Stellar rotation

the missing piece in Stellar physics

Collaborators:

Richard de Grijs (MQ),

Licai Deng (NAOC), Chengyuan Li (SYSU),

Michael Albrow (UC), Petri Vaisanen (SAAO), Zara Randriamanakoto (SAAO)

Weijia Sun (PKU) 07/14/2021

- Dynamo-driven magnetic activity
- Stellar winds
- Surface abundances
- Chemical yields
- Internal structure
- External structure

- Dynamo-driven magnetic activity
- Stellar winds
- Surface abundances
- Chemical yields
- Internal structure
- External structure

Matt & Pudritz 2005

- Dynamo-driven magnetic activity
- Stellar winds
- Surface abundances
- Chemical yields
- Internal structure
- External structure

Maeder & Meynet 2011

- Dynamo-driven magnetic activity
- Stellar winds
- Surface abundances
- Chemical yields
- Internal structure
- External structure

extended MSTO and split MS

Found in Magellanic Clouds clusters

Mackey et al. 2008

Milone et al. 2015

Not only in MC clusters

But also in Galactic OCs

Sun et al. 2019a

What causes eMSTO and split MS?

- Extended star formation history (eSFH)
- Variability
- A wide range of stellar rotations

What causes eMSTO and split MS?

Stellar rotation

Gravity darkening

It's mainly $v \sin i$ that affects the locus of a star in the CMD

1. Rotation detection through photometry

2. Rotation detection through spectroscopy

South Africa Large Telescope (*SALT*)

Multi-object Spectroscopy (MOS)

R ~ 4000

 $G_{\rm BP} - G_{\rm RP} \ ({\rm mag})$

2. Rotation detection through spectroscopy

- The loci of the main-sequence stars in the eMSTO region show a clear correlation with the projected rotational velocities
- Fast rotators are located on the red side of the eMSTO and slow rotators are found on the blue side

2. Rotation detection through spectroscopy

2. Rotation detection through spectroscopy

- The mean projected rotational velocity for bMS and rMS stars are 111 km s⁻¹ and 255 km s⁻¹, respectively.
- Rapidly rotating stars are generally redder than slowly or nonrotating stars

Sun et al. 2019b

2. Rotation detection through spectroscopy

From $v \sin i$ to $v_{\rm eq}$ Knowledge from Asteroseismology

From $v \sin i$ to $v_{\rm eq}$ Evidence against Spin alignment

How to unravel the stellar rotation distribution

- Five Galactic
 OCs that have
 similar
 chronological
 (~ 1 Gyr) and
 dynamical ages
- Four clusters were observed with SALT

Binary-driven stellar rotation evolution

- $N_{\rm slow}/N_{\rm tot}$
- A tight correlation between the number ratio of slow rotators and the clusters' binary fractions

Binary-driven stellar rotation evolution

- $N_{\rm slow}/N_{\rm tot}$
- A tight correlation between the number ratio of slow rotators and the clusters' binary fractions
- The correlation remains the same regardless of the choices of defining subsamples

Binary-driven stellar rotation evolution

- $N_{\rm slow}/N_{\rm tot}$
- A tight correlation between the number ratio of slow rotators and the clusters' binary fractions
- The correlation remains the same regardless of the choices of defining subsamples

Binary-driven stellar rotation evolution Does it exist in Magellanic Clouds?

- Magellanic Clouds clusters have approximately constant number ratios (25% — 45%)
- Their binary fractions are around 0.3

Binary-driven stellar rotation evolution Does it exist in Magellanic Clouds?

- Magellanic Clouds clusters have approximately constant number ratios (25% — 45%)
- Their binary fractions are around 0.3

Binary-driven stellar rotation evolution Does it exist in Magellanic Clouds?

- Magellanic Clouds clusters have approximately constant number ratios (25% — 45%)
- Their binary fractions are around 0.3
- Young clusters evolve toward this correlation through dynamical evolution

What causes the correlation?

What causes the correlation? Scenario A

- Within the first few Myr:
 Slow rotators have been able to retain their circumstellar discs throughout their PMS lifetimes while rapid rotators may have lost the discs destroyed by binaries (Bastian et al. 2020)
 Disk-locking
- Binaries may be expected to destroy discs around the individual stars
- Higher $f_{\rm b}$ -> Shorter disk lifetime -> Less slow rotators
- In conflict with our results

What causes the correlation? Scenario B

- a few tens of millions of years:
 bMS in young clusters might be the outcome of braking of the rapidly rotating population. The deceleration might be due to interaction between close binaries through magnetic-wind braking or tidal torques (D'Antona et al. 2015 & 2017)
 Tidal-locking
- Higher binary fraction -> More slow rotators
- Only close binaries may become tidally locked

What causes the correlation?

Scenario B

What causes the correlation? Scenario B

- a few tens of millions of years:
 bMS in young clusters might be the outcome of braking of the rapidly rotating population. The deceleration might be due to interaction between close binaries through magnetic-wind braking or tidal torques (D'Antona et al. 2015 & 2017)
 Tidal-locking
- Higher binary fraction -> More slow rotators
- Only close binaries may become tidally locked
- $N_{\rm slow}/N_{\rm tot}$ is **comparable** to $f_{\rm b}$ in our result
- The slope is greater than unity

- LAMOST MRS DR7, with v sin i down to a few km/s
- Line indices of Mg Ib and Hlpha
- Stellar LAbel Machine (SLAM)
- Scatters for $T_{\rm eff}$, $\log g$, [M/H], and $v \sin i$ are \sim 75 K, 0.06 dex, 0.05 dex, and 3.5 km s⁻¹

Sun+2021a, submitted to ApJS

- The largest catalog (40034) of late-B and Atype main sequence stars from LAMOST MRS DR7
- We can statistically rectify the projection effect and the error distribution
- Contamination is important (binary, chemical peculiar stars, periodic variables, cluster members)

Do we know rotation in the field? Chemical peculiar stars

- early-type MS stars exhibiting anomalous chemical abundances
- metallic line (Am),
 magnetically peculiar
 (mAp), stars with
 enhanced Hg ii and Mn ii
 (HgMn), and He-weak
 stars
- CP stars tend to be slow rotators

How to quantify rotation?

- $v\left(M, \omega_{\text{init}}, t/t_{\text{MS}}\right)$
- v changes as a function of time, and also depends on the stellar mass
- v/v_{crit} is almost constant over its MS lifetime

Dependence on metallicity

Do we know rotation in the field? Bimodality in late-type MS stars

- K2 targets with Gaia DR 2
- A gap in the rotation period-color diagram $0.57 M_{\odot} < M < 0.76 M_{\odot}$
- Departure from Skumanich spin down law rather than a bimodal star formation history

Take-home message

- Differences in stellar rotation rates are a key driver of extended MSTOs and split MSs in star clusters.
- Fast rotators appear redder than their slowly rotating counterparts.
- Bimodal rotation distribution is prevalent in star clusters and field (but at different mass regime)
- We still don't know the origin of such bimodality, future long-term photometric observation could be beneficial