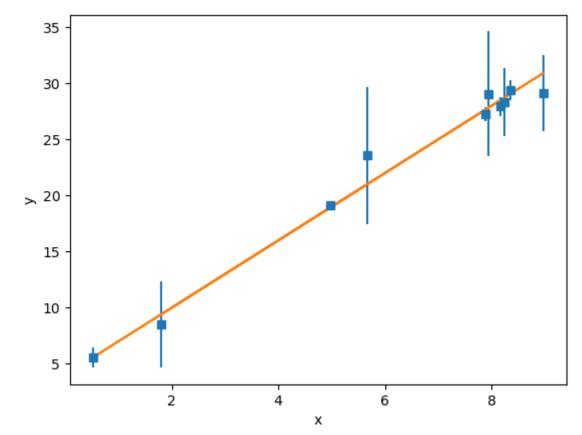
Modeling of data

from least square fitting to Bayesian approach

Data and model

- Data: (x_i, y_i) i=1,N
 Uncertainty of y_i: yerr_i
- Model: y=f(x)=ax+b



- x=[4.97 5.67 1.8 7.89 7.94 8.98 8.35 8.24 0.51 8.17]
- y=[19.12 23.55 8.5 27.23 29.08 29.14 29.43 28.34 5.6 27.94]
- yerr=[0.17 6.12 3.86 0.62 5.54 3.36 0.9 3.03 0.89 0.84]

Least square fitting

Suppose that we are fitting N data points (x_i, y_i) i = 1, ..., N, to a model that has M adjustable parameters a_j , j = 1, ..., M. The model predicts a functional relationship between the measured independent and dependent variables,

$$y(x) = y(x; a_1 \dots a_M)$$
 (15.1.1)

where the dependence on the parameters is indicated explicitly on the right-hand side.

What, exactly, do we want to minimize to get fitted values for the a_j 's? The first thing that comes to mind is the familiar least-squares fit,

minimize over
$$a_1 \dots a_M$$
: $\sum_{i=1}^{N} [y_i - y(x_i; a_1 \dots a_M)]^2$ (15.1.2)

Chi-square fitting

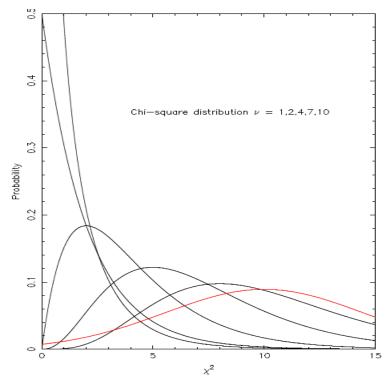
• Data points can not have the same error

$$\chi^{2} \equiv \sum_{i=1}^{N} \left(\frac{y_{i} - y(x_{i}; a_{1} \dots a_{M})}{\sigma_{i}} \right)^{2}$$
 Understand as a weight of each data in least square fit

- Chi-square distribution with v=N M degrees of freedom
 - Model is perfect
 - Measurement error is right and Gaussian
 - Sample is not biased
- What does it mean if we get χ^2 =30 for freedom 10?
 - $P(\chi^2 > 30|10) = 0.001$: the probability we reject one of above assumptions is wrong (At least one of the above assumption is wrong at 99.9% level.)

$$\chi^2$$
 distribution

 χ^2 distribution with freedom of K is the a sum of the squares of K independent standard normal random variables.



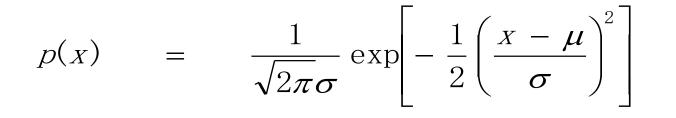
$$P(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

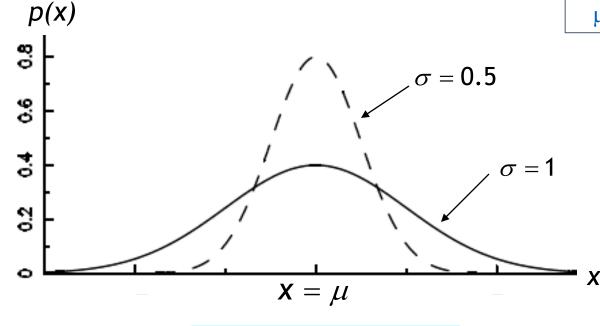
Approximate Gaussian again when K is large

Mean: K Variance: 2K

Figure 1: Examples of χ^2 distribution - N(10,20) Gaussian in red

Gaussian (normal) distribution





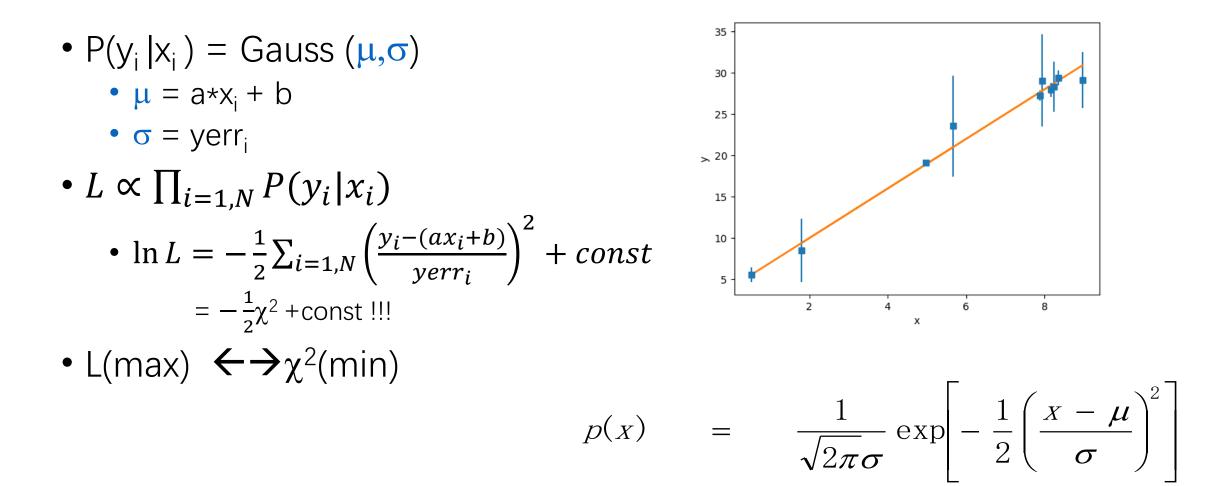
Mean: μ Variance: σ^2

Notes on χ^2

- If $\chi^2 \sim v$, model is reasonable
- If $\chi^2 << \nu$
 - Error is overestimated
 - Error is too large to distinguish models
- If $\chi^2 >> \nu$ (most of cases)
 - Ideal model never exists, e.g. Scaling relations
 - Data errors are underestimated
 - Data are always biased

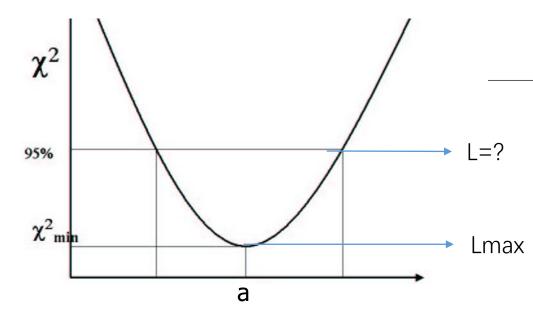
freedom is a question! see arXiv:1012.3754

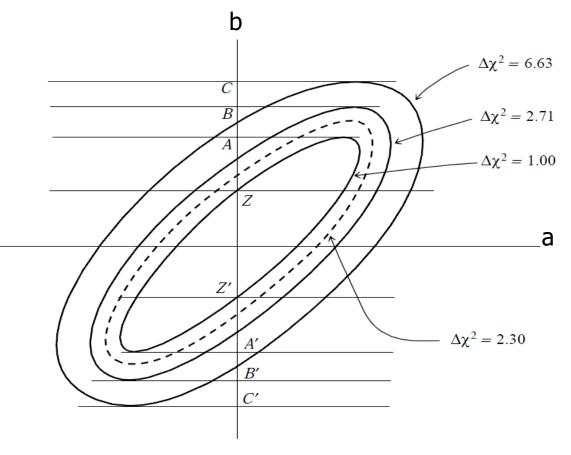
Maximum likelihood estimation



Confidence level of parameter estimation

$\Delta\chi^2$ as a Function of Confidence Level and Degrees of Freedom						
	u					
p	1	2	3	4	5	6
68.3%	1.00	2.30	3.53	4.72	5.89	7.04
90%	2.71	4.61	6.25	7.78	9.24	10.6
95.4%	4.00	6.17	8.02	9.70	11.3	12.8
99%	6.63	9.21	11.3	13.3	15.1	16.8
99.73%	9.00	11.8	14.2	16.3	18.2	20.1
99.99%	15.1	18.4	21.1	23.5	25.7	27.8





Bayesian probability

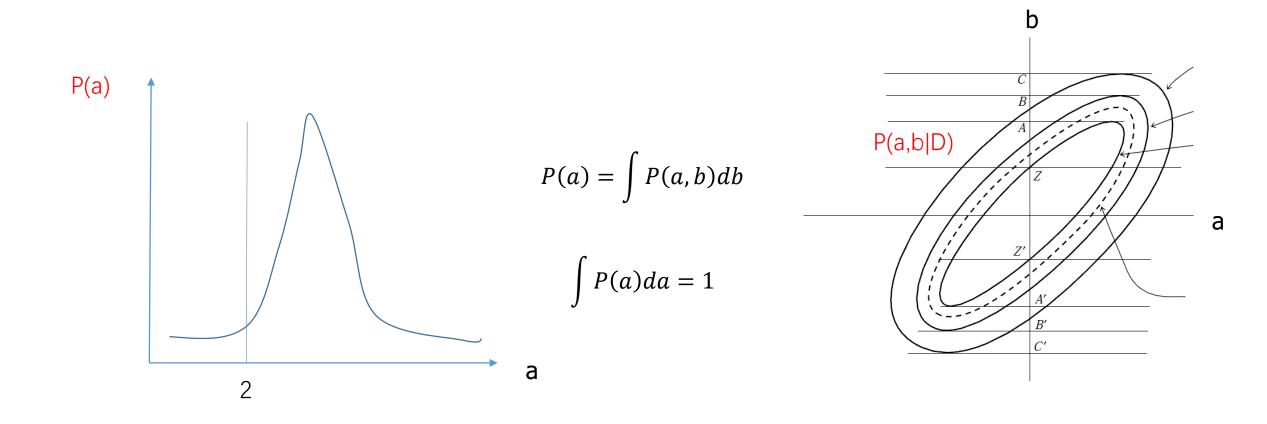
• Frequentist

- Data are random, probability is frequency of data
- Cannot refer to the probability of a hypothesis (either true or false)
- Bayesian
 - Data are not random (in astronomy!)
 - Evaluate the probability of a hypothesis in light of data (and prior information)
 - P(M|D)
 - $\int P(M|D)dM = 1$

Bayesian approach

- Bayesian theorem: $P(M|D) = \frac{P(M)P(D|M)}{P(D)}$
 - P(M|D): P(a,b)|(x_i, y_i,yerr_i)
 - P(D|M)
 - P(y|x,yerr,a,b): i.e. maximum likelihood !
 - P(D): = 1
 - P(M): prior on model
 - If unbiased to any models P(M|D)=P(D|M)
 - if I know a>2, i.e. P(a<2)=0 ?

Uncertainty of Bayesian estimation



Summary

- Bayesian estimation are consistent with ML estimation
 - when priors are uniform
- ML estimation are consistent with χ^2 fitting
 - When data and model are perfect
- χ^2 fitting are consistent with least square fitting
 - When errors are considered as weight

Differences: uncertainty estimation!