Dynamical Evolution of Star Clusters

- Star clusters \& stellar birth
- Dynamical evolution of a star cluster

■ Outstanding issues/some latest studies

Wen-Ping Chen
Graduate Institute of Astronomy National Central University

Star Formation $=$ Cluster Formation

Stars are formed in groups out of dense molecular cloud cores，and planets are formed，at the same time as the stellar birth，in dusty circumstellar disks．

Giant Molecular Clouds

$$
\begin{aligned}
& \mathrm{D}=20 \sim 100 \mathrm{pc} ; \mathcal{M}=10^{5} \sim 10^{6} \mathcal{M}_{\odot} ; \\
& \rho \approx 10 \sim 300 \mathrm{~cm}^{-3} ; T \approx 10 \sim 30 \mathrm{~K} ; \\
& \Delta v \approx 5 \sim 15 \mathrm{~km}^{-1}
\end{aligned}
$$

Molecular clumps／clouds／condensations

$$
n \sim 10^{3} \mathrm{~cm}^{-3}, D \sim 5 \mathrm{pc}, M \sim 10^{3} \mathrm{M}_{\odot}
$$

Dense molecular cores

$$
n \geq 10^{4} \mathrm{~cm}^{-3}, \mathrm{D} \sim 0.1 \mathrm{pc}, M \sim 1-2 \mathrm{M}_{\odot}
$$

李建德 dust formation姜博識 brown dwarfs黄拍傑 young dusty disk

Jeans Mass $\mathcal{M}_{\mathrm{J}} \propto T^{3 / 2} / \rho^{1 / 2} \quad$ in cgs and solar units
If $\mathcal{M}_{\text {cloud }}>\mathcal{M}_{\mathrm{J}}$ (critical mass) \rightarrow cloud collapse GMCs $\mathcal{M}_{J} \approx 100 \sim 1000 \mathcal{M}_{\odot}$ But stars ~ 0.08 to $120 \mathcal{M}_{\odot}$

Cloud collapse $\rightarrow \rho \uparrow$, and if sufficient cooling, $T \approx$ const (isothermal) denser \rightarrow more collisions/excitations/line emission \rightarrow if photons escape \rightarrow cooling $\rightarrow \mathcal{M}_{\mathrm{J}} \downarrow$, i.e., easier to exceed \rightarrow fragmentation to clumps/cores
... until a core very dense, so no longer optically thin (adiabatic) $\rightarrow T \uparrow \rightarrow$ formation of a star or two for each core \rightarrow a star cluster

- Member stars in a star cluster have the same age, same chemical abundances, and at the same distance from us. ... well, almost

Evolution of Star Clusters

－（Initial）Molecular clouds are clumpy and filamentary；so are the youngest star clusters．
－（Internal）Mutual gravitational interaction among members tend to virializes the cluster into a spherical shape（relaxation）， with more massive stars concentrating more toward the center （mass segregation）．Lowest－mass members are vulnerable to ejection out from the system（stellar evaporation）．
－（External）Eventually Galactic perturbations（tidal forces， differential rotation）distort and rip apart the star clusters． Then－members supply the Galactic disk population．
－A recently dissolved system in the solar neighborhood may be recognized as a moving（star）group．

Stars Formed in Groups \quad Star-Cloud Interplay \quad Cloud Dispersal | Stellar Dynamics |
| :---: |
| (segregation, evaporation, |
| tidal disruption) |\quad Disk Population

Shape Morphology

Probabilistic star counting --- weighting each star by the number of neighbors

Core:

1/3 max density
Halo:
3 times field fluctuation

OCs are in general flattened, even among the youngest ones of a few Myr. As an OC ages, its core becomes circularized by stellar dynamics; the overall size expands and stellar density drops.

Globular Clusters are flattened

(CW Chen \& WP Chen, 2010)

Fig. 6.- The distribution of the axial ratios of the 95 Galactic globular clusters with reliabile measurements. The dashed line indicates the median value of 0.87 of the sample.

Dynamical Relaxation of a Stellar System

$$
\begin{aligned}
& \tau_{\text {cross }}=\frac{D}{v} \\
& N_{\text {cross }}=\frac{0.1 N}{\ln N}
\end{aligned}
$$

where

$$
\tau_{\text {cross }} \ldots \text { time for a star to move }
$$

across cluster = dynamical time scale
D... diameter of the cluster
v ... velocity of the star
N... number of stars in the cluster
$N_{\text {cross }} \ldots$ number of crossings
$\tau_{\text {relax }} .$. relaxation time scale
$\tau_{\text {evap }} .$. stellar evaporation time scale
For a typical GC, $\tau_{\text {relax }} \approx 10^{8} \sim 10^{9}$ yr Most GC's have been relaxed. For a typical OC, $\tau_{\text {relax }} \approx 10^{6} \sim 10^{7}$ yr Young OC's are beilng relaxed.

Praesepe (M44, $750 \mathrm{Myr}, 179 \mathrm{pc})$
A secured list of 1040 member candidates to test stellar evolutionary models
20-40\% binary freq. with a preference of similar-mass pairs

- Mass segregation with the lowest mass members (< $0.2 \mathrm{M}_{\odot}$) being stripped away
The cluster being dissolved

UKIDSS J and K data can probe much fainter (substellar) members

Member selection by (1) Position, (2) Proper Motions, (3) Isochrone (distance), and (4) Radial Velocity

Dynamical Evolution

Cumulative stellar density profiles for NGC 2506, showing clear evidence of mass segregation

\ldots while the old OC $(\log ($ age [years] $)=10)$
Berkeley 17 does not show mass segregation.

Eventually tidal force and Galactic differential rotation tear the cluster apart.

Tidal Tails

The "archetype" of globular cluster tidal tails -- those found by the digital sky survey on the globular cluster Palomar 5. Upper panels from Odenkirchen et al. (2001, AJ, 548, L165) showing initial discovery in the SDSS equatorial strip data. Lower panel is an extended view of 10 degree tails from Sloan in Odenkirchen et al. (2003, AJ, 126, 2385).

Tidal Tails

Chen, CW, et al. (2010)

 Figure 35 . Same as
around the cluster.

Conclusion

- Nothing of an "old" topic
- Time ripe to study star clusters in quality and in quantity; formation conditions and survival
- Gaining ever more knowledge than before of the long known and studied star clusters, with new answers and new questions---larger vs smaller systems; much massive vs very low-mass members; systems in MW vs beyond.
- An expanded sample of star clusters to probe stellar evolution and Galactic structure/evolution

