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ABSTRACT

Markov Chain Monte Carlo (MCMC) methods for sampling probability density func-
tions (combined with abundant computational resources) have transformed the sci-
ences, especially in performing probabilistic inferences, or fitting models to data. In
this primarily pedagogical contribution, we give a brief overview of the most basic
MCMC method and some practical advice for the use of MCMC in real inference
problems. We give advice on method choice, tuning for performance, methods for
initialization, tests of convergence, troubleshooting, and use of the chain output to
produce or report parameter estimates with associated uncertainties. We argue that
autocorrelation time is the most important test for convergence, as it directly con-
nects to the uncertainty on the sampling estimate of any quantity of interest. We
emphasize that sampling is a method for doing integrals; this guides our thinking
about how MCMC output is best used.



Outline

e MCMC is a sampler!

 Bayesian inference

e How MCMC works

e How to use MCMC
* Troubleshooting

* Nested Sampling



MCMC is a sampler!



Sampling

sampling is concerned with the selection of a subset of
individuals from within a statistical population to estimate
characteristics of the whole population.

Random walk Metropolis-Hastings

) . ':- ..l' ..
o ., :l :" ‘.’ l.' .;.' »8 e
o) “. o,V @ ‘?“'..
: 1) \&‘: 'w -s o5 jue st ‘-": S
(] ) @ e %o o & % & o e
. s &.’Z%&%&;?‘% 4o
ol A T o SR
T & T N e LA SO L
%06 000 . ® S5 P, ‘el 3" .s S =~
g of o r”. k.’l.'.n’.‘ c.' il ’5.- .:" o S
A - a% ‘,,.‘,‘." %} < T :‘a "".+. e V& -i‘? 573
./’.ﬂ." 5% .0 % s’ s O o €% 0 4o 5
LY :'.,P.g'" Bt S T A O S o
R e ‘
4 .,.:.', (':.Q.::o ..’:-. .-
DL
'YV ¥ .8 t” o
Nr ok 'y
-'; . . o
. ‘g r. e ™
'l..“- 3
o s L0, & * %
'.0.


https://en.wikipedia.org/wiki/Population_(statistics)

When do you need MCMC?

e If you are trying to find the optimum of the likelihood or

the posterior pdf, you should use a optimizer, not a
sampler

* |If you want to make sure you search all of the parameter
space, you should use a search algorithm, not a sampler

e MCMC is good at one thing, and one thing only: Sampling
ill-normalized (or otherwise hard to sample) pdfs.



Bayesian inference

p(P|D, M) = p(D|P, M) x p(PIM) '/ p(D|M)
L N N 2 N S

posterior likelihood prior evidence

P: parameter(s) of interest.

D: data under consideration.
ypically large array(s) of numbers

M: model under consideration.

Can be omitted since conditioned everywhere,
unless multiple models are considered.



Bayesian inference

» Knowledge about parameters P under model M
before looking at the data D.

» Comes from theory, previous data, intuition, etc.

» May impact the results (“prior sensitivity").
Even “weak” / “uninformative” priors matter!



Bayesian inference

p(P|M)
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Bayesian inference

p(D|P, M)

likelihood

» The probability of generating the data D
with the parameter P under the model M



Bayesian inference

p(P|D, M)
A,—/

posterior

» Joint PDF on the N parameters of interest given the
data D and under the model M

p(©1=061,---,Ony =0y | D, M)



Bayesian inference

p(D|M)
A,—/

evidence

» Integral of the un-normalized posterior PDF:

p(DIM) = [ 4P p(D,PIM) = [ aP p(DIP, M) p(P)

» Overall “quality” of the model - only a normalization
factor, does not affect the parameters constraints.

» Only important for model comparison



How MCMC works

¢ Random Walk in the narameter space to find maximum

Metropolis - Hastings Algorithm

e Draw a proposal 6’ from the proposal pdf q(8 | 6x).
e Draw a random number 0 < r < 1 from the uniform distribution.

o If f(0')/f(0:) > r then 05,1 < 0; otherwise 0,1 < 6.

 We repeat this process with a another chain...and many
more, until we sampled enough the parameter space

e Let’s play! https://chi-feng.github.io/mcmc-demo/app.html



https://chi-feng.github.io/mcmc-demo/app.html

How MCMC works

e Random Walk in the parameter space to find maximum
likelihood value

 Each chain is characterized by a step size (length of each
step) and by the initial point

* Accept new point if likelihood is better than previous one.

 We repeat this process with a another chain...and many
more, until we sampled enough the parameter space

e Let’s play! https://chi-feng.github.io/mcmc-demo/app.html



https://chi-feng.github.io/mcmc-demo/app.html

How to use MCMC

e |ikelihoods and priors

* Autocorrelation & Convergence
* Tuning

* |nitializing and Burn-in

* Results, Error bars, and Figures

My favorite (the simplest to use) package: emcee



Likelihoods and priors

p(P|D,M) = p(D|P,M) x p(P|[M) / p(D|M)
e e N e N e N

posterior likelihood prior evidence

MCMC cannot sample a likelihood (which is a probability for the data given
parameters) . If you see somebody do so, it is a posterior probability for
some implicit (and improper) “flat” priors.

Posterior Pseudo-code :

def 1ln_f(pars, data):
x = ln_prior(pars)
if not is_finite(x):
return -Inf
return x + 1n_likelihood(data, pars)



Convergence

* A key question for an MCMC operator is how long to run
to be sure of having reliable results.

 There is no simple answer because you can’t really ever
know that you have sampled the full posterior pdf.

A simple way: compares the variance (in one parameter,
or your most important parameter, or all parameters)
within a chain to the variance across chains.



Tuning
Proposal distribution should be “just right”

e |f the proposal distribution is too narrow, it proposes
steps too small—almost all steps will be accepted but it
will take a long time to move anywhere because of

timidity.

* |f the proposal distribution is too wide, it proposes steps
too large—the moves will cover parameter space easily,
but almost no steps will be accepted; it will tend to jump
to much lower probability regions.



Initialization and Burn-in

Random walk Metropolis-Hastings

 Bad initialization position
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ReSUItS mean, median, quantile (68%, 95%) ...

Useful figures should be check every time you run MCMC:

1. Trace plots

3. Corner plots

) 100 200 300 100 500
step number

2. Posterior predictive plots




Troubleshooting

* Functional testing —In addition to a full set of unit tests
for every part of your code.

e [kelihood issues — Error: Nan or infinite.
* Check your prior, proper range of your parameters;
 Check the likelihood value, it should be positive.

e Bad initialization



Nested Sampling

B For each live point compute A (a)
the likelihood value 4 A
(straightforward), thus —@® *o—o * '

0 worst 6

obtaining J likelihood values

I Take the worst likelihood

point Lworst, in this sample - A N (b)

and remove it from the

sample ! ® - pT |
I Store the likelihood value and

the live point removed

i e A\ N (c)

I Draw a new live point that

satisfies the new constrain 0 new 0* '

L > Lworst



Nested Sampling

Prior 7(6)

Evidence ¢ — / L(0)r(6)d6

iX = 7(0)d)  —— / T r©)d0) =1

€ = /01 L(X)dX




Nested Sampling

8=/01£(X)dX
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Nested Sampling

Nested sampling: the basic idea

e A N ( a)
—e oo—o !

0 worst £ 1

p A N (b)
—@® L .

0 £*

— (c)
——0-@ )

0 new &*

9.2.1 Iterating a sequence of objects

On entry, an iteration holds n objects restricted to £ < £*, as shown in Fig. 9.4(a). The
worst of these, being the one with smallest likelihood and hence largest &, is selected.
Located at the largest of n numbers uniformly distributed in (0, £*), it will lie about one
part in n less than £*. More technically, the shrinkage ratio t = £/£* is distributed as

prob(t) = nt™ !, 9.9)
with mean and standard deviation
logt = (—1£1)/n. (9.10)

Iteration proceeds by using the worst object’s (£, L) as the new (£*, £*). Meanwhile,
the worst object, no longer obeying the constraint, is discarded. There are now n—1
surviving objects, still distributed uniformly over £ but confined to a shrunken domain
bounded by the new constraint £*; this is illustrated in Fig. 9.4(b). The new domain
is nested within the old, hence the name ‘nested sampling’. The next step is to gener-
ate a replacement object, sampled uniformly over the prior but constrained within this
reduced domain. For now, we assume that we are able to do this. Having done it, the
iteration again holds n objects restricted to £ < £¥, as in Fig. 9.4(c), just like on entry
except for the 1-part-in-n shrinkage. The loop is complete, and the next iteration can
be started.

Successive iterations generate a sequence of discarded objects on the edges of pro-
gressively smaller nested domains. At iterate &,

k
Ly=L" and & =¢=]]¢, (9.11)
71=1
in which each shrinkage ratio ¢; is independently distributed with the pdf of eqn (9.9)
with the statistics of eqn (9.10). It follows that

log&, = (—k+VEk)/n. (9.12)



Nested Sampling

I Distributions sampled efficiently and Bayesian evidence computation very
accurate (typically requires 100 times less samples than thermodynamic
integration to reach same accuracy, + error bar)

I Sampling method insensitive to any phase change in likelihood i.e. can
sample very well multi-modal distributions

I Posterior probability values (required for parameter estimation) are a simple
by product!
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