APOGEE－1／2
 刘超（国家天文台）

Outlines

- Introduction of the two surveys
- Some interesting works
- Metallicity and evolution
- dynamics
- What we are working on
- Spatial distribution of the metallicity with RC
- Cross-calibration with LAMOST
- Dynamical modeling

Introduction

- Basics

DR12

- H band (I.5I-I.70mu)
- $\mathrm{R}=22,500,300$ fibers
- H_lim=12.2
- t_expos=3hrs
- $\mathrm{S} / \mathrm{N} \sim 100$
- sigma_v~0.1km/s
- $\mathrm{N}=100,000$
- DRI2: N~163,278
- ASPCAP
- RV,Teff, logg, [M/H],[alpha/M]
- [C/M], [N/M]...

APOGEE-2 (S/N)

Targets selection

Disk targeting:

$\mathrm{A}_{\mathrm{K}}=0.918\left(\mathrm{H}-[4.5]-(\mathrm{H}-[4.5])_{0}\right)$ $E(J-K)=I .5 A_{K}$

Tagrets selection

Washington+DDO5 I help to disentangle the giant stars

Tagrets selection

Halo targeting:

Washington+DDO5 I help to disentangle the giant stars

Targets selection

- 2267 common objects given NVISITS>1, good apogee spectra (ASPCAPFLAG bit23 = 0)
- 1566 single stars

世令 \boldsymbol{y}

Table Columns for 1：allStar－v603．fits

	Visible	Name	\＄ID	Class	Shape	Expression	Description	Format code
0	\square	Index	\＄0	Long			Table row index	
1	\checkmark	id	\＄152	Long		\＄0		
2	\checkmark	APSTAR＿ID	\＄1	String				45A
3	\checkmark	TARGET＿ID	\＄2	String				34A
4	\checkmark	ASPCAP＿ID	\＄3	String				44A
5	\checkmark	FILE	\＄4	String				34A
6	\checkmark	APOGEE＿ID	\＄5	String				18A
7	\checkmark	TELESCOPE	\＄6	String				8A
8	\checkmark	LOCATION＿ID	\＄7	Short				I
9	\checkmark	FIELD	\＄8	String				16A
10	\checkmark	J	\＄9	Float				E
11	\checkmark	J＿ERR	\＄10	Float				E
12	\checkmark	H	\＄11	Float				E
13	\checkmark	H＿ERR	\＄12	Float				E
14	\checkmark	K	\＄13	Float				E
15	\checkmark	K＿ERR	\＄14	Float				E
16	\checkmark	RA	\＄15	Double				D
17	\checkmark	DEC	\＄16	Double				D
18	\checkmark	GLON	\＄17	Double				D
19	\checkmark	GLAT	\＄18	Double				D
20	\checkmark	APOGEE＿TARGET1	\＄19	Integer				J
21	\checkmark	APOGEE＿TARGET2	\＄20	Integer				J
22	\checkmark	TARGFLAGS	\＄21	String				116A
23	\checkmark	NVISITS	\＄22	Integer				J
24	\checkmark	COMMISS	\＄23	Short				1
25	\checkmark	SNR	\＄24	Float				E
26	\checkmark	STARFLAG	\＄25	Integer				J
27	\checkmark	STARFLAGS	\＄26	String				129A
28	\checkmark	ANDFLAG	\＄27	Integer				J
29	\checkmark	ANDFLAGS	\＄28	String				59A
30	\checkmark	VHELIO＿AVG	\＄29	Float				E
31	\checkmark	VSCATTER	\＄30	Float				E
32	\checkmark	VERR	\＄31	Float				E
33	\checkmark	VERR＿MED	\＄32	Float				E
34	\checkmark	SYNTHVHELIO＿AVG	\＄33	Float				E
35	\checkmark	SYNTHVSCATTER	\＄34	Float				E
36	\checkmark	SYNTHVERR	\＄35	Float				E
37	\checkmark	SYNTHVERR＿MED	\＄36	Float				E
38	\checkmark	RV＿TEFF	\＄37	Float				E
39	\checkmark	RV＿LOGG	\＄38	Float				E
40	\checkmark	RV＿FEH	\＄39	Float				E
41	\checkmark	RV＿CCFWHM	\＄40	Float				E
42	\checkmark	RV＿AUTOFWHM	\＄41	Float				E
43	\checkmark	SYNTHSCATTER	\＄42	Float				E
44	\checkmark	STABLERV＿CHI2	\＄43	float［］	2			2E
45	\checkmark	STABLERV＿RCHI2	\＄44	float［］	2			2E
46	\checkmark	CHI2＿THRESHOLD	\＄45	float［］	2			2E

Table Columns for 1: allStar-v603.fits

	Visible	Name	\$ID	Class	Shape	Expression Description	Format code
43	\checkmark	SYNTHSCATTER	\$42	Float			E
44	\checkmark	STABLERV_CHI2	\$43	float[]	2		2E
45	\checkmark	STABLERV_RCHI2	\$44	float[]	2		2E
46	\checkmark	CHI2_THRESHOLD	\$45	float[]	2		2E
47	\checkmark	STABLERV_CHI2_PROB	\$46	float[]	2		2E
48	\checkmark	APSTAR_VERSION	\$47	String			5A
49	\checkmark	ASPCAP_VERSION	\$48	String			6A
50	\checkmark	RESULTS_VERSION	\$49	String			4A
51	\checkmark	EXTRATARG	\$50	Short			I
52	\checkmark	PARAM	\$51	float[]	7		7E
53	\checkmark	FPARAM	\$52	float[]	7		7E
54	\checkmark	PARAM_COV	\$53	float[]	49		49 E
55	\checkmark	FPARAM_COV	\$54	float[]	49		49E
56	\checkmark	ELEM ${ }^{-}$	\$55	float[]	15		15E
57	\checkmark	FELEM	\$56	float[]	15		15E
58	\checkmark	ELEM_ERR	\$57	float[]	15		15E
59	\checkmark	FELEM_ERR	\$58	float[]	15		15E
60	\checkmark	TEFF	\$59	Float			E
61	\checkmark	LOGG	\$60	Float			E
62	\checkmark	PARAM_M_H	\$61	Float			E
63	\checkmark	PARAM_ALPHA_M	562	Eloat			E
64	\checkmark	TEFF_ERR	\$63	Float			E
65	\checkmark	LOGG_ERR	\$64	Float			E
66	\checkmark	PARAM_M_H_ERR	\$65	Float			E
67	\checkmark	PARAM_ALPHA_M_ERR	\$66	Float			E
68	\checkmark	ASPCAP_CHI2	\$67	Float			E
69	\checkmark	ASPCAP_CLASS	\$68	String			2A
70	\checkmark	ASPCAPFLAG	\$69	Integer			J
71	\checkmark	ASPCAPFLAGS	\$70	String			153A
72	\checkmark	PARAMFLAG	\$71	int[]	7		7J
73	\checkmark	AL_H	\$72	Float			E
74	\checkmark	CA_H	\$73	Float			E
75	\checkmark	C_H	\$74	Float			E
76	\checkmark	FE_H	\$75	Float			E
77	\checkmark	K_H	\$76	Float			E
78	\checkmark	MG_H	\$77	Float			E
79	\checkmark	MN_H	\$78	Float			E
80	\checkmark	NA_H	\$79	Float			E
81	\checkmark	NI_H	\$80	Float			E
82	\checkmark	N_H	\$81	Float			E
83	\checkmark	$\mathrm{O}-\mathrm{H}$	\$82	Float			E
84	\checkmark	SI_H	\$83	Float			E
85	\checkmark	S_H	\$84	Float			E
86	\checkmark	TI_H	\$85	Float			E
87	\checkmark	V_H	\$86	Float			E
88	\checkmark	AL_H_ERR	\$87	Float			E
89	\checkmark	CA_H_ERR	\$88	Float			E

Current Working groups

- Disk
- Bulge
- Halo
- Clusters
- AGB stars
- Be stars
- YSOs
- dwarf galaxies

Some interesting works

- Stellar parameterization
- Holtzman et al. 2015
- Ness et al. 2015
- Metallicity
- Anders et al. 2014
- Bovy et al. 2014
- Hayden et al. 2015
- Interstellar medium
- Wang \& Jiang 2015
- Zasowski et al. 2015
- Evolution (APOKASC)
- Pinsonneault et al. 2014
- Clusters
- Frinchaboy et al. 2013
- Dynamics
- Bovy et al. 2013

Holtzman et al. 2015 Garcia Perez et al. 2015 (ASPCAP)

Ness et al. 2015

$$
\begin{aligned}
& \ell_{n k}\left(\mathrm{~T}_{\text {eff }}, \log \mathrm{g},[\mathrm{Fe} / \mathrm{H}], \cdots\right) \\
& f_{n \lambda}=\theta_{\lambda}^{T} \cdot \ell_{n}+\text { noise } \\
& \ell_{n} \equiv\left[1, \ell_{n 1}-\overline{\ell_{1}}, \ell_{n 2}-\overline{\ell_{2}}, \cdots, \ell_{n K}-\overline{\ell_{K}}\right] \\
& \ln p\left(f_{n \lambda} \mid \theta_{\lambda}^{T}, \ell_{n}, s_{\lambda}^{2}\right)=-\frac{1}{2} \frac{\left[f_{n \lambda}-\theta_{\lambda}^{T} \cdot \ell_{n}\right]^{2}}{s_{\lambda}^{2}+\sigma_{n \lambda}^{2}}-\frac{1}{2} \ln \left(s_{\lambda}^{2}+\sigma_{n \lambda}^{2}\right)
\end{aligned}
$$

Training
$\boldsymbol{\theta}_{\lambda}, s_{\lambda} \leftarrow \underset{\boldsymbol{\theta}_{\lambda}, s_{\lambda}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p\left(f_{n \lambda} \mid \boldsymbol{\theta}_{\lambda}^{T}, \boldsymbol{\ell}_{n}, s_{\lambda}^{2}\right)$

Anders et al. 2014

$$
\begin{aligned}
& \Delta T_{\text {eff }}=(83.8-39.8 \cdot[\mathrm{M} / \mathrm{H}]) \mathrm{K} \\
& \Delta \log g=0.2 \operatorname{dex} \\
& \Delta[\mathrm{M} / \mathrm{H}]=(0.055-0.036 \cdot[\mathrm{M} / \mathrm{H}]) \operatorname{dex} \\
& \Delta[\alpha / \mathrm{M}]=0.08 \text { dex. }
\end{aligned}
$$

Name	Requirements	Number of stars
HQ sample	see Table 1	21288
HQ sample with reliable α-element abundances	$4000 \mathrm{~K}<T_{\text {eff }}<5000 \mathrm{~K}$	18855
HQ sample with valid distance determination	distance code (Santiago et al. 2014) converges	21105
HQ sample with (valid) UCAC-4 proper motions	PM criteria (see Sect. 3.2) are fulfilled	17882
HQ k sample	valid proper motions \& distances	17758
Local HQ sample $_{\text {Local HQ }}{ }^{k}$ sample	$d<1 \mathrm{kpc}$	1975
Gold sample	$d<1 \mathrm{kpc} \wedge \mathrm{HQ}^{k}$	1654

Bovy et al. (2014)

Hayden et al. 2015

Zasowski

Method

- Targets: K and M dwarfs (cool)
- Dominated by absorption features
- ASPCAP - provide F^{\prime} best fit spec
- Multi-D χ^{2}-minimization
- Residuals: $R=F / F^{\prime}$
- Stellar rest frame
- Clean samples: 58605 / 96938
- Locally good ASPCAP fit:

$$
\text { - } \sigma\left(R_{\lambda}\right) / \sigma\left(F_{\lambda}\right) \leq 0.55
$$

- Smooth residual

$$
-\sigma\left(R_{\lambda}\right) \leq 5 \%
$$

- Well measured stellar RV
- VSCATTER $\leq 1 \mathrm{~km} \mathrm{~s}^{-1}$
- Gaussian fit

$$
\begin{aligned}
W & =\int_{\lambda_{1}}^{\lambda_{2}}\left(1-R_{\lambda}\right) \mathrm{d} \lambda \\
& =\sqrt{2 \pi} A \sigma .
\end{aligned}
$$

Pinsonnault et al. 2014 (APOKASC)

Full KIC

Full APOKASC

This Paper

Frinchaboy et al. 201328 OCs

APOGEE data

vc= $218 \mathrm{~km} / \mathrm{s} \quad \mathrm{M}_{\text {halo }}=0.8 \times 10^{12} \mathrm{M}_{\odot}$

$$
\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\phi}-\mathrm{V}_{\mathrm{a}}
$$

$$
\frac{V_{c}(R) V_{a}(R)}{\sigma_{R}^{2}(R)}=\frac{1}{2}\left[X^{2}-1+R\left(\frac{1}{h_{R}}+\frac{2}{h_{\sigma}}\right)\right]
$$

$$
f_{\text {Dehnen }}(E, L) \propto \frac{v_{*}\left(R_{e}\right)}{\sigma_{R}^{2}\left(R_{e}\right)} \exp \left[\frac{\Omega\left(R_{e}\right)\left[L-L_{c}(E)\right]}{\sigma_{R}^{2}\left(R_{e}\right)}\right]
$$

Our ongoing works

- Spatial variation in metallicity
- Wan et al.
- Cross-calibration
- Chen et al.
- Ho et al.
- Dynamical modeling
- Liu et al.

Project \#1

- Gao et al. (2014) found f_{B} is a function of T eff $(S p T)$ and [Fe / H] (age).
- The method is based on spectral differential $R V$ and detection power of Period is limited under 1000 days.
- It implies that orbital parameters evolve with age and SpT.

Constrains of (RGB) binary orbital parameters

- Each target of APOGEE is observed twice to twenty times.
- RV dispersion VSCATTER shows long-tailed form
- Orbital parameters (P, q, e) are implicit in RV dispersion, which can be revealed by MCMC algorithm.

$$
v_{i}=q\left[\frac{2 \pi G M_{1}}{P(1+q)^{2}}\right]^{1 / 3} \frac{1}{\sqrt{1-e^{2}}} \sin i \cos \left(\frac{2 \pi t_{i}}{P}-\phi_{0}\right)
$$

- Stellar mass M_{1} is derived from isochrones
- We apply parameterization of 3 orbital para. (P, q, e) to describe their distributions.
- Each para. is separated into N evenly-spaced ranges, that are weighted by N weights.

Project \#2

Non-axisymmetry of the Galactic stellar disk

- Goal: looking for the evidence of lopsidedness or ellipticity of the Galactic disk
- 1/3 disk galaxies are lopsided (Rix \& Zaritsky 1995)
- Kuijken \& Tremaine (1994) tested the elliptically of the Galactic disk
- Nature of the lopsidedness:
- interaction with a passing-by galaxy
- minor merger
- asymmetric gas accretion
- secular evolution with a triaxial halo etc.
- help to constrain the evolution of the Galactic disk
- Method: Find the difference in <v_R(R)> or <v_phi(R)>

$$
\left\langle v_{R}\right\rangle=7.4 \mathrm{~km} \mathrm{~s}^{-1}\left(\frac{v_{c}}{200 \mathrm{~km} \mathrm{~s}^{-1}}\right)\left(\frac{\tilde{A}_{1}}{0.11}\right)\left(\frac{2.5 R_{\text {exp }}}{R}\right) .
$$ between QII and QIII disk with red clump/RGB stars

Chen et al.

Reference objects:

- Subset of spectra with highfidelity labels (ex. calibration objects)
- We use $\mathbf{8 0 3}$ high-S/N LAMOST spectra and corresponding APOGEE labels

Spectral model:

- Flux for object n at wavelength λ is a function of the labels
- We use a model that is quadratic in the labels, but we show it as linear for brevity
- The training step consists of solving for the coefficients highlighted in blue

The Cannon MPIA group Ho et al.

Sample Reference Object Spectrum (with continuum fit from The Cannon)

$$
\begin{aligned}
f_{n \lambda} & =a_{\lambda}+b_{\lambda}\left(T_{\mathrm{eff}}\right)_{n}+c_{\lambda}(\log g)_{n} \\
& +d_{\lambda}([F e / H])_{n}+e_{\lambda}([\alpha / F e])_{n} \\
& + \text { scatter }_{\lambda}
\end{aligned}
$$

First-Order Fit Coefficients for Labels

Liu, Wan et al.

Dynamical modeling

