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Benjamin DisraeliMark Twain

“There are three types of lies:

lies, damned lies and statistics”

Generally, statistics has got a bad 

reputation

Often for good reason:

Jun 3rd 2004 

… two researchers at the University of Girona in Spain, have found 

that 38% of a sample of papers in Nature contained one or more 

statistical errors…

The Economist



Herodotus, c.500 BC

“A decision was wise, even though it led 

to disastrous consequences, if with the 

evidence at hand indicated it was the best

one to make; and a decision was foolish, 

even though it led to the happiest possible 

consequences, if it was unreasonable to 

expect those consequences”

We should do the best with what we have, 

not what we wished we had.

Right-thinking gentlemen #1



“Probability theory is nothing but 

common sense reduced to calculation”

Pierre-Simon Laplace

(1749 – 1827)

Right-thinking gentlemen #2



“Frustra fit per plura, quod fieri 

potest per pauciora.”

“It is vain to do with more what can 

be done with less.”

Occam’s Razor

William of Occam

(1288 – 1348 AD)

Everything else being equal, 

we favour models which are 

simple.

Right-thinking gentlemen #3
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Why statistics in  astronomy?

 Joke of the white sheep on the grassland
 Cosmology principle
 Only observation, no experiment

 e.g. the viewing angle of a galaxy

 Individual VS common properties
 e.g. AGN unified model

 Big uncertainties in observation
 Data mining

 Huge mount of data accumulated from morden 
surveys



What statistics can do in 
astronomy

 Detection of signals
 source detection, spectral features

 Correlations: significant?

 Modeling data
 Is our sample ‘fair’?

 How data confirm or rule out a theory?

 If a model supposed to be right, how to 
estimate the model parameters?



How often do astronomers need 
statistics?

Of  ~15,000 refereed papers annually:

1%  have `statistics’ in title or keywords

5%  have `statistics’ in abstract

10% treat variable objects

5-10% (est) analyze data tables

5-10% (est) fit parametric models



What is probability

 Frequency: The probability of the  prize 
of a lottery.

 Lack of information: e.g. the probability 
of tomorrow raining 

 Q: Shall the insurance company refund 
your premium if no accident happens



Two approaches

 If we measured the mean mass of a sample of G 
stars. What the meaning if we say that at the 68% 
confidence level the mean mass of G star is a±b

 Frequentist (classical): if M=a, we would expect a 
sample mean in the range a±b for 68% of the times

 Bayesian: the true mean mass M of G stars lies in the 
range a±b has a 68% probability of being true



Frequentist VS Bayesian

 Frequentist
 Data are random, probability is  frequency of data

 Cannot refer to the probability of a hypothesis (either true or 
false)

 Bayesian
 Data are not random  (in astronomy!)

 Evaluate the probability of a hypothesis in light of data (and 
prior information)

 Different philosophically, but agree on each other in 
basic cases
 Reference: <The promise of Bayesian inference for 

astrophysics> by Loredo 



Probability distribution function (PDF)

 s P(x) dx =1
 P either x or y  = P(x)+P(y)
 P both x and y = P(x)P(y) 
 Probability conservation: P(x)=g(y(x))|dy/dx|
 Moments of PDF

 Mean  =s x P(x) dx 
 Variance V = s (x-)2 P(x) dx
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Cumulative distribution function

 Monotonic function 
between 0 – 1 

from min to max

 For Gaussian x(0, 
1), the probability 
of -1<x<1 is 68%
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Measurement: mean, variance

 Sample: random realization of a distribution

 Sample mean
 Sample mean is the unbiased estimator of mean 

of distribution
 Variance of sample mean: 1/N of distribution 

Variance

 Sample variance
 N/(N-1)S2 is the unbiased estimator of variance of 

distribution



Mean VS median

 Median
 Mean = Median  if p(x) is asymmetric

 For Gaussian distribution (, 2)
 The variance of sample mean is 2/N

 the variance of sample median is /2 2/N

 For distributions with long tails
 The variance of sample median is smaller than 

mean

 Corresponding to Gaussian, use 68% region as a 
estimation of dispersion



Variance

 Standard deviation : V(x)=2

 Root mean scatter (RMS)
 Error of : 0.71 /sqrt(N)

 Scatter, dispersion
  is a common example of dispersion 

 Error/uncertainty: difference between the 
measured or calculated value and a true one.
 Error is typically Gaussian distributed, 

characterized by the variance  

 For independent variables: V(x1+..+xn)=i=1,N
V(xi)



Error propagation

 z=x+y, x,y independent random 
variables

 Var(z)=Var(x)+Var(y)

 x+y
2=x

2+y
2

 z=f(x,y)



Basic possibility distributions

 Discrete distributions

 Binominal distributions

 Poisson distributions

 Continuous distributions

 Gaussian distribution

 2 distribution



• Number of ‘successes’ from  N observations, for two 

mutually exclusive outcomes (‘Heads’ and ‘Tails’)
e.g. number of binary stars, Seyfert galaxies, supernovae…

r   =  number of ‘successes’

=   probability of ‘success’ for single observation
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Binomial distribution

Mean: N Variance: N(1-)



Example of Binomial distribution

N=6, p=0.5



practice

 Q1: What is the probability of heads come up 
12 times when flip a coin 20 times?

 Prior p=0.5

 Q2: Flip a coin 20 times, get 8 heads and 12 
tails. What is the probability of heads come 
up?

 data  model：Bayesian approach



Poisson distribution

 Data in discrete intervals, independent of 
each other, e.g. Energy channel of detector, 
location on the sky, time of arrival

 probability of observing the counts n

 :  expectation value  

 Limit case of Binominal distribution when N1

and p0

 Number of photons we detected: a tiny fraction (p<<1) 
of photons emitted by star N>>1

 Number of galaxies in a small piece of sky



Poisson distribution

• Mean:  Variance: 
• Approximate Gaussian distribution, as 
increases

Examples: 

When we count N 
galaxies in a cell, we say 
the error of N is N0.5

We get N photons for a 
source, the expected 
photons from background 
is M, then the source is 
detected at the 
significance of (N-M)/N1/2

sigma level
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Gaussian (normal) distribution

Mean:  Variance: 2

Standard normal
0 =1



Why Gaussian: central limit theorem

 The sum of n random values drawn from any 
probability distribution function of finite variance, 2, 
tends to be Gaussian distributed about the 
expectation value for the sum  with variance n2

The add of two 
independent random 
variables results a 
distributions that is the 
convolution of the two 
distribution functions



Why log-normal distribution?

 f(x)=G[ln(x)]

 e.g.  Concentration, spin 
of dark matter halo, 
galaxy size distribution 
etc.

 f(x)=f1*f2*…fn
 log[f(x)]=logf1+logf2+…

logfn
 Central limit theory: 

Normal distribution



Conclusions of Central limit theorem

 The sampling distribution is known even 
when the underlying PDF is not
 Sampling is a random process

 The mean of a large sample tends to be normally 
distributed 

• Under certain conditions, e.g. with so many 
unknown variables, we can assume an 
unknown distribution is Gaussian.
• Distribution of human heights



More on Gaussian

 G1 + G2 : Gaussian

 G1*G2  log-normal

 1/2: Lorentz distribution

 Infinite variance

 Appears in spectral line fitting

 12 + 
2
2:   2 (v=2)distribution 



2 distribution

2 distribution with freedom of K is the a sum of the squares 
of K independent standard normal random variables.

Approximate Gaussian again 
when K is large

Mean: K Variance: 2K

P(x)=



Student’s t distribution t()

Standard normal/2 ()distribution

• Broader than Gaussian

• Used in check whether two distributions
have the same mean:



F - distribution

 Ratio of two 2

distributions F(d1,d2)

 Check whether two 
distributions have 
the same variance



Modeling of data 

• Is a hypothesis/model acceptable for given data
• 2, t, F-tests 

• For multiple models, which one describes data better?
• Bayesian theorem

• For an assumed model with free parameters, what are the 
best estimation of the model parameters?

• Minimum 2 fitting
• Maximum likelihood estimation

• Non-parametric statistics
• Are two samples drawn from the same distribution? (we don’t 

know the distribution shape)
• Do two parameters correlate? (we don’t know how they correlate)



least square fits

least-squares fitting is a maximum likelihood estimation of the fitted 
parameters if the measurement errors are independent and normally
distributed with constant standard deviation



Chi-square fitting

 Data points can not have the same error

 Chi-square distribution with =N − M degrees of 
freedom
 Model is perfect
 Measurement error is right and Gaussian
 Sample is not biased

 What does it mean if we get 2=30 for freedom 10?
 P(2 >30|10)=0.001: the probability we reject one of above 

assumptions is wrong (At least one of the above assumption 
is wrong at 99.9% level.)

Understand as a weight of 
each data in least square fit



Reasonable model

 If 2 ~ , model is reasonable

 If 2 << 

 Error is overestimated

 Error is too large to distinguish models

 If 2 >>  (most of cases)

 Ideal model never exists, e.g. Scaling relations

 Data errors are underestimated

 Data are always biased

freedom is a question! see arXiv:1012.3754



Minimum 2 and confidence level

 2(q0)=2
min+2

 2 follows 2

distribution with M 
freedoms

For parameter sets, the one with 
minimum 2 is the best model, but
may not be the correct one.

Compared to the best model, do other
models also acceptable? What is the 
confidence level of the best estimation? 



Projections of the M-dimensional 
confidence regions

Confidence level of one parameter:
Marginalize over other parameters  

0





2 test on binned data

 Compare the model prediction with the observed 
data in bins, Ni is the number of events observed, ni

is the number expected.
 P(Ni|ni) is Poisson distribution, but approaches Gaussian 

when ni >5

 Compare two data sets



Notes on binned data 

 Binned data is a simple way to show 
the statistical properties of a sample

 Why we always plot the histograms of the 
sample properties first.

 However, bins lose information

 If we have some priors on the distribution 
function, we may do better.



Example on binned data

 We measured radial velocity of a emission line, and 

need to fit the velocity dispersion.

 We have ten data points (mean subtracted): 2.78, -
1.84, 1.80, 0.11,-0.92, -0.91, 0.29, 3.57, -1.77, 2.55
 M1: bin the measurement, plot the histogram, fit with a 

Gaussian profile
 Not enough bins

 M2: P(vi)=A exp(-vi
2/22)

 ln L =  ln[P(vi)] +const = -10ln – (1/22)  vi
2

 d lnL/ d = 0   best=1.97

  ln L=0.5 (68% confidence level) -[1.60, 2.50]



Maximum likelihood (ML) 
estimation

 If the measured data are independent likelihood 
function

 When the possibility distributions are Gaussian,  the ML 
estimation is equivalent to minmum-2

 Use 2 to estimate the goodness of fit  (lnL=-2/2)

 For non-Gaussian likelihood function
we may quote where L is some fraction (e.g. 0.1) of Lmax

 Fisher Information Matrix

 Monte-Carlo resampling



Notes on ML estimation

 ML is more general than minimum 2

 e.g. we can calculate likelihood for 
detections with only upper limit

 Find out the ML is difficult and time-
consuming when number of parameters 
is large

 Monte-Carlo Markov chain(MCMC)



Bayesian Theorem

Posteriori probability

prior probability

evidence

P(B|A)=P(B)*P(A/B)/P(A)

A:  women              B: pregnant



Bayesian approach

 D: data, I: model, H: hypothesis (model 
parameter)

 Compare two hypotheses: H1 VS H2

 in the absence of information, we could assume 
equal priors 

 p(D|H,I) is easy to get

 Prior may change the possibility

 e.g. P(t>13.6Gy)=0 for stellar population



Take Gamma Ray Bursts to be equally luminous events, distributed 

homogeneously in the Universe.  We see three gamma ray photons from 

a GRB in an interval of 1 s.  What is the  flux of the source, F?

F=3 photons/s, with an uncertainty of about 1.73

Example: flux of GRB
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Prior: low flux sources are intrinsically more probable, as 
there is more space for them to sit in. (Malmquist bias )



 The posterior for F
after seeing n photons
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Bayesian estimation
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F

p(F|n=3,I)

F=n/T
Fmost prob

we get the most probable value of
F equalling 0.5 photons/sec.
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It is more probable this is a distant source
from which we have seen an unusually high 
number of photons than it is an unusually 
nearby source from which we have seen an 
expected number of photons. 



Non-parametric statistics

 The Kolmogorov-Smirnov test (K-S) test

 Are two distributions different?

 Even we do not know what is the distribution

 The Spearman rank correlation coefficient 

 Are two quantities correlated?

 Not necessary linear



K-S test: applicable to unbinned 
distributions

 K–S test defined as the 
maximum value of the 
absolute difference 
between two cumulative 
distribution functions.

• invariant of the parameterization of x
• most sensitive around the median

 Can be generalized to 
two-dimensional 
distributions



Spearman rank correlation 
coefficient

 Standard parametric (linear) correlation coefficient

 -1<r<1

 Spearman rank: replacing xi, yi by the rank Ri, Si

t: Student’s distribution with N − 2 degrees of freedom.



Monte-Carlo Methods

 Random sampling of distributions

 Random number generator

 Error estimation: simulate the random 
process

 Boot-strap

 Jack-nife



The very basic : random number 

U[0,1]

Recipes for popular distributions

Gaussian, Poisson

Random generator



Probability integral transform

Suppose we can compute the CDF of some desired random variable

1)

2) Compute

3) Then

]1,0[~ Uy

)(1 yPx 

)(~ xpx



Rejection Sampling

Suppose we want to sample from  some pdf  p(x) and we know that 

where q(x) is a simpler pdf called the  proposal distribution

xxqxp  )()(

)(xp

)(xq
1) Sample x1 from q(x)

2) Sample y~U[0,q(x1)]

3) If y<p(x) ACCEPT

otherwise REJECT

1x

y

Set of accepted values {xi} are a sample from p(x).



Estimating error from data 

 Error (confidence level) of the statistical 
parameter after complicated process

 Principle: probability is the frequency of the 
data

 Sub-sample: N sub-samples

 Jack-Knife: omit each sub-sample in turn

 Boot-strap: resampling the same size sample



Notes

 Sub-sample method is problematic when the 
statistics needs the full sample

 Critical assumption for these MC methods is 
that the individual subsamples are 
independent

 Not the case in the galaxy correlation function

 Sub-samples large enough than the correlation length



Summary

 the basic probability distribution 
functions (moments)

 e.g Gaussian, Poisson

 the basics of the data

 Are the data biased?

 How about the error?

 Error propagation

 Numerical error estimation (e.g. boot-strap)



more

 the basics of the modeling data

 Distribution of one quantity

 Histograms (always first step)

 Guess a function and parameterize it

 Maximum likelihood estimation of the parameters

 Scaling relations between quantities

 linear correlation (always first step)

 Build model: motivated by physics

 Estimate model parameters from data


