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Regression vs. density estimation
Density estimation is nonparametric: no functional form for the shape of 
the distribution, or relationship between the variables, is assumed.  It is 
usually applied to 1-3-dimensional problems.  

Regression differs in two respects: 

• It addresses problems where one seeks to understand the 
dependency of a pre-specified response variable Y on one (or 
more) independent variables X (or X).  
The science question should determine the response variable

• It addresses problems of modeling where the functional form of 
the relationship between the variables is pre-specified. The 
function has parameters, and the goal of the regression is to find 
the `best’ parameter values that `fit’ the data.  

Astronomers perform regressions with heuristic functions            
(e.g. power laws) and with functions from astrophysical theory



Classical regression model:

``The expectation (mean) of the dependent (response) variable Y for a 
given value of the independent variable X (or vector of variables X) is 
equal to a specified function f, which depends on both X and a vector of 
parameters q, plus a random error (scatter).”

The `error’ e is commonly assumed to be a normal (Gaussian) i.i.d. random 
variable with zero mean, e = N(0,s2).  Note that all of the randomness is in 
this error term; the functional relationship is deterministic with a known 
mathematical form.  



Astronomers may be using classical regression too often, perhaps due to 
its familiarity compared to other (e.g. nonparametric) statistical 
methods. 

• If there is no basis for choosing a functional form (e.g. an 
astrophysical theory), then nonparametric density estimation may  
be more appropriate than regression using a heuristic function.  

• If there is no basis for choosing the dependency relationship          
(i.e. that Y depends on X, rather than X on Y or both on some    
hidden variables), then a form of regression that treats the variables 
symmetrically should be used (e.g. OLS bisector, orthogonal 
regression, Principal Component Analysis).

Warning



The error term e

There may be different causes of the scatter:

• It could be intrinsic to the underlying population (`equation error’).       
This is called a `structural regression model’.  

• It may arise from an imperfect measurement process (`measurement 
error’) and the true Y exactly satisfy Y=f(X).  
This is called a `functional regression model’. 

• Or both intrinsic and measurement errors may be present.  

Astronomers encounter all of these situations 



Parameter estimation & model selection
Once a mathematical model is chosen, and a dataset is provided, then the 
`best fit’ parameters are estimated by one (or more) of the techniques 
discussed in MSMA Chpt. 3:

• Method of moments
• Ordinary least squares (OLS, L2)
• Least absolute deviation (L1)
• Maximum likelihood estimation (MLE) 
• Bayesian inference

Seek balance between model complexity and parsimony (Occam’s Razor):
• Does the LCDM model have a w-dot term?
• Are three or four planets orbiting the star?
• Is the star cluster an isothermal sphere or ellipsoid?

Choice of model form and complexity is called `model selection’.  
Methods include: c2n, BIC, AIC, …  

The final model should be validated against the dataset (or other 
datasets) using goodness-of-fit test (e.g. Anderson-Darling test 
with bootstrap resamples for significance levels) and residual 
analysis.   



Important!
In statistical parlance, `linear’ means `linear in the 

parameters bi’, not `linear in the variable X’.  

Examples of linear regression functions:

1st order polynomial 

high order polynomial

exponential decay

periodic sinusoid with fixed
phase



Examples of non-linear regression functions:

power law (Pareto)

isothermal sphere

sinusoid with arbitrary phase

segmented linear



Assumptions of ordinary least squares regression

• The model is correctly specified (i.e. the population truly follows the 
specified relationship)

• The errors have (conditional) mean zero:  E[e|X] = E[e] = 0
• The errors are homoscedastic, E[ei

2|X] = s2, and uncorrelated, E[eiej] = 0 (i≠j)
• For some purposes, assume the errors are normally distributed, e|X ~ N(0,s2)
• For some purposes, assume the data are i.i.d., (xi,yi) are independent from 

(xj,yj) but share the same distribution
• For multivariate covariates X=(X1, X2,…, Xp), some additional assumptions: 

– Xi … Xp are linearly independent
– The matrix E[Xi,Xi’] is positive-definite

OLS gives the maximum likelihood estimator
for regression when e|X ~ N(0,s2)



A very common astronomical regression procedure
Dataset of the form:                                    
(bivariate data with heteroscedastic measurement errors with known variances)  

Linear (or other) regression model:  

Best fit parameters from minimizing the function:

The distributions of the parameters are estimated from tables of the c2

distribution (e.g. Dc2 = 2.71 around best-fit parameter values for 90% confidence 
interval for 1 degree of freedom; Numerical Recipes, Fig 15.6.4)

This procedure is often called `minimum chi-square regression’ or `chi-
square fitting’ because a random variable that is the sum of squared 
normal random variables follows a c2 distribution.   If all of the variance in 
Y is attributable to the known measurement errors            and these errors 
are normally distributed, then the model is valid. 



However, from a statistical viewpoint ….
… this is a non-standard procedure!  Pearson’s (1900) chi-square 
statistic was developed for a very specific problem: hypothesis testing 
for the multinomial experiment producing a contingency table of 
counts in a pre-determined number k of categories.   

where Oi are the observed counts, and Mi are the model counts 
dependent on the p model parameters q.  The weights (denominator) 
are completely different than in the astronomers’ procedure.  

A better approach uses a more complicated likelihood 
that includes the measurement errors & model
error, and proceeds with MLE or Bayesian inference.
See important article by Brandon C. Kelly, ApJ 2007.  



Concluding remarks

Regression is very widely used in astronomy, and often in a 
reasonable fashion.  It is crucial for understanding situations 
where the data are explained by astrophysical models.  
But poor practice does occur:

– Overuse of heuristic models
– Ill-defined response variable
– Improper used of `minimum chi-squared’ method
– Inadequate model selection
– Inadequate residual analysis 
– Overuse of Bayesian inference with uninformative priors


