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Chi2

If each data point (x;, y;) has its own, known standard deviation o;, then
equation (15.1.3) 1s modified only by putting a subscript ¢ on the symbol . That
subscript also propagates docilely into (15.1.4), so that the maximum likelithood
estimate of the model parameters 1s obtained by minimizing the quantity

i( y(i; a1 G’M))z (15.1.5)
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called the “chi-square.”



Chi2 fitting & Chi2 distribution

Definition: The Chi-Square Distribution, denoted as 2 is related to the standard
normal distribution such as, if the independent normal variable, let’s say Z assumes the
standard normal distribution, then the square of this normal variable Z2? has the chi-square
distribution with ‘K’ degrees of freedom.



Freedom x—~wum

Definition: The Degrees of Freedom refers to the number of values involved in the
calculations that have the freedom to vary. In other words, the degrees of freedom, in
general, can be defined as the total number of observations minus the number of
independent constraints imposed on the observations.
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Freedom

A rule of thumb is that a “typical” value of y2 for a “moderately” good fitis 2 =k

X2 <<k

Data errors are overestimated.
Errors are too large.

X2 >> Kk

Data errors are underestimated.
Intrinsic dispersion



Freedom

Dos and don’ts of reduced chi-squared
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Y24 1s a quantity widely used in astronomy. It is essentially used for the following purposes:

1. Single-model assessment: If a model is fitted to data and the resulting x2, is larger than
one, it is considered a “bad” fit, whereas if y2, < 1, it is considered an overfit.

2. Model comparison: Given data and a set of different models, we ask the question which
model fits the data best. Typically, each model is fit to the data and their values of x2 ,
are compared. The winning model is that one whose value of x2 is closest to one.

3. Convergence diagnostic: A fit is typically an iterative process which has to be stopped
when converged. Convergence is sometimes diagnosed by monitoring how the value of
X2 evolves during the iteration and the fit is stopped as soon as x2, reaches a value
sufficiently close to one. Sometimes it is claimed then, that “the fit has reached noise
level”.

4. Error estimation: One fits a certain model to given data by minimising y? and then
rescales the data’s errors such that the value of x2, is exactly equal to one. From this
one then computes the errors of the model parameters. (It has already been discussed by
‘Andrael (2010) that this method is incorrect, so we will not consider it any further here.)




Chi2 & Maximum likelihood estimation

Maximum likelihood estimation distribution of data for a given model.
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Chi2 & Maximum likelihood estimation

If experimental data are subject to measurement error not only in the y;’s, but also in
the x;’s, then the task of fitting a straight-line model

y(x) =a+ bx (15.3.1)

We assume that the uncertainty o:associated with each measurement y.1s known, and that
the x.’s (values of the dependent variable) are known exactly.
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If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations of a and b.



Errors in both x and y

If experimental data are subject to measurement error not only in the y;’s, but also in
the x;’s, then the task of fitting a straight-line model

y(zr) = a+ bx (15.3.1)

is considerably harder. It is straightforward to write down the x merit function for this case,

x?(a,b) = i (v — o — bo:)” (15.3.2)
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where o, ; and oy ; are, respectively, the z and y standard deviations for the sth point.



Figure 15.3.1.  Standard errors for the parameters a and b. The point B can be found by varying the
slope b while simultaneously minimizing the intercept a. This gives the standard error o, and also the
value s. The standard error o, can then be found by the geometric relation o, = s2 +r2.

Var(y; — a — bx;) = Var(y;) + b”Var(z;) = Uii + b0,



Confidence region and confidence level
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Confidence region and confidence level

Ax? as a Function of Confidence Level and Degrees of Freedom

vV

D 1 2 3 1 5 6
68.3% 1.00 2.30 390 4.72 >.82 7.04
90% 2.71 4.61 6.25 7.78 9.24 10.6
95.4% 4.00 6.17 8.02 9.70 11.3 12.8
99% 6.63 9.21 11.3 13.3 5.1 16.8

99.73% | 9.00 11.8 14.2 16.3 18.2 20.1
99.99% | 13.1 18.4 21,1 23.9 25:. 7 A8




Nonnormal errors

e to fit for parameters by minimizing y?

e to use acontour of constant A x? as the boundary of your confidence region

e to use Monte Carlo simulation or detailed analytic calculation in deter-
mining which contour Ax? is the correct one for your desired confidence
level

e to give the covariance matrix C;; as the “formal covariance matrix of
the fit.”



Usetul webpages

https://github.com/statsmodels/statsmodels/blob/main/examples/python/chi2 fitting.py

https://probfit.readthedocs.io/en/latest/api.html#probfit.costfunc.Chi2R




