzed to achieve 
science goals.  A simple histogram of the statistic of interest gives 
confidence intervals due to random variations in the observations.   



Bootstrap resampling
Nonparametric bootstrap:  samples with replacement from the dataset
Parametric bootstrap: samples with replacement from a model derived        from 

the dataset

Proposed by Bradley Efron in the 1970s, its importance emerged during the 1980s 
with theorems demonstrating that it gives nearly optimal estimate of the 
distribution of many statistics under a wide range of circumstances.  
Computation is often easy as only Nsim~O[N(ln N)2] simulations are needed. 
Nsim~ 50:2000:50,000 for N=10:100:1000.  

Limitations:
– Requires pivotal statistics (independent of model parameters). These include 

mean & variance, least squares and maximum likelihood estimators, correlation & 
regression coefficients, etc, etc. 

– Requires homoscedasticity (treats all data points equally).  The simple 
bootstrap is not applicable to data with heteroscedastic measurement errors 
or spatial/temporal autocorrelation.



What makes the `best’ estimation method?
Often several reasonable estimators are available for measuring very similar 
properties of a dataset (e.g., mean and median for central location; kernel 
density estimator or Gaussian Processes regression for data smoothing). A 
great deal of effort has been exerted to interpret possible meanings of the 
word `best' because statistical point estimators have several important 
properties that often can not be simultaneously optimized.

Unbiasedness The bias an estimator theta-hat is  

the difference between the expected value (i.e., mean) of the estimator for 
an ensemble of datasets and the true value of the parameter for the 
underlying population. This is not the error of a particular instantiation of 
theta-hat from a particular dataset; rather, this is an intrinsic offset in the 
estimator, even with an unlimited amount of data.  An estimator is unbiased 
if B=0.  But as this often cannot be achieved, we often seek to minimize the 
mean square error (MSE or MISE) of the estimator,



Efficiency Among a collection of unbiased estimators, the most efficient 
one has the lowest asymptotic variance,                .  In the best cases, it is 
equal to the Cramer-Rao bound. This is often called the minimum variance 
unbiased estimator (MVUE). An important subset of MVUE's are the `best 
linear unbiased estimators' (BLUEs).

Consistency A `consistent’ estimator will approach the true population 
parameter value as the sample size increases.

Sufficiency and completeness Technical issues regarding ancillary 
information in, and functions, of the statistic.  

Asymptotic normality Related to the Central Limit Theorem, this requires 
that an ensemble of consistent estimators         for sample size n has a 
distribution around the true population value  that approaches a normal 
(Gaussian) with variance decreasing as 1/n:

where N(µ,s2) is the normal distribution.  This is the Cramer-Rao bound.  



Estimating non-standard statistics
Mathematical statisticians have worked industriously for decades to 
establish the biasedness, consistency, asymptotical normality and other 
properties of various point estimators derived in various ways under 
various conditions, often with theorems that unequivocably demonstrate 
MLE, MVUE and other desirable properties.

However, the logical inverse of this situation is also true: when 
mathematical statisticians have not established the properties of a 
statistic, then the properties of that statistic can not be assumed to be 
known. Indeed, even subtle changes in the assumptions (e.g., a sample 
is independently but not identically distributed; a sample is i.i.d. but not 
normally distributed) can invalidate a critical theorem.  

There is thus no guarantee that a new statistic, or a standard statistic 
examined under non-standard conditions, will have desirable properties 
such as unbiasedness and asymptotic normality.  That is, the 
astronomer may not be able to assign probabilities to values of the 
statistic (e.g. that 3xRMS corresponds to P=0.003 confidence levels).  
When non-standard statistics are considered, the bootstrap 
approach to confidence intervals is strongly recommended. 



Methods of point estimation

The effort to estimate true values of parametric distributions from limited 
data is called point estimation.  Astronomers often call this parameter 
estimation.  Example: Estimating the mean and variance of a normal 
(Gaussian) distribution, 

The unbiased, consistent, asymptotically normal estimators from a 
sample of n data points are:

Such estimators can be dreamed up, but are generally derived by several
methods developed during the 19-20th centuries.   



Method of least squares

Legendre, Laplace, Gauss and a host of astronomers developed least squares 
estimation during the 19th century.  Here the estimator is chosen to minimize 
the sum of squared residuals about the expected value.  For example, the least 
squares estimator of the expected value E[X]= µ of a univariate distribution is 

In this simple case, µ–hat is the sample mean, the intuitive solution. But in 
more complex estimation problems, particularly in the context of regression, 
one minimizes S[xi-f(xi)]2.  This method provides solutions that are not 
intuitively obvious.



For a linear regression problem, if the error variances are different (heteroscadastic) 
and are known, then one can minimize the weighted sum of squares:  

This weighted least squares procedure is what astronomers call `minimum chi 
squared’ regression that has lots of difficulties with complex problems.  E.g. the 
result is unbiased only when all of the variance is attributed to the measurement 
errors (no intrinsic scatter).  Maximum likelihood estimation is preferred for 
complex problems like heteroscedastic measurement errors (e.g. B.C. Kelly, 
Astrophysical Journal, 2007).  

NOTE:  An important theorem proves that for a wide class models with normal 
errors,  the least squares estimator is the maximum likelihood estimator.  For this 
reason,  least squares methods are still in very common use today.



Maximum likelihood method

The young British mathematician R. A. Fisher issued scathing critiques of 
least squares procedures during 1912-22, and advocated a philosophically 
different criterion: the `best’ estimator would be the most probable set of 
parameter values given the data and the model.  This maximizes the 
likelihood, the product of the probabilities that each data point arises from 
the model given a choice of model parameters: 

The model parameters theta are treated as fixed quantities, while the data points
xi are samples from a random variable.  Fisher’s maximum likelihood estimator 
(MLE) q-hat is the value that maximizes L(q).  For computational convenience, it is 
often easier to maximize 2ln(L), or minimize -2ln(L), where the product becomes a 
sum.  

Fisher’s 1922 paper defining MLE also introduces the concepts of consistency, 
sufficiency, efficiency and `information’. The MLE is usually (but not always) 
unbiased and is often the MVUE.   



Likelihoods can be maximized by any numerical optimization method; 
e.g. Newton-Raphson.  But likelihood functions can often have 
complicated morphologies, with multiple maxima, flat vs. steep regions, 
and dependence on starting values.  In the 1970s, an alternative method 
emerged with theorems showing that the algorithm increases the 
likelihood during each iteration (Dempster, Laird & Rubin JRSS 1977,   
Wu 1983). This is the Expectation-Maximization Algorithm. 

The method had been developed earlier for specialized situations, 
including image deconvolution in astronomy where the point spread 
function is known (Richardson JOSA 1972, Lucy AJ 1972).  The 
astronomers’ Lucy-Richardson algorithm is thus an implementation of 
the statisticians’ EM Algorithm.  

Calculating MLEs: EM Algorithm



MLE parameter confidence intervals

Recall: whereas point estimation seeks `best’ parameter values based on the 

data, interval estimation seeks critical regions consistent with the data, 

where a=0.05, 0.01 or 0.003. E.g., if the observation were conducted 100 times, 99 

times the statistic Y would like within the stated range for a=0.01.  These intervals 

should be valid, optimal and invariant.

In many situations, the estimator q-hat has an approximate normal distribution, 

when n is large. For unbiased MLEs, q-hat has mean q and variance 1/I(q) where I 

is the Fisher information matrix

That is, the parameter confidence interval is derived from the shape of the  

likelihood function around the best-fit value. The Cramer-Rao inequality gives a 

lower bound to the variance of an unbiased estimator.  Note that MLE, MVUE and 

other confidence interval estimators may differ, and the choice may not be clear.



Resampling methods for point/interval estimation

Although MLE and other traditional estimators have many 
advantages, astronomers often pursue statistical analyses for 
which the likelihood cannot be constructed, the distribution of 
statistics invented by the scientists to measure particular 
characteristics of the datasets are unknown, the bias is not 
established, and/or asymptotic normality does not apply               
(e.g. small-N samples).  

In such cases, resampling methods can be effectively used 
whereby the bias and variance of a statistic are estimated from 
datasets constructed from the observations by bootstrap Monte 
Carlo methods.


