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Generally, statistics has got a bad
reputation

“There are three types of lies:
lies, damned lies and statistics”

Mark Twain Benjamin Disraeli

Often for good reason:

Jun 3rd 2004

... two researchers at the University of Girona in Spain, have found
that 38% of a sample of papers in Nature contained one or more
statistical errors...



Right-thinking gentlemen #1

‘HTIHIJHHIHW
X X
Herodotus, c.500 BC

“A decision was wise, even though it led
to disastrous consequences, if with the
evidence at hand indicated it was the best
one to make; and a decision was foolish,
even though it led to the happiest possible
consequences, if it was unreasonable to
expect those consequences”

We should do the best with what we have,
not what we wished we had.



Right-thinking gentlemen #2

“Probability theory is nothing but
common sense reduced to calculation”

THEORIE

ANALYTIQUE

DES PROBABILITES;

Pas M. LE COMTE LAPLACE,

Chancelier dufémat-Conserrutour, Grand-Officier do Ia Légica dBonneur ;
Mewubre do Mlnstitet impérial et do Buresn des Loogitndes de France ;
des Bociébés royales do Loodres ot de Gottingue:; des Académics des
Sciences ds Bugsle, do Danemarck, ds Sudde, do Prosse , do Hollande ,
Titalle, ots.

PARIS,

M V* GOURCLER, Tsprimens-Libraire pour fas Mathématiquon,
5.

Pierre-Simon Laplace s S,
(1749 - 1827)




Right-thinking gentlemen #3

Occam’s Razor

“Frustra fit per plura, quod fieri
potest per pauciora.”

“It is vain to do with more what can
be done with less.”

Everything else being equal,
we favour models which are

William of Occam simple.
(1288 - 1348 AD)



Contents

= Probability and statistics

« Probability distribution function
= Poisson, Gaussian, chi-square

= Modeling of data

= Statistical tests
= 2, t, F-test

= Parameter estimation
= minimum y2
« Maximum likelihood

= Non-parametric statistics
= K-S test, spearman rank correlation



‘L References

= Numeric recipes
« Chapter 14 and 15

MNUMERICAL
RECIPES in C

NUMERICAL
RECIPES in
Fortran S0

http://www.numerical-recipes.com/

= Astronomical statistics (Andy Taylor 2004)



Why statistics in astronomy?

= Joke of the white sheep on the grassland
= Cosmology principle
= Only observation, no experiment
= e.g. the viewing angle of a galaxy
= Individual VS common properties
» €.g. AGN unified model
= Big uncertainties in observation
= Data mining

» Huge mount of data accumulated from morden
surveys



What statistics can do in

i astronomy

m Detection of signals
= source detection, spectral features
= Correlations: significant?

= Modeling data
= IS our sample ‘fair’?
= How data confirm or rule out a theory?

» If @ model supposed to be right, how to
estimate the model parameters?




How often do astronomers need

i statistics?

Of ~15,000 refereed papers annually:

1% have 'statistics’ in title or keywords
5% have ‘statistics’ in abstract

10% treat variable objects

5-10% (est) analyze data tables

5-10% (est) fit parametric models



‘L What is probability

s Frequency: The probability of the prize
of a lottery.

s Lack of information: e.g. the probability
of tomorrow raining

= Q: Shall the insurance company refund
your premium if no accident happens



‘L Two approaches

= If we measured the mean mass of a sample of G
stars. What the meaning if we say that at the 68%
confidence level the mean mass of G star is a=*b

= Frequentist (classical): if M=a, we would expect a
sample mean in the range a=+b for 68% of the times

= Bayesian: the true mean mass M of G stars lies in the
range a==b has a 68% probability of being true



Frequentist VS Bayesian

s Frequentist
=« Data are random, probability is frequency of data
= Cannot refer to the probability of a hypothesis (either true or
false)
= Bayesian
= Data are not random (in astronomy!)
= Evaluate the probability of a hypothesis in light of data (and
prior information)
= Different philosophically, but agree on each other in
basic cases

= Reference: <The promise of Bayesian inference for
astrophysics> by Loredo



Probability distribution function (PDF)

= S P(x)dx =1

s Peither xory = P(X)+P(y)

= P both xand y = P(x)P(y)

s Probability conservation: P(x)=g(y(x))|dy/dx]|
= Moments of PDF

<x”> = _fx” p(x)dx

= Mean p =s x P(x) dx
= Variance V = s (x-n)? P(x) dx



‘L Cumulative distribution function

s Monotonic function (
Prob(x < a) = X)dx
between 0 — 1 ( ) [O P(x)

from min to max

0.09
0.08
0.07

» For Gaussian x(0, °'°‘

__ 005

1), the probability o

Of '1<X<1 IS 680/0 0.02

0.01




‘L Measurement: mean, variance

s Sample: random realization of a distribution

— 1
» Sample mean T = -2.&;
= Sample mean is the unpiasea estimator of mean
of distribution

» Variance of sample mean: 1/N of distribution
Variance -
§ = =3 (o — (),

n i=1

= Sample variance

= N/(N-1)S?is the unbiased estimator of variance of
distribution



i Mean VS median

= Median P(X <m)=P(X >m)= f flx)dx = 1-
= Mean = Median if p(x) is asymmetric

s For Gaussian distribution (u, c?)
= The variance of sample mean is ¢%/N
= the variance of sample median is /2 o?/N

m For distributions with long tails

= The variance of sample median is smaller than
mean

= Corresponding to Gaussian, use 68% region as a
estimation of dispersion



i Variance

= Standard deviation o: V(X)=c2
= Root mean scatter (RMS)
= Error of o: 0.71 o/sqrt(N)
s Scatter, dispersion
= o iSa common example of dispersion
s Error/uncertainty: difference between the
measured or calculated value and a true one.

= Error is typically Gaussian distributed,
characterized by the variance

- Fc(>r )lndependent variables: V(x;+..+X,)=Xi_; x
V(X



‘L Error propagation

= Z=X+Y, X,y independent random
variables

) = /_idyp( —y)ply)

= Var(z)=Var(x)+Var(y)

n 2=f(X,y)
0 0
Fe.y) = fxo o) + 2L +y 2L
Ox dy

o (9 of
o, = (OI) O.T—i_(d'y) Ty



‘L Basic possibility distributions

m Discrete distributions
»« Binominal distributions
= Poisson distributions
s Continuous distributions
= Gaussian distribution
= ° distribution




i Binomial distribution

« Number of ‘successes’ from N observations, for two

mutually exclusive outcomes (‘Heads’ and ‘Tails’)
e.g. number of binary stars, Seyfert galaxies, supernovae...

I = number of ‘successes’
0 - probability of ‘success’ for single observation
N! r N-r
pu(r) = 6 (1-0)
" r'(N —r)!

Mean: N6 Variance: N6(1-0)



‘L Example of Binomial distribution

Normal PDF

Binomial PDF

025

N=6, p=0.5




‘L practice

= Q1: What is the probability of heads come up
12 times when flip a coin 20 times?

= Prior p=0.5

s Q2: Flip a coin 20 times, get 8 heads and 12
tails. What is the probability of heads come
up?

« data 2 model: Bayesian approach



i Poisson distribution

= Data in discrete intervals, independent of
each other, e.g. Energy channel of detector,
location on the sky, time of arrival

= probability of observing the counts n
= | expectation value e K

an:

nl

= Limit case of Binominal distribution when N->1
and p—->0

= Number of photons we detected: a tiny fraction (p<<1)
of photons emitted by star N>>1

= Number of galaxies in a small piece of sky



i Poisson distribution

Examples:

When we count N
galaxies in a cell, we say
the error of N is NO->

We get N photons for a
source, the expected
photons from background
is M, then the source is
detected at the
significance of (N-M)/N/2
sigma level

=3
(=)

0.4

0.2

\— 0.5

wom 1.0

o= 5.0

e Mean: u Variance: p

e Approximate Gaussian distribution, as u
iIncreases



i Gaussian (normal) distribution

1 1(x—u\
X = exp| ——
P(X) 2O p_ 2( o j |
p(x)
7\ o=0.5 Standard normal

! \ / u=0 o=1

0 02 04 0G& 08

Mean: p Variance: c?



* Why Gaussian: central limit theorem

= The sum of n random values drawn from any
probability distribution function of finite variance, 2,
tends to be Gaussian distributed about the
expectation value for the sum with variance no?

The add of two % =
independent random
variables results a

distributions that is the
convolution of the two

distribution functions -
* A i A



‘L Why log-normal distribution?

n f(X)=G[In(x)]
= e.g. Concentration, spin

of dark matter halo,

galaxy size distribution
etc.

a fOX)=f, ¥, % f
« log[f(x)]=logf,+logf,+...
logf,

= Central limit theory:
Normal distribution

I 1.0F

]_ gln::—p.:_lz
2.0} fx(z;p,0) = e 22, x>0
TON 2T
=0, 0=0.25

1.5

p=0, o=0.5

'g ={_|, =
0.5F
0'8. 0.5 1.0 1.5 2.0 2.5 3.0




‘-L Conclusions of Central limit theorem

= The sampling distribution is known even
when the underlying PDF is not

= Sampling is a random process

= The mean of a large sample tends to be normally
distributed

e Under certain conditions, e.g. with so many
unknown variables, we can assume an

unknown distribution is Gaussian.
e Distribution of human heights



i More on Gaussian

s G; + G, : Gaussian
s G1*G2 - log-normal
s ul/u,: Lorentz distribution

1
= Infinite variance p(z) = (1+22)
= Appears in spectral line fitting
=22y (v=2)distribution



v2 distribution

v2 distribution with freedom of K is the a sum of the squares
of K independent standard normal random variables.

L=

04
i

k/2—1 —x/2
2 1—=/

\ |
: \\ll\ Chi—square distribution » = 1.2.4.7.10 : P(X):

03

2K/2T (K [2)

Probability

0.2

Approximate Gaussian again
when K is large

01

Mean: K Variance: 2K

L)

XZ

Figure 1: Examples of 2 distribution - N(10,20) Gaussian in red



Student’s t distribution t(v)

0.4

| Student's t distribution |

Standard normal/y? (v)distribution ;

0.35

0.3

e Broader than Gaussian

0.25

Probability
0.2

e Used in check whether two distributions
have the same mean:

0.15

0.1

0.05

TA—TB
[Var(x4)/Na + Var(xp)/Np|l/2

= 1 1 i 1 i 1 h =
-4 -2 0 2 4

Figure 2: Examples of Student’s t distribution - N(0,1) Gaussian in red



i F - distribution

= Ratio of two 2 a7
distributions F(d1,d2) = _
— d1=1, d2=1
o — d1=2, d2=1
A d1=5, d2=2
= Check whether two 412100, doot
distributions have o A d1=100, d2=100
the same variance \\___




Modeling of data

e Is a hypothesis/model acceptable for given data
e v2, t, F-tests
e For multiple models, which one describes data better?
e Bayesian theorem
e For an assumed model with free parameters, what are the

best estimation of the model parameters?
e Minimum 2 fitting
e Maximum likelihood estimation
e Non-parametric statistics
e Are two samples drawn from the same distribution? (we don’t

know the distribution shape)
e Do two parameters correlate? (we don’t know how they correlate)



‘_L least square fits

Suppose that we are fitting N data points (x;,y;) i = 1,.... N, to a model that
has A adjustable parameters a;, j = 1...., M. The model predicts a functional
relationship between the measured independent and dependent variables.

ylx) =y(r;ay ... ay) (15.1.1)

where the dependence on the parameters 1s indicated explicitly on the right-hand side.
What. exactly, do we want to minimize to get fitted values for the a ;’s? The

first thing that comes to mind is the familiar least-squares fit,

N
MINIMIZe overay ... ays : Z i —y(riiar...a ;n,—;)]z (15.1.2)
i=1

least-squares fitting /s a maximum likelihood estimation of the fitted
parameters /fthe measurement errors are independent and normally
distributed with constant standard deviation



‘L Chi-square fitting

= Data points can not have the same error

N
P = Z (m. —y(zisar...an) Understand as a weight of
P i 7 each data in least square fit

= Lni-square aistriputuon with v=N — M degrees of
freedom
= Model is perfect
= Measurement error is right and Gaussian
=« Sample is not biased

= What does it mean if we get °=30 for freedom 107?

= P(x? >30[10)=0.001: the probability we reject one of above
assumptions is wrong (At least one of the above assumption
is wrong at 99.9% level.)




i Reasonable model

s If v2 ~ v, model is reasonable

n If y2 << v
= Error is overestimated
= Error is too large to distinguish models
s If y2>> v (most of cases)
= Ideal model never exists, e.g. Scaling relations
= Data errors are underestimated
= Data are always biased

freedom is a question! see arXiv:1012.3754



‘L Minimum 2 and confidence level

For parameter sets, the one with

minimum y2 is the best model, but

may not be the correct one.

Compared to the best model, do other

models also acceptable? What is the

confidence level of the best estimation?

x2

95%

xzm'm

4

Ay ? as a Function of Confidence Level and Degrees of Freedom

v

P 1 2 3 4 5 6
68.3% | 1.00 230 3.53 472 5.89 7.04
90% 2.71 4.61 6.25 7.78 9.24 10.6
95.4% | 4.00 6.17 8.02 9.70 11.3 12.8
99% 6.63 9.21 11.3 13.3 15.1 16.8
99.73% | 9.00 11.8 142 16.3 182 20.1
99.99% | 15.1 184 211 235 257 278

9o

1: Confidence regions for estimating Qv from supernova data.

% 2(do) =) mint A%

Ay 2 follows 2
distribution with M
freedoms



Projections of the M-dimensional
i confidence regions

QO

Ayx? = 6.63

- s A2 =271
4 ! Ay2=1.00
-1

Confidence level of one parameter:
Marginalize over other parameters

pla|DI) = / dop(a,c|DI).
Jo



‘L v2 test on binned data

s Compare the model prediction with the observed
data in bins, N, is the number of events observed, 7
is the number expected.

= P(N;|n;) is Poisson distribution, but approaches Gaussian

when ni >5 12 _ Z (E\Ti‘ . ”-z’)g
i n;

s Compare two data sets

Next we consider the case of comparing rwo binned data sets. Let I?; be the
number of events 1n bin i for the first data set. .S; the number of events m the same
bin 7 for the second data set. Then the chi-square statistic 1s

2 (Rz — .LSTE')Q ) "
\ _Z S (14.3.2)



‘L Notes on binned data

= Binned data is a simple way to show
the statistical properties of a sample

= Why we always plot the histograms of the
sample properties first.

s However, bins lose information

» If we have some priors on the distribution
function, we may do better.



i Example on binned data

= We measured radial velocity of a emission line, and
need to fit the velocity dispersion.

= We have ten data points (mean subtracted): 2.78, -
1.84, 1.80, 0.11,-0.92, -0.91, 0.29, 3.57, -1.77, 2.55

= M1: bin the measurement, plot the histogram, fit with a
Gaussian profile

= Not enough bins
= M2: Av)=A exp(-v?/2?)
= InL = X In[AV)] +const = -10lnc— (1/20%) X v
= dInl/do=0 2 c,4=1.97
= A In L=0.5 (68% confidence level) ¢-[1.60, 2.50]



Maximum likelihood (ML)
estimation

= If the measured data are independent likelihood
function ‘_
LDy Dol ) = pDffre+ )= (Do) %1@:0.
= i.:l:[lp(Di‘glﬁm‘gm)‘

= When the possibility distributions are Gaussian, the ML
estimation is equivalent to minmum-y2
= Use Ay? to estimate the goodness of fit (AlnZ=-Ay?/2)

s For non-Gaussian likelihood function
swe may quote where L is some fraction (e.g. 0.1) of L,

m Fisher Information Matrix g _nl
= Monte-Carlo resampling

7T 00,00,



‘L Notes on ML estimation

s ML is more general than minimum y?

= €.g. we can calculate likelihood for
detections with only upper limit

= Find out the ML is difficult and time-
consuming when number of parameters
is large
= Monte-Carlo Markov chain(MCMC)



i Bayesian Theorem

P(B]A)=P(B)*P(A/B)/P(A)

A: women B: pregnant

prior probability

Posteriori probability | p(H;|DI) = p(

p(DII) evidence




‘L Bayesian approach

s D: data, I: model, H: hypothesis (model
parameter)

p(H;|Ip(D|H;I)
o(H,|DI) = .

s Compare two hypotheses: H1 VS H2

p(H |DI)  p(H\[l)p(D|H\I)
p(Hs|DI)  p(Ho|I)p(D|HsI)

= in the absence of information, we could assume

equal priors
= p(D|H,I) is easy to get
= Prior may change the possibility
« e.g. P(t>13.6Gy)=0 for stellar population




i Example: flux of GRB

Take Gamma Ray Bursts to be equally luminous events, distributed
homogeneously in the Universe. We see three gamma ray photons from
a GRB in an interval of 1 s. What is the flux of the source, F?

=3 photons/s, with an uncertainty of about 1.73

Prior: low flux sources are intrinsically more probable, as
there is more space for them to sit in. (Malmquist bias )

L dF

2 dF s p(r|1)droc4zr®dr

dr

dr
Fli N9 o 12
B |)ocp(r|)‘dF\oc



Bayesian estimation

= The posterior for F
after seeing n photons

p(n|F,)=F"exp(-F)/n!

p(F | n,1) c F™>"* exp(—F)

It is more probable this is a distant source
from which we have seen an unusually high
number of photons than it is an unusually
nearby source from which we have seen an
expected number of photons.

p(F [n, 1) oc p(F[1)p(n|F,1)

0.45 -

0.4r

0.35[-

0.3

0.25

0.2

0.15

0.1r

0.05 -

p(FIn=3,l)

F=n/T

F

most prob

we get the most probable value of
Fequalling 0.5 photons/sec.



i Non-parametric statistics

= The Kolmogorov-Smirnov test (K-S) test

= Are two distributions different?
« Even we do not know what is the distribution

= The Spearman rank correlation coefficient

= Are two quantities correlated?
= Not necessary linear



K-S test: applicable to unbinned

‘L distributions

s K~Stest defined as the
maximum value of the
absolute difference
between two cumulative
distribution functions.

Sy(x) ——— D

D= max |Sy,(x)— Sn,(2)]|

— OO T D0

P(x)

cumulative probability distribution
%

P(> D) =23 (—1)ite 20"
i=1

>0 ® *—0 > > Pl

= Can be generalized to
two-dimensional
distributions

e invariant of the parameterization of x
e most sensitive around the median




Spearman rank correlation
‘L coefficient

= Standard parametric (linear) correlation coefficient

n -1<r<1 > (#i = T)(yi — 7)

= Spearman rank: replacing x;, y; by the rank R, S,

re = Zi(ﬂf__ RS - 9) — (14.6.1)
V(B =~ B2 /3, (5: - 5)2

The significance of a nonzero value of r 1s tested by computing
N -2

_ 42
1 —

t: Student’s distribution with /V — 2 degrees of freedom.

t=rs (14.6.2)



‘L Monte-Carlo Methods

= Random sampling of distributions
» Random number generator
= Error estimation: simulate the random
process
= Boot-strap
= Jack-nife



‘L Random generator

The very basic : random number
U[0,1]

Recipes for popular distributions
Gaussian, Poisson



Probability integral transform

Suppose we can compute the CDF of some desired random variable

Y ~ U[O 1] Cumulative distribution function (CDF)
)
x =P7(y) P(a) = |[plx)dc = Prob(x=a)
2) Compute e
~ p(x)
3) Then P(x) - | | | /—
@ L
¢
ol
L=
=+ L
L]
oL
o
L=




Rejection Sampling

Suppose we want to sample from some pdf p(x) and we know that

p(x) <q(x) VX
where g(x) is a simpler pdf called the proposal distribution

PN q(X)

#

1) Sample x; from g(x) ‘
2) Sample y~U[0,q(x/)]

3) If y<p(x) ACCEPT
otherwise @ REJECT

Set of accepted values {x;} are a sample from p(x).



i Estimating error from data

s Error (confidence level) of the statistical
parameter after complicated process

= Principle: probability is the frequency of the

data
= Sub-sample: N sub- samples
» 1 (PP
TN —12 N
« Jack-Knife: omit each sub-sample in turn

N -1
2
%—TE:( |

= Boot-strap: restp1|nq the same size sample
Nk D)2
22y ("P — ;)
':Tz':, _ i'\"r )

k=1




‘L Notes

s Sub-sample method is problematic when the
statistics needs the full sample

m Critical assumption for these MC methods is
that the individual subsamples are
independent

= Not the case in the galaxy correlation function
= Sub-samples large enough than the correlation length



‘L Summary

m the basic probability distribution
functions (moments)

= €.g Gaussian, Poisson

s the basics of the data
= Are the data biased?

=« How about the error?
= Error propagation
= Numerical error estimation (e.g. boot-strap)



‘L more

= the basics of the modeling data

» Distribution of one quantity
« Histograms (always first step)
= Guess a function and parameterize it
« Maximum likelihood estimation of the parameters

= Scaling relations between quantities
=« linear correlation (always first step)

» Build model: motivated by physics
» Estimate model parameters from data



