IMPLICATIONS FROM THE CENSUS OF NEIGHBORING REGIONS

IN SITU DUST FORMATION IN B[E] STARS

Chien-De Lee, Wen-Ping Chen & Sheng-Yuan Liu

OUTLINES

- B[e]-type stars
- Selection of dusty Be stars
- Featureless cold dust emission
- Neighboring Census
- Near-IR excess and Balmer line emission
- Dust formation scenario & model of B[e] stars

B[E]-TYPE STARS

B-type star: rapidest rotators

Figure 2.18: Average rotational velocities of stars $\langle V \sin i \rangle$. Stars are designated by • Main sequence stars (V), \blacktriangle Subdwarfs (VI), \bigcirc Giants (III), \odot Supergiants (I) \oplus Be stars, \bullet Of stars, \bullet Oef stars, \bigcirc Am stars, and \bigcirc Ap stars. (From Fukuda 1982)

- Also aging rapidly from pre-MS (0 10 Myr), MS (10 1000 Myr) to post-MS phase, with the widely ranged stellar parameters
- M ~ 2 20 M_o, T ~ 10000 30000 K, R ~ 2 5 R_o, L ~ 4×10⁴ 1×10² L_o
- B[e]-type stars = hot stars with forbidden emitters
 - Enigmatic features: Strong IR excess & strong Ha emission
 - Heterogeneous phase: from pre-MS to PN and binary
 - Unclassified B[e] stars or FS CMa stars (binary origin):
 - Lack of cold dust and isolated form SFR

EVOLUTION OF DUSTY B[E] STARS

DUSTY TARGETS SELECTION

- A very robust existence of circumstellar dust –> H–K > 0.7 mag (Allen 1973).
- Gas free-free emission is not responsible for this extent

SELECTED STARS

- HD 45677, HD 50138, CD-24 5721 and CD-49 3441, MWC 623, HD 85567, HD 98922, HD 259431 and HD 181615.
 - All show forbidden line(s)
- Most of these them were not only considered as FS CMa stars (Miroshnichenko 2007).
- But also in the list of Herbig star (Thé et al. 1994).
- Binarity
 - With known Spectral types: MWC 623 and HD 181615
 - Spectro-astrometric binary: HD 45677, HD 50138, HD 85567, HD 98922, HD 259431

POSSIBLE INDICATIONS OF AGE

Open clusters, de la Fuente et al. (2015)

FS CMa candidates found Young clusters (Mercer 20, 70).

¹³CO emission in K-band spectra (Kraus 2009) –> Evolved stars

- ▶ Heavy elements from stellar interior –> the surface
- Mass loss –> Disk region –> condense to molecules.
- ► FS CMa stars found with ¹³CO emission.
 - MWC 137, HD 327083 and GG Car, Hen 3-298

Our targets: None of our targets have these indications

> -> Neighbor Census is necessarily (1) cold dust (2) nearby SFRs

COLD FEATURELESS DUST EMISSION

Except HD 259431, a steep decrease in mid- and far-IR flux

COLD FEATURELESS DUST EMISSION

ANY COLDEST LEFTOVER?

- Two targets with sub/mm data
- The steep decreases extend to sub/mm -> rule out the existence of coldest SFR leftover
- Are there any nearby SFR ?

NEIGHBORING CENSUS —> ISOLATED NON-PRE-MS

B[e] stars	Nearby SFR	Projected dist.	SFR dist.	Object dist.	Object μ (mas)	Object V _r
HD 45677	Mon-R2	8 degree	800 pc	279 рс	(2.0, 0.3)	21.6 km/s
HD 50138	GN 06.47.6.01	50 arcmin	1 kpc	392 pc	(-3.3, 4.1)	34.2 km/s

Van Leeuwen 2007

Wilson 1953

EVOLUTION OF DUSTY B[E] STARS

BALMER EMISSIONS AND NEAR-IR EXCESS

- The Balmer emission is related to the level of NIR excess
- Also seen in Herbig stars and T Tau stars (e.g., Manoj et al 2006, Cabrit et al 1990)

BALMER EMISSIONS AND NEAR-IR EXCESS

DUSTY TARGETS —> HBETA EMISSION AT LEAST

- HD 98922 -> Hη
- HD 85567 -> Hδ
- ► CD-24 5721 -> Hβ
- ► CD-49 3441 -> Hβ

DUST CONDENSATION SCENARIO

- Positive Relations in Be stars
 - Balmer emission & NIRE (This work)
 - Ha luminosity & disk size (Tycner)
 - Indication of the disk size: Our targets
 > Classical Be stars

- Dust condensation scenario
 - The copious hot plasma produces the prominent Ha emission lines
 - The forbidden lines form in the tenuous envelope
 - The expanding gas cools off and condenses to form dust grains.
 - Support Zickgraf et al (1985) model

B[E] MODEL: TWO-COMPONENT WINDS

- Two component winds
 - Hot polar wind –> high excited features
 - Expanding cool and dense equatorial wind -> low excited
 - High res line profilies
 (Zickgraf 2003)
- Dust condense in outer
 rim –> IR excess

CONCLUSIONS

- Nine dusty B[e] stars are selected by the color limits of free-free emission.
- Eight targets are not pre-MS objects
 - The cold dust emissions are absent up to the millimeter wavelength, indicating the lack of coldest SFR leftover.
 - Their isolation from star-forming activity or young stellar populations.
- Disk dust grains therefore should be produced in situ at the outer rim of a large disk

POLARIZATION

GAS & DUST POLARIZATION

- Hydrogen b-f absorptive opacity
- Thomson scattering

Figure 5.28: Model fitting for the Be star ζ Tau. Upper panel: thin disk model (thick line) and observed (thin line) spectra. Lower panel: linear polarization for the respective

文字

B[e] stars	Nearby SFR	Projected dist.	SFR dist.	Object dist.	Object V _t	Object V _r
HD 45677	Mon-R2	8 degree	800 pc	279 рс	2.7 km/s	21.6 km/s
HD 50138	GN 06.47.6.01	50 arcmin	1 kpc	392 pc	9.8 km/s	34.2 km/s

Emissaries in HR Diagram

- From ionized gas above the photosphere radiation.
- Any stage during stellar evolution
 - Pre-Main Sequences: T Tauri and HABe stars
 - Evolved stars: Wolf-Rayet stars, giants and supergiants.
- The Be stars are the only bright emissaries lie on (or slightly above) the MS (Gehrz et al 1974).
 - They show small amount **near-IR excess** due to plasma emission.

