APOGEE-1/2 刘超(国家天文台)

Outlines

- Introduction of the two surveys
- Some interesting works
 - Metallicity and evolution
 - dynamics
- What we are working on
 - Spatial distribution of the metallicity with RC
 - Cross-calibration with LAMOST
 - Dynamical modeling

Introduction

DR12

- Basics
 - H band (1.51-1.70mu)
 - R=22,500, 300 fibers
 - H_lim=12.2
 - t_expos=3hrs
 - S/N~100
 - sigma_v~0.1km/s
 - N=100,000
- DRI2: N~163,278
- ASPCAP
 - RV, Teff, logg, [M/H], [alpha/M]
 - [C/M], [N/M]...

APOGEE-2 (S/N)

Targets selection

Tagrets selection

Washington+DDO51 help to disentangle the giant stars

Tagrets selection

Washington+DDO51 help to disentangle the giant stars

Targets selection

 2267 common objects given NVISITS>1, good apogee spectra (ASPCAPFLAG bit23 = 0)

• 1566 single stars

É Driver Window Columns Display Help

🜔 🗗 💐 🥭 2.70 GB 🛞 🌾 🔨 🛜 🛋 100% 🖾 🔚 Wed Apr 29 22:38:29 Chao Liu 🔍 😑

TOPCAT(1): Table Columns

Table Columns for 1: allStar-v603.fits

	Visible	Name	\$ID	Class	Shape	Expression	Description	Format code
0		Index	\$0	Long			Table row index	
1		id	\$152	Long		\$0		
2		APSTAR ID	\$1	String				45A
3		TARGET ID	\$2	String				34A
4		ASPCAP ID	\$3	String				44A
5		FILF	\$4	String				34A
6		APOGEE ID	\$5	String				184
7			\$6	String				84
8			\$7	Short				I
9			\$2	String				164
10			\$Q	Float				F
11			\$10	Float				E
12			\$10	Float				E
13			⇒11 ¢1⊃	Float				E E
14			\$12 ¢12	Float				
15			\$15	Float				
15		K_EKK	\$14	Float				E
10		RA	\$15	Double				D
17		DEC	\$16	Double				D
18		GLON	\$17	Double				D
19		GLAT	\$18	Double				D
20		APOGEE_TARGET1	\$19	Integer				J
21		APOGEE_TARGET2	\$20	Integer				J
22		TARGFLAGS	\$21	String				116A
23		NVISITS	\$22	Integer				J
24		COMMISS	\$23	Short				I
25		SNR	\$24	Float				E
26		STARFLAG	\$25	Integer				J
27		STARFLAGS	\$26	String				129A
28		ANDFLAG	\$27	Integer				J
29		ANDFLAGS	\$28	String				59A
30		VHELIO_AVG	\$29	Float			_	E
31		VSCATTER	\$30	Float			_	E
32		VERR	\$31	Float				E
33		VERR_MED	\$32	Float				E
34		SYNTHVHELIO_AVG	\$33	Float				E
35		SYNTHVSCATTER	\$34	Float				E
36		SYNTHVERR	\$35	Float				E
37		SYNTHVERR_MED	\$36	Float				E
38		RV_TEFF	\$37	Float				E
39		RV_LOGG	\$38	Float				E
40		RV_FEH	\$39	Float				E
41		RV CCFWHM	\$40	Float				E
42		RV_AUTOFWHM	\$41	Float				E
43		SYNTHSCATTER	\$42	Float				E
44		STABLERV CHI2	\$43	float[]	2			2E
45		STABLERV RCHI2	\$44	float[]	2			2E
46		CHI2 THRESHOLD	\$45	float[]	2			2E
			4.5		-			

É Driver Window Columns Display Help

🜔 🗗 💐 🐥 2.49 GB 🛞 🌾 🔨 🛜 🛋 100% 🖾 🔚 Wed Apr 29 22:36:31 Chao Liu 🔍 😑

TOPCAT(1): Table Columns

Table Columns for 1: allStar-v603.fits

	Visible	Name	\$ID	Class	Shape	Expression	Description	Format code
43		SYNTHSCATTER	\$42	Float				E
44		STABLERV_CHI2	\$43	float[]	2			2E
45		STABLERV RCHI2	\$44	float[]	2			2E
46		CHI2 THRESHOLD	\$45	float[]	2			2E
47		STABLERV CHI2 PROB	\$46	float[]	2			2E
48		APSTAR VERSION	\$47	String				5A
49		ASPCAP VERSION	\$48	String				6A
50		RESULTS VERSION	\$49	String				4A
51		FXTRATARG	\$50	Short				1
52		PARAM	\$51	float[]	7			7F
53		FPARAM	\$52	float[]	7			7F
54		PARAM COV	\$53	float[]	49			49F
55		FPARAM COV	\$54	float[]	49			49F
56		FIFM	\$55	float[]	15			15E
57		FELEM	\$56	float[]	15			15E
58			\$57	float[]	15			15E
59		FELEM ERR	\$58	float[]	15			15E
60		TEFE	\$50	Float	15			F
61			\$60	Float				E
62			\$61	Float				F
63		PARAM ALPHA M	\$62	Float				F
64			\$63	Float				F
65		LOGG FRR	\$64	Float				F
66		PARAM M H FRR	\$65	Float				F
67		PARAM ALPHA M FRR	\$66	Float				F
68		ASPCAP CHI2	\$67	Float				F
69		ASPCAP CLASS	\$68	String				2A
70		ASPCAPELAG	\$69	Integer				1
71		ASPCAPELAGS	\$70	String				J 153A
72		PARAMELAG	\$70	int[]	7			71
73		AL H	\$72	Float	,			F
74			\$73	Float				F
75		СН	\$74	Float				F
76		FF H	\$75	Float				F
77		к н	\$76	Float				F
78		MG H	\$77	Float				F
79		MN H	\$78	Float				F
80		NA H	\$79	Float				E
81			\$80	Float				F
82		N H	\$81	Float				E
83		о н	\$82	Float				F
84		SI H	\$ & 2	Float				E
85		S	\$24	Float				E
86			\$0 1 \$25	Float				F
87		т <u>_</u> т V Н	\$26 \$26	Float				F
88			\$87	Float				F
89			407 407	Float				F
55			100	rioat				L

Current Working groups

- Disk
- Bulge
- Halo
- Clusters
- AGB stars
- Be stars

- YSOs
- dwarf galaxies

Some interesting works

- Stellar parameterization
 - Holtzman et al. 2015
 - Ness et al. 2015
- Metallicity
 - Anders et al. 2014
 - Bovy et al. 2014
 - Hayden et al. 2015
- Interstellar medium

- Wang & Jiang 2015
- Zasowski et al. 2015
- Evolution (APOKASC)
 - Pinsonneault et al. 2014
- Clusters
 - Frinchaboy et al. 2013
- Dynamics
 - Bovy et al. 2013

Holtzman et al. 2015 Garcia Perez et al. 2015 (ASPCAP)

Ness et al. 2015

$$\ell_{nk} (T_{\text{eff}}, \log g, [Fe/H], \cdots)$$

$$f_{n\lambda} = \theta_{\lambda}^{T} \cdot \ell_{n} + \text{noise}$$

$$\ell_{n} \equiv [1, \ell_{n1} - \overline{\ell_{1}}, \ell_{n2} - \overline{\ell_{2}}, \cdots, \ell_{nK} - \overline{\ell_{K}}]$$

$$\ln p(f_{n\lambda} | \theta_{\lambda}^{T}, \ell_{n}, s_{\lambda}^{2}) = -\frac{1}{2} \frac{[f_{n\lambda} - \theta_{\lambda}^{T} \cdot \ell_{n}]^{2}}{s_{\lambda}^{2} + \sigma_{n\lambda}^{2}} - \frac{1}{2} \ln(s_{\lambda}^{2} + \sigma_{n\lambda}^{2})$$

$$Training$$

$$\theta_{\lambda}, s_{\lambda} \leftarrow \underset{\theta_{\lambda}, s_{\lambda}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p(f_{n\lambda} | \theta_{\lambda}^{T}, \ell_{n}, s_{\lambda}^{2})$$

Anders et al. 2014

 $\Delta T_{\rm eff} = (83.8 - 39.8 \cdot [{\rm M/H}]) \text{ K}$ $\Delta \log g = 0.2 \text{ dex}$ $\Delta [{\rm M/H}] = (0.055 - 0.036 \cdot [{\rm M/H}]) \text{ dex}$ $\Delta [\alpha/{\rm M}] = 0.08 \text{ dex}.$

Name	Requirements	Number of stars
HQ sample	see Table 1	21 288
HQ sample with reliable α -element abundances	$4000 \text{ K} < T_{\text{eff}} < 5000 \text{ K}$	18 855
HQ sample with valid distance determination	distance code (Santiago et al. 2014) converges	21 105
HQ sample with (valid) UCAC-4 proper motions	PM criteria (see Sect. 3.2) are fulfilled	17 882
HQ ^k sample	valid proper motions & distances	17 758
Local HQ sample	d < 1 kpc	1975
Local HQ ^k sample	$d < 1 \text{ kpc} \wedge \text{HQ}^k$	1654
Gold sample	$\sigma(\mu) < 4.0 \text{ mas/yr} \land \sigma(d)/d) < 20\%$	3984

Hayden et al. 2015

Zasowski

Method

- Targets: K and M dwarfs (cool)
- Dominated by absorption features
- ASPCAP provide F' best fit spec
- Multi-D χ^2 -minimization
- Residuals: R = F/F'
- Stellar rest frame
- Clean samples: 58605 / 96938
- Locally good ASPCAP fit:
 - $\sigma(R_{\lambda})/\sigma(F_{\lambda}) \leq 0.55$
- Smooth residual
 - $-\sigma(R_{\lambda}) \leq 5\%$
- Well measured stellar RV
 - VSCATTER $\leq 1 \ km \ s^{-1}$

 $W \equiv$

 $= \sqrt{2\pi} A \sigma$

 $-R_{\lambda}$) d λ

Gaussian fit

Pinsonnault et al. 2014 (APOKASC)

APOGEE+Kepler

APOGEE data

vc=218 km/s
$$M_{halo}=0.8 \times 10^{12} M_{\odot}$$

 $V_c = V_{\varphi} - V_a$

$$\frac{V_c(R)V_a(R)}{\sigma_R^2(R)} = \frac{1}{2} \left[X^2 - 1 + R\left(\frac{1}{h_R} + \frac{2}{h_\sigma}\right) \right]$$

$$f_{\text{Dehnen}}(E, L) \propto \frac{\nu_*(R_e)}{\sigma_R^2(R_e)} \exp\left[\frac{\Omega(R_e)\left[L - L_c(E)\right]}{\sigma_R^2(R_e)}\right]$$

Our ongoing works

- Spatial variation in metallicity
 - Wan et al.
- Cross-calibration
 - Chen et al.
 - Ho et al.
- Dynamical modeling
 - Liu et al.

Project #1

- Gao et al. (2014) found *f_B* is a function of *T*eff (*SpT*) and [Fe/H] (age).
- The method is based on spectral differential RV and detection power of Period is limited under 1000 days.
- It implies that orbital parameters evolve with age and SpT.

Constrains of (RGB) binary orbital parameters

- Each target of APOGEE is observed twice to twenty times.
- RV dispersion VSCATTER shows long-tailed form
- Orbital parameters (P, q, e) are implicit in RV dispersion, which can be revealed by MCMC algorithm.

$$v_i = q \left[\frac{2\pi G M_1}{P(1+q)^2}\right]^{1/3} \frac{1}{\sqrt{1-e^2}} \sin i \cos\left(\frac{2\pi t_i}{P} - \phi_0\right)$$

- Stellar mass M₁ is derived from isochrones
- We apply parameterization of 3 orbital para. (P, q, e) to describe their distributions.
- Each para. is separated into N evenly-spaced ranges, that are weighted by N weights.

Project #2

Non-axisymmetry of the Galactic stellar disk

- Goal: looking for the evidence of lopsidedness or ellipticity of the Galactic disk
 - 1/3 disk galaxies are lopsided (Rix & Zaritsky 1995)
 - Kuijken & Tremaine (1994) tested the elliptically of the Galactic disk
 - · Nature of the lopsidedness:
 - · interaction with a passing-by galaxy
 - minor merger
 - · asymmetric gas accretion
 - · secular evolution with a triaxial halo etc.
 - help to constrain the evolution of the Galactic disk
- Method: Find the difference in <v_R(R)> or <v_phi(R)> between QII and QIII disk with red clump/RGB stars

Wan et al.

Chen et al.

Sample Reference Object Spectrum (with continuum fit from *The Cannon*)

Reference objects:

- Subset of spectra with highfidelity labels (ex. calibration objects)
- We use 803 high-S/N LAMOST spectra and corresponding APOGEE labels

Spectral model:

- Flux for object n at wavelength λ is a function of the labels
- We use a model that is quadratic in the labels, but we show it as linear for brevity
- The training step consists of solving for the coefficients highlighted in blue

The Cannon MPIA group Ho et al.

Liu, Wan et al.

Dynamical modeling

