Searching for Candidate Members of Star Moving Groups in the Kepler Field

Chang－Yao CHEN ${ }^{1}$（陳長趯）
Wen－Ping CHEN ${ }^{1,2}$（陳文屏）
${ }^{1}$ Department of Physics，NCU
${ }^{2}$ Graduate Institute of Astronomy，NCU

Acknowledgement：
羅阿理，LAMOST group

What is a Moving Group?

- Most, if not all, stars formed in a clustered environment
- Member star with the same birth place, age, and abundance
- Same space motion

Known Moving Groups

- 8 known MGs within 100 pc
- Age: 10 to 100 Myr (i.e., young)

β pic in BPMG Lagrange et al. 2009

HR 8799 in Columba Marois et al. 2010
\rightarrow To study the survival of a star cluster
Known nearby moving groups, adapted from Torres et al. (2008)

Name	D $[\mathrm{pc}]$	Age $[\mathrm{Myr}]$	U $\left[\mathrm{kms}^{-1}\right]$	V $\left[\mathrm{kms}^{-1}\right]$	W $\left[\mathrm{kms}^{-1}\right]$	N
β Pictoris MG	31 ± 21	21^{m}	-10.1 ± 2.1	-15.9 ± 0.8	-9.2 ± 1.0	55^{s}
AB Doradus MG	34 ± 26	70	-6.8 ± 1.3	-27.2 ± 1.2	-13.3 ± 1.6	89
Tucana/Horologinm MG	48 ± 7	30	-9.9 ± 1.5	-20.9 ± 0.8	-1.4 ± 0.9	44
TW Hydrae MG	48 ± 13	8	-10.5 ± 0.9	-18.0 ± 1.5	-4.9 ± 0.9	$31^{\text {d }}$
Columba MG	82 ± 30	30	-13.2 ± 1.3	-21.8 ± 0.8	-5.9 ± 1.2	41
Carina MG	85 ± 35	30	-10.2 ± 0.4	-23.0 ± 0.8	-4.4 ± 1.5	23
Argus MG	106 ± 51	40	-22.0 ± 0.3	-14.4 ± 1.3	-5.0 ± 1.3	64
\in Cha MG	108 ± 9	6	-11.0 ± 1.2	-19.9 ± 1.2	-10.4 ± 1.6	24

d: Ducourant et al. 2014, s: Schielder et al. 2012, m: Mamajek et al. 2014

Locations of known members of BPMG

Locations of known members of BPMG with respect to the Sun in Galactic Coordinates

Origin: Sun, Blue: Torres et al. 2008, Orange: Schielder et al. 2012, Pink: the Kepler Field

ε Cha MG serves as our false positive

How to find more members of Moving Groups?

Name	U $\left[\mathbf{k m s}^{\mathbf{- 1}}\right]$	V $\left[\mathbf{k m s}^{\mathbf{- 1}}\right]$	W $\left[\mathbf{k m s}^{-1}\right]$	\mathbf{N}
$\boldsymbol{\beta}$ Pic Moving Group	-10.1 ± 2.1	-15.9 ± 0.8	-9.2 ± 1.0	$55^{\text {s }}$
AB Dor Moving Group	-6.8 ± 1.3	-27.2 ± 1.2	-13.3 ± 1.6	89
TW Hydrae Moving Group	-10.5 ± 0.9	-18.0 ± 1.5	-4.9 ± 0.9	$31^{\text {d }}$

Expected Kinematics of BPMG members

Searching for members in the Kepler Field

Center of the Kepler Field

> R.A.: 19:22:40 (290.7 deg)
> Decl.: 44:30:00 (44.5 deg)

Expected kinematics of BPMG

> mean PM at 40 pc: pmRA: 36.25 (mas $/ \mathrm{yr})$ pmDEC: $18.01(\mathrm{mas} / \mathrm{yr})$ mean RV: $-19.38(\mathrm{~km} / \mathrm{s})$

Proper motion of known BPMG (40 pc)

Searching for members in the Kepler Field with the UCAC4 proper motions

The fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4)
A compiled, all-sky star catalog covering mainly the 8 to 16 mag range in a single bandpass (579-642 nm) between V and R.

1. UCAC4 contains over 113 million objects; over 105 million of them with proper motions.
2. Bright stars are supplemented with Hipparcos/Tycho-2 stars.
3. Positional errors is 15 to 20 mas for stars in the 10 to 14 mag .
4. The distribution of UCAC4 proper motion error peaks at 4 mas/yr.

References:
The Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4), N. Zacharias et al. 2012
http://dc.zah.uni-heidelberg.de/ucac4/q/s/info

Computing photometric distance

- The color-magnitude relation for 09~M5 main sequence stars
- $m-M=5 \log d_{\mathrm{pc}}-5$ (ignore the extinction)

Color (2MASS J-H)】
Absolute magnitude J
Apparent magnitude J
Photometric distance

Dist. Criteria for different MGs

References:
Allen's Astrophysical Quantities
Eric Mamajek (University of Rochester): http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt\#\# Version 2015.07.03

LAMOST（郭守敬望遠鏡） Large Sky Area Multi－Object Fiber Spectroscopic Telescope

The large focal surface can collects large－number objects＇light with 4000 fibers，and transfers into the spectrographs and record on the CCD detectors，respectively and simultaneously．

Clear aperture： 4 m
Field of view： 5°
Focal plane： f 1.75 m
Focal length： 20 m
Spectral ranges：370－900nm
Spectral resolution power：R＝ 1800
Spectral resolution：1／0．25nm
Observable sky：-10° to $+90^{\circ}$ Declination

References：
http：／／www．lamost．org／public／instrument？locale＝en

DR2（blue）：67，241 RVs from 2012 to 2014 DR3（orange）：31，395 RVs from Sep． 2014 to May 2015

LAMOSTdr2 vs. SDSS-III APOGEE Radial Velocities

About 1 million UCAC4 sources (JHK AAA) in Kepler Field

BPMG

AB Dor MG
 TWH MG

ε Cha MG
(false positive)

PM+dist. selection

Dist. $<\mathbf{8 0}$ pc	Dist. <120 pc	Dist. $<\mathbf{8 0}$ pc	80 pc $<$ Dist. <140 pc
$450<$ pmRA \times dist <3010	$279<$ pmRA \times dist <2810	$-28<$ pmRA \times dist <1565	$403<$ pmRA \times dist <2845
$-39<$ pmDEC \times dist <2057	$-1756<$ pmDEC \times dist <233	$354<$ pmDEC \times dist <2293	$100<$ pmDEC \times dist <1722

About 1 million UCAC4 sources (JHK AAA) in Kepler Field

BPMG
AB Dor MG
TWH MG
ϵ Cha MG
(false positive)

PM+dist. selection

survivors: $\mathbf{6 0 3}$	survivors: $\mathbf{3 4 2 5}$	survivors: 952	survivors: $\mathbf{1 4 4 3}$
$\left(0.08 p c^{-3}\right)$	$\left(0.15 p c^{-3}\right)$	$\left(0.12 p c^{-3}\right)$	$\left(0.05 p c^{-3}\right)$
$(10$ X-Ray sources)	$(12 \mathrm{X}$-Ray sources)	$(7 \mathrm{X}$-Ray sources)	

(LAMOST dr2/dr3)
Match: \#119
Match: \#617
Match: \#205
Match: \#279

RVs selection

$-26.6<$ RVs <-12.1	$-37.8<$ RVs <-22.6	$-28.1<$ RVs <-12.8	$-31.5<$ RVs <-16.4
$(\mathrm{~km} / \mathrm{s})$	$(\mathrm{km} / \mathrm{s})$	$(\mathrm{km} / \mathrm{s})$	$(\mathrm{km} / \mathrm{s})$

About 1 million UCAC4 sources (JHK AAA) in Kepler Field

BPMG AB Dor MG TWH MG
ϵ Cha MG
(false positive)

PM+dist. selection

survivors: $\mathbf{6 0 3}$	survivors: $\mathbf{3 4 2 5}$	survivors: 952	survivors: $\mathbf{1 4 4 3}$
$\left(0.08 p c^{-3}\right)$	$\left(0.15 p c^{-3}\right)$	$\left(0.12 p c^{-3}\right)$	$\left(0.05 p c^{-3}\right)$
(10 X-Ray sources)	(12 X-Ray sources)	(7X-Ray sources)	

(LAMOST dr2/dr3)
Match: \#119
Match: \#617
Match: \#205
Match: \#279

RVs selection

$\begin{gathered} -26.6<\text { RVs }<-12.1 \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} -37.8<R V s<-22.6 \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} -28.1<R V s<-12.8 \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$	$\begin{gathered} -31.5<R V s<-16.4 \\ (\mathrm{~km} / \mathrm{s}) \end{gathered}$
Survivors: 24 (No X-ray source) $\left(2.99 e-3 p c^{-3}\right)$	Survivors: 98 (No X-ray source) $\left(4.30 e-3 p c^{-3}\right)$	Survivors: 34 (No X-ray source) (4.24e-3 $p c^{-3}$)	Survivors: 68 $\left(2.12 \mathrm{e}-3 p c^{-3}\right)$

kinematic candidates

24 Kinematic members of BPMG:

1 RV: \#16, 2 RVs: \#6, 4 RVs: \#1, 5RVs: \#1

98 Kinematic members of AB Dor MG:

1 RV: \#72, 2 RVs: \#20, 3 RVs: \#3, 4RVs: \#3

34 Kinematic members of TWH MG:

1 RV: \#27, 2 RVs: \#4, 3 RVs: \#2, 5RVs: \#1

Conclusions

- We have developed the pipeline to identify member candidates of MGs.
(PM + dist + RV/LAMOST dr2/dr3)
- Analysis of the MGs (BP/ABDor/TWH)
- about 160 probable kinematic candidates (41 of them with multiple LAMOST RVs)
- about 30 X-Ray sources without RVs (They are likely young or active dwarfs).
- Spectroscopic confirmation
- Radial velocities at different epochs, e.g., spectroscopy by
2.4 m in June 2016
- Indicators of stellar youth, e.g., Li absorption

